Dr. D. SANGEETHA

1. Designation : Associate Professor

Institute for Energy Studies

Anna University, Chennai – 600 025

2. Email(s) : sangeetha@annauniv.edu, sangeetha_univ@yahoo.co.in

3. Phone : 044 – 2235 7602, +91 – 9840203400

4. Academic Qualification

S.No.	Degree	Year	Subject	University/Institution	% Marks
1.	M.Sc (5 years Integrated)	1994	Polymers	University of Madras	72
2.	Ph.D	2000	Polymers	University of Madras	-
3.	MBA		Technology Management	Anna University, Chennai	75
4.	AMIE	2013	Metallurgy and material	The Institution of Engineers (India)	8.5 CGPA
5.	M.E		1 0	Anna University, Chennai	9.5 CGPA
6.	Ph.D	2021	Polymer composites	Anna University, Chennai	-

5. Ph.D thesis title, Guide's Name, Institute/Organization/University, Year of Award.

Sl.No	Thesis title	Name of	Institute/Organization	Year of
		Supervisor	/University	award
1.	Ziegler Natta Polymerization	Prof. H.	University of Madras	2000
		Kothandaraman,		
		(Retired)		
		University of		
		Madras, Chennai		
2.	Studies on the effect of	Prof. M.	Anna University -	2021
	silane treatment of plant	Omkumar,	Chennai	
	waste natural fiber reinforced	Department of		
	polymer composites	Manufacturing		
		Engineering, Anna		
		University,		
		Chennai		

6. Work experience (in chronological order).

S.No.	Positionsheld	Name of the Institute	From	То
1.	Associate Professor	Institute for Energy Studies	27/08/2015	Till date
2.	Assistant Professor (Senior Grade)	Department of Mechanical Engineering, Anna University, Chennai - 25	19/03/2013	27/08/2015
3.	Lecturer, Assistant Professor (Senior Grade)	Department of Chemistry, Anna University, Chennai- 600025	14/07/2004	18/03/2013
4.	Lecturer	Department of Chemistry, Bharath Deemed University, Chennai	Aug 2003	July 2004
5.	Polymer Scientist, Fuel Cell Development	Agni India Pvt., Ltd., Chennai	Oct 2002	July 2003
6.	Post Doctorate Fellow	Centre for Energy Research (R&D) SPIC Science Foundation	Aug 2001	Sept 2002

7. Professional Recognition/ Award/ Prize/ Certificate

S.No	Name of Award	Awarding Agency	Year
1	University Rank in M.Sc	University of Madras, Chennai	1994
2	Top 10 finalists as the Best Chemistry	Tata Chemicals in collaboration with Association of	2011
	Teacher	Chemistry Teachers (ACT)	
3	Top 50 innovators in India	DST-Lockheed Martin Innovators Growth	2012
		Programme	
4	Active Researcher Award	Anna University, Chennai	2012
5	Highest mark in AMIE	Institution of Engineers (India)	2014
6	H.Nandy Memorial Award	Indian Engineering Congress	2014
7	Women's Achiever Award 2017	Anna University, Chennai	2017
8	CTDT Student Innovative Project	Dept. of Mechanical Engineering by Anna	2017
	Award	University, Chennai	
9	Wenlock Endowment Scholarship for	Anna University, Chennai	2018
	high impact publications		
10	CTDT Student Innovative Project	Dept. of Mechanical Engineering by Anna	2018
	Award	University, Chennai	
11	First Rank in M.E (Computer Integrated	Dept. of Manufacturing, Anna University, Chennai	2019
	Manufacturing)		
12	Professional Engineer in Metallurgy and	Institution of Engineers (India)	2019
	Materials Engineering Discipline		
13	Research Excellence Award	CTDT, Anna University, Chennai	2020
14	Recognized as one among the top 2%	Stanford University, Elsevier	2022
	scientists in the world		

8. Publications (List of papers published in SCI Journals, in year wise descending order).

S.No.	Author(s)	Title	Name of Journal	Volume	Page	Year
1.	Saranya	Synthesis and	Colloids and	637	128185	2022
	Rathinavel,	fabrication of amine	Surfaces A:			
	Janani	functionalized SBA-	Physicochemical			
	Indrakumar,	15 incorporated	and Engineering			
	Purna Sai	PVA/Curcumin	aspects			
	Korrapati,	nanofiber for skin				
	Sangeetha	wound healing				
	Dharmalingam	application	_	2.12	100000	
2.	Moogambigai	Statistical assessment	Energy	242	123000	2022
	Sugumar,	of operational				
	Dharmalingam	parameters using				
	Sangeetha	optimized				
		sulphonated titanium				
		nanotubes				
		incorporated sulphonated				
		polystyrene ethylene				
		butylene polystyrene				
		nanocomposite				
		membrane for				
		efficient electricity				
		generation in				
		microbial fuel cell				
3.	Rajalakshmi	Fabrication and	Materialia	21	101278	2022
	Ekambaram, Sai	evaluation of	Waterfalla	21	101270	2022
	Supriyalakshmi,	Docetaxel doped				
	Saravanan	ZnO nanoparticles				
	Vishnu Priya,	incorporated PCL				
	Sivanath Babu,	nanofibers for its				
	Sangeetha	hemocompatibility,				
	Dharmalingam	cytotoxicity and				
	C	apoptotic effects				
		against A549				
4.	John Solomon,	Enhancing power	Journal of	10	107057	2022
	Vaidhegi	generation by	Environmental			
	Kugarajah,	maintaining	Chemical			
	Paechimuthu	operating	Engineering			
	Ganesan,	temperature using				
	Sangeetha	Phase Change				
	Dharmalingam	Material for				
		Microbial Fuel Cell				
		application				
5.	Vaidhegi	Enhancement of	Process	113	1	2022
	Kugarajah,	nitrate removal and	Biochemistry			
	John Solomon,	electricity generation				

	77 1 11		<u> </u>		1	1
	Kavinila	in microbial fuel cell				
	Rajendran,	using eggshell				
	Sangeetha	supported biocathode				
	Dharmalingam		_			
6.	Moogambigai	Optimization of	Process safety and	258	474	2022
	Sugumar,	operational factor	Environmental			
	Vaidhegi	using statistical	Protection			
	Kugarajah,	design and analysis				
	Sangeetha	of nanofiller				
	Dharmalingam	incorporated polymer				
		electrolyte membrane				
		towards performance				
		enhancement of				
		microbial fuel cell				
7.	Rajalakshmi	Design and	Journal of	-	1	2022
	Ekambaram,	development of	Biomaterials		-	
	Sangeetha	1	Science: Polymer			
	Dharmalingam	electrospun SPEEK	Edition			
	Diaminamigam	nanofibrous scaffold	Lattion			
		for bone regeneration				
		applications: in vitro				
		and <i>in vivo</i> study				
Q	Ekambaram, R.,	Statistical	Carbohydrate	2	100048	2021
0.	Saravanan, S.,	optimization of novel		<i>_</i>	100040	2021
	Selvam, N., &	acemannan	Technologies and			
		polysaccharides	Applications			
	Difarmaningam, S.	assisted TiO ₂	Applications			
		nanorods based				
		nanofibers for skin				
	Elvanda	cancer application	I		104706	2021
9.		Design and	Journal of the	-	104796	2021
	Paraman, V., Raja,		Mechanical			
		electrospun SPEEK	Behavior of			
	& Dharmalingam,		Biomedical			
	S.	aminated zirconia	Materials			
		and curcumin				
		nanofibers for				
		periodontal				
		regeneration				
10.	Kugarajah, V., &	Effect of silver	Chemical	415	128961	2021
	Dharmalingam, S.	incorporated	Engineering Journal			
		sulphonated poly				
		ether ether ketone				
		membranes on				
		microbial fuel cell				
		performance and				
		microbial community				
		analysis				
11.	Kugarajah, V.,	Investigation on	International	46 (42)	22134-	2021
	Sugumar, M.,	sulphonated zinc	Journal of		22148	
	Swaminathan, E.,	oxide nanorod	Hydrogen Energy			

	D 1 1 '		<u> </u>			
	Balasubramani,	incorporated				
	N., &	sulphonated poly (1,				
	Dharmalingam, S.	4-phenylene ether				
		ether sulfone)				
		nanocomposite				
		membranes for				
		improved				
		performance of				
		microbial fuel cell				
12.	Ekambaram, R.,	Design and	Biomedical	16(4)	045014	2021
	Sugumar, M.,	fabrication of	Materials			
	Swaminathan, E.,	electrospun Morinda				
	Raj, A. P. M., &	citrifolia-based				
	Dharmalingam, S.					
		as skin wound				
		dressing material: in				
		vitro and in silico				
	*** = ~	analysis			4.4.	2024
13.	Victor, F. S.,	Electrospun	Environmental		1-14	2021
	Kugarajah, V.,	nanofibers of	Science and			
	Bangaru, M.,	1 2 2	Pollution Research			
	Ranjan, S., &	fluoride incorporated				
	Dharmalingam, S.					
		nanotubes for				
		purifying air with				
		bacterial				
1 /	Vucancial V	contamination.	Loumal of		105107	2021
14.	Kugarajah, V.,	1.1	Journal of Environmental		105107	2021
	Ojha, A. K.,	of Electrospun				
	Ranjan, S.,	Nanofibers in Pressure Driven	Chemical Engineering			
	Dasgupta, N.,		Engineering			
	-	Water Treatment: A				
		Brief Review and				
1.5	& Mishra, B. N.		Chamacahana	260	127502	2020
15.	Kugarajah, V., &	-	Chemosphere	260	127593	2020
	Dharmalingam, S.					
		oligomeric				
		silsesquioxane/sulpho nated poly ether ether				
		ketone				
		nanocomposite				
		membranes for				
		microbial fuel cell:				
		Insights to the				
		miniatures involved.				
16	Ravikumar, D. K.,		Journal of Materials	29(11)	7396-7407	2020
10.	Raylkumar, D. K., Ragavan, S., &	•	Engineering and	2)(11)	1370-140/	2020
	Dharmalingam, S.					
	Diamaningani, 3.	Aluminum-	i citorinance			
		Chromium-Nitride-				
		Coated Stainless				
		Coated Stainless				

Г	I	1			
	Steel 316L				
	Micrometal Lattice				
	Fabricated by				
	Selective Laser				
	Sintering				
17. Dharmalingam, S.,	Effect of Degree of	Colloids and	603	125273	2020
		Surfaces A:			
	on the properties of	Physicochemical			
	Luffa-Epoxy	and Engineering			
	Composites	Aspects			
18. Kugarajah, V., &	Investigation of a	Chemical	398	125558	2020
Dharmalingam, S.	_	Engineering	370	123330	2020
Dharmamigani, S.	membrane	Journal,			
	comprising	Journar,			
	Sulphonated Poly				
	Ether Ether Ketone				
	and Sulphonated				
	Titanium Nanotubes				
	in Microbial Fuel				
	Cell and preliminary				
	insights on microbial				
	adhesion				
19. Ekambaram, R., &		Materials Science	115	111150	2020
Dharmalingam, S.		and Engineering: C			
	electrospun				
	biomimetic				
	sulphonated PEEK				
	nanofibrous scaffold				
	for human skin cell				
	proliferation and				
	wound regeneration				
	potential				
20. Kugarajah, V.,	Nanocomposite	Enzyme and	140	109606	2020
<i>E</i> , ,	membrane and	Microbial			
Dharmalingam, S.	microbial community	Technology			
	analysis for improved				
	performance in				
	microbial fuel cell				
21. Sugumar, M. and	Statistical	Journal of Power	469	228400	2020
Dharmalingam, S.,	optimization of	Sources			
	process parameters in				
	microbial fuel cell for				
	enhanced power				
	production using				
	Sulphonated				
	Polyhedral				
	Oligomeric				
	Silsesquioxane				
	dispersed				
	Sulphonated				
1 1	Polystyrene Ethylene				

	Butylene Polystyrene nanocomposite				
	membranes.				
Korrapati, P.S. and Sangeetha, D.,	fabrication of electrospun SBA-15-	Biomedical Materials	15	035009	2020
Dharmalingam, S., Meenakshisundara m, O., Elumalai, V. and Boopathy, R.S.,	An Investigation on the Interfacial Adhesion between Amine Functionalized Luffa Fiber and Epoxy Resin and Its Effect on Thermal and Mechanical Properties of Their Composites	Journal of Natural Fibers		1-16	2020
Sravanthi, C.K.K. and Sangeetha, D.,	Synthesis characterization and	Applied Nanoscience	9	1163-1172	2019
Annapooranan, R., Ganapathikrishnan , M. and Sangeetha, D.,	Phosphonated mesoporous silica based composite membranes for high temperature proton exchange membrane fuel cells.	Journal of SolidState Electrochemistry	23	1837-1850	2019
Deenadhayalan, T., Asitha, A.K., Kirubhakaran, D.J. and Sangeetha, D.,	tungstic acid functionalized titanium oxide nanotubes and its effect on proton exchange membrane fuel cell	SN Applied Sciences	1	348	2019
Dharmalingam, S.,	Octa-imidazolium POSS/quaternizedpol ysulfone composite anion exchange	Polymer Composites	40	1536-1544	2019

		membrane for alkaline fuel cell.				
	Felix Swamidoss, V., Bangaru, M., Nalathambi, G., Sangeetha, D. and Selvam, A.K.,	Silver-incorporated poly vinylidene fluoride nanofibers for bacterial filtration.	Aerosol Science and Technology	53	196-206	2019
29.	Elumalai, V. and Sangeetha, D.,	Synergic effect of ionic liquid grafted titanate nanotubes on the performance of anion exchange membrane fuel cell.	Journal of Power Sources	412	586-596	2019
	Swamidoss, V.F., Bangaru, M. and Sangeetha, D.,	A new approach to air filtration.	Filtration & Separation	56	22-24	2019
	Elumalai, V. and Sangeetha, D.,	Preparation of anion exchangeable titanate nanotubes and their effect on anion exchange membrane fuel cell.	Materials & Design	154	63-72	2018
	Annapooranan, R., Ganapathikrishnan	A synthesis study of phosphonated PSEBS for high temperature proton exchange membrane fuel cells.		135	45954	2018
	Elumalai, V. and Sangeetha, D.,			375	412-420	2018
34.	Elangovan, M. and Dharmalingam, S.,	Effect of polydopamine on		29	275-284	2018
35.	Elangovan, M. and Dharmalingam, S.,		Materials Chemistry and Physics	199	528-536	2017

		in microbial fuel cell.				
36.	Venkatesan, P.N.	Characterization and	Renewable Energy	102	77-86	2017
	and	performance study of				
	Dharmalingam, S.,	phase inversed				
		Sulfonated Poly				
		Ether Ether Ketone—				
		Silico tungstic				
		composite membrane				
		as an electrolyte for				
		microbial fuel cell				
		applications.				
		Investigation of	StrojniskiVestnik-	63	138-148	2017
	1 2	mechanical	Journal of			
	Sangeetha, D. and		Mechanical			
	Bharathiraja, G.,	F	Engineering			
20		composites		101		2015
38.		Anti-biofouling anion		134		2016
	Dharmalingam, S.,	exchange membrane	Polymer Science			
		using surface				
		modified quaternized				
		poly (ether imide) for microbial fuel cells				
30	Vanugonal K and		International	20	315-333	2016
37.	Dharmalingam, S.,		Journal of Plastics	20	313-333	2010
	Difarmaningam, 5.,		Technology			
		reinforced ion	reemiology			
		exchange membranes				
		for acid-base				
		production				
40.	Elumalai, V. and	1	Microporous and	236	260-268	2016
	· ·	•	Mesoporous			
			Materials			
		evaluation of ionic				
		liquid immobilized				
		SBA-				
		15/quaternisedpolysu				
		Ifone composite				
		membrane for				
41	E1	alkaline fuel cell.	T 1 CD 1	22	250	2016
41.		Comparative study of	Journal of Polymer	23	250	2016
	Dharmalingam, S.,					
		performance using				
		poly ether ether ketone-based anion				
		and cation exchange				
		membranes.				
42	Venugopal, K. and		Desalination and	57	25939-	2016
	Dharmalingam, S.,	-	Water Treatment	31	25949	2010
	Pharmanngain, S.,	platinum	Trace Tracificit		23777	
		intermediate bipolar				

membranes:	
application in	
desalting brine	
solution.	
43. Venkatesan, P.N. Synthesis and Materials for 5 11	2016
and characterization of Renewable and	
Dharmalingam, S.,Pt, Pt–Fe/TiO2 Sustainable Energy	
cathode catalysts and	
its evaluation in	
microbial fuel cell.	
	2016
44. Venugopal, K. and Monopolar and Journal of 2 118-127	2016
Dharmalingam, S., Platinum Interfaced Membrane Science	
Bipolar Membrane and Research	
Electrodialysis:	
Experimental	
Assessment Using	
Synthetic Salt	
Solution	
Heterogeneous	
Cation Exchange	
Membranes.	
45. Elangovan, M. and Preparation and International 41 8595-8605	2016
Dharmalingam, S., performance Journal of	2010
evaluation of poly Hydrogen Energy	
(ether-imide) based	
anion exchange	
polymer membrane	
electrolyte for	
microbial fuel cell.	
46. Sivasankaran, A., Nanocomposite Chemical 289 442-451	2016
Sangeetha, D. and membranes based on Engineering Journal	
Ahn, Y.H., sulfonated	
polystyrene ethylene	
butylene polystyrene	
(SSEBS) and	
sulfonated SiO2 for	
microbial fuel cell	
application	
47. Elangovan, M. and A facile modification RSC advances 6 20571-	2016
Dharmalingam, S., of a polysulphone 20581	2010
based anti biofouling	
anion exchange	
membrane for	
improved the coll	
microbial fuel cell	
application	
application 48. Elangovan, M. and Scaleup suitability of Environmental 35 80-87	2015
application 48. Elangovan, M. and Scaleup suitability of Environmental Dharmalingam, S., sulfonated polyether Progress &	2015
application 48. Elangovan, M. and Scaleup suitability of Environmental 35 80-87	2015
application 48. Elangovan, M. and Scaleup suitability of Environmental Dharmalingam, S., sulfonated polyether Progress &	2015

10 0	· or o	- I	4 = -	100 15 1	2017
/		Fuel	159	689-696	2015
and Sangeetha, D. s	sulfonated SiO2 in				
s	sulfonated polyether				
	ether ketone				
	nanocomposite				
	nembrane in				
-	nicrobial fuel cell.				
50. Venkatesan, P.N.E	Effect of cation	Journal of	492	518-527	2015
and ti	ransport of SPEEK-	Membrane Science			
Dharmalingam, S.,R	1				
	electrolyte on				
	nicrobial fuel cell				
	performance.				
51. Venkatesan, P.N.	Development of	Journal of materials	50	6302-6312	2015
and c	cation exchange	science			
Dharmalingam, S.,r	esin-polymer				
_	electrolyte				
	nembranes for				
	nicrobial fuel cell				
	application.				
52. Aravind, K. and C	Characterization and	International	64	220-227	2015
Sangeetha, D., ii	n vitro studies of	Journal of			
_	sulfonated polyether				
		and Polymeric			
		<u> </u>			
	1 2	Biomaterials			
	sulfone/nano				
h	nydroxyapatite				
c	composite.				
	A study of influence	Energy	88	202-208	2015
Dharmalingam, S.,o		211018)		202 200	2016
_	1 1				
	sulfonated TiO2 and				
S	sulfonated				
p p	oolystyrene-ethylene-				
ĺ	outylene-polystyrene				
	for microbial fuel cell				
	application.				
	* *	Intomotional	12	756 765	2015
	A novel composite		12	756-765	2015
\mathcal{E}		Journal of Green			
	QPSU and SiO2 for	Energy			
s	olid alkaline fuel cell				
	applications.				
	**	Journal of Porous	22	647-658	2015
	characterization of Pt		44	0-1-030	2013
1 1 1		iviateriais			
	supported on				
1 1	nultiwalled carbon				
P. and Sangeetha, n	nanotubes for				
	mproved catalytic				
	performance in fuel				
1 1	cell applications.				
<u> </u>	en applications.				

	Glutaraldehyde cross-		19	137-152	2015
Sangeetha, D.,	_	Journal of Plastics			
	poly styrene ethylene				
	butylene poly styrene membranes for				
	memoranes for methanol fuel cells.				
57. Venugopal, K. and		Journal of the	92	652-655	2015
Dharmalingam, S.		Indian Chemical			
	incorporated	Society			
	Polyvinyl	-			
	Pyrrollidone				
	nanofiber and its				
	characterizations.				
	Investigation on the		54	285-294	2015
Dharmalingam, S.		water treatment			
·	polysulfone-based				
	bipolar membrane for				
50 Vailaillai C.C.	desalination of water.	Intomotional	39	317-325	2015
	dA novel quaternized ,poly (ether sulfone)		39	317-323	2015
Dhaillailligaill, S.		Research			
	alkaline fuel cell				
	application.				
60. Kalambettu, A.	11	Journal of Natural	12	39-51	2015
,	1	Fibers			
Dharmalingam, S	pineapple leaf fiber				
and Vallam, M.T.,	reinforced PVA				
	composites.				
61. Ashokkumar, M.	Evaluation of	Trends in	29		2015
Aravind, K. and	1	Biomaterials &			_010
Sangeetha, D.,	Sulfone/Nanohydrox				
	yapatite Nanofiber	_			
	Composite as Bone				
	Graft Material.				
· ·	.Effect of zeolite on	RSC advances	5	84004-	2015
and	SPEEK/zeolite			84013	
Dharmalingam, S.	hybrid membrane as				
	electrolyte for				
	microbial fuel cell				
63. Venugopal, K. and	applications. Evaluation of the	RSC advances	5	73901-	2015
	efficiency of brackish			73901-	2013
Diaminaningani, S.	desalination ion			13713	
	exchange membranes				
	using electrodialysis				
	process.				
64. Vijayakumar, E	*	RSC Advances	5	42828-	2015
and Sangeetha, D.				42835	
	silica/polysulfone				

composite membrane			
for an efficient			
alkaline fuel cell			
application. 65 Voluments A Fobrication and in Materials Chamistry	147	160 177	2014
65. Kalambettu, A. Fabrication and in Materials Chemistry	14/	168-177	2014
and vitro evaluation of and Physics			
Dharmalingam, S., Sulphonated			
Polyether Ether			
Ketone/nano			
Hydroxyapatite			
composites as bone			
graft materials.			
66. Srinivasan, V.S., Evaluation of Materials & Design	60	620-627	2014
Boopathy, S.R., mechanical and			
Sangeetha, D. and thermal properties of			
Ramnath, B.V., banana–flax based			
natural fibre			
composite.			
67. Padmavathi, R.,Removal of heavyInternational	18	88-99	2014
Minnoli, M. and metal ions from waste Journal of Plastics	10	00-77	401 4
Sangeetha, D., water using anion Technology			
exchange polymer			
membranes.	2.12	~~. ~	2011
68. Prabhu, N.V. and Characterization and Chemical	243	564-571	2014
Sangeetha, D., performance study of Engineering Journal			
sulfonated poly ether			
ether ketone/Fe3O4			
nano composite			
membrane as			
electrolyte for			
microbial fuel cell.			
69. Aravind, K., In Vivo Studies of Trends in	28		2014
Sundar, S.S. and Sulphonated Biomaterials &			
Sangeetha, D., Polyether Ether Artificial Organs			
Ketone Based			
Composite Bone			
Graft Materials.			
70. Ayyaru, S. and Enhanced response of Analytica chimica	818	15-22	2014
Dharmalingam, S., microbial fuel cellacta	010	13-44	2014
using sulfonated poly			
ether ether ketone			
membrane as a			
biochemical oxygen			
demand sensor.			
71. Jothi, P.R. and An efficient proton Journal of	450	389-396	2014
Dharmalingam, S., conducting membrane science			
electrolyte membrane			
electrolyte membrane for high temperature			

	Venugopal, K. and		Desalination	344	189-197	2014
	_	synthetic salt water				
		desalination by using				
		a functionalized				
		polysulfone based				
		bipolar membrane				
70		electrodialysis cell.	D . D		64.70	2014
73.		\mathcal{C}	Recent Patents on	7	64-70	2014
	<i>'</i>		Materials Science			
	,	Properties of Polymer				
		Films: An Incipient				
	D.,	Appliance and Case Studies.				
74	Padmavathi, R.		Electrochimica Acta	112	1-13	2013
	and Sangeetha, D.,	1 5	Licenociiiiiica Acta	112	1-13	2013
	and Sangeema, D.,	electrospun carbon				
		nanofiber supported				
		Pt catalyst for fuel				
		cells.				
75.	Iyengar, P.K.,		High Performance	25	1000-1006	2013
	• •		Polymers	-		
	, , , , , , , , , , , , , , , , , , ,	nanofiber-reinforced				
		epoxy composite for				
		shape-memory				
		applications.				
76.	,		Chemical	234	380-388	2013
		polysulphone/hydrox				
	Dharmalingam, S.,	* *				
		composite implant				
		and evaluation of				
		their in vitro				
		bioactivity and				
		biocompatibility				
		towards the post-				
		surgical therapy of gastric cancer.				
77	Padmavathi, R.		Ionics	19	1423-1436	2013
	,	SPEEK-based proton		17	1443-1430	2013
	_	exchange membranes				
		by self-assembly				
		method for fuel cells.				
78.	Bhat, K.A.,	Multi-walled Carbon	Trends in	27	168-176	2013
		Nanotube Reinforced		_,		
	Sangeetha, D. and		Artificial Organs			
		Cements for Dental				
	, ,	Restorations.				
79.	Venugopal, K. and	Utilization of bipolar	Water environment	85	663-670	2013
	Dharmalingam, S.,		research			
		electrodialysis for salt				
			i			

80. Vinodh, R. and	Efficient utilization of	International	17	35-50	2013
Sangeetha, D.,		Journal of Plastics			-
2		Technology			
	silica filler for low				
	temperature alkaline				
	membrane fuel cells.				
81 Venkatesan P.N.	Characterization and	Journal of	435	92-98	2013
and	performance study on		733	72 70	2013
Dharmalingam, S.,	-	incinorane science			
Difarmaningam, 5.,	functionalized multi				
	walled carbon nano				
	tube as separator in				
	microbial fuel cell.				
82. Venkatkarthick,		Journal of	697	1-4	2013
1	Studies on polymer		09/	1-4	2013
	modified metal oxide				
	anode for oxygen				
3 , ,	evolution reaction in				
B.S., Vasudevan,					
S., Davidson, D.J.,					
Sozhan, G. and	1				
Ravichandran, S.,	10	T 1 C 1' 1	120	1020 1020	2012
	Comparative study of		128	1930-1938	2013
Sangeetha, D.,	_	polymer science			
	membranes from				
	nano-metal-oxide-				
	incorporated polymer				
	electrolytes for direct				
	methanol alkaline				
	membrane fuel cells.				
	Surface modification		62	462-467	2013
Sangeetha, D.,	of sulfonated				
	polystyrene ethylene	-			
	butylene polystyrene				
	membranes by layer-	Biomaterials			
	by-layer assembly of				
	polysulfone for				
	application in direct				
	methanol fuel cell.				
85. Venugopal, K. and	Fundamental studies	Journal of applied	127	4983-4990	2013
	on a new series of				
	SPSEBS-PVA-	-			
	QPSEBS bipolar				
	membrane:				
	Membrane				
	preparation and				
	characterization.				
86. Mahendirayarman	Increased microbial	International iournal	38	2471-2479	2013
CC, p, recipitation v dillidile			50	,, /	2013
	fuel cell nertormance	OF HVAROVEN ENERGY		1	
E. and Sangeetha.	-				
	tuel cell performance, using quaternized poly ether ether				

		1 1	<u> </u>		 	
		membrane electrolyte				
		for electricity				
		generation.				
87.	Bhat, K.A., Leo	Fabrication of	Journal of applied	127	2764-2775	2013
	Prakash, P.,	polymethyl	polymer science			
	Manoharan, N.,	methacrylate/polysulf				
	·	one/nanoceramic				
	and Sangeetha, D.,					
	, , , , , , , , , , , , , , , , , , ,	orthopedic				
		applications.				
88	Ayyaru, S. and	1.1	RSC Advances	3	25243-	2013
	Dharmalingam, S.,		RSC Advances	3	25251	2013
	Dharmanngam, 5.,	microbial fuel cells			23231	
		using sulfonated				
		polyether ether				
		ketone (SPEEK) TiO				
		2–SO 3 H				
		nanocomposite				
		membrane.			20122	•
			Journal of Power	217	204-208	2012
	Letchoumanane,		Sources			
	P., Dharmalingam,					
	S. and Stanislaus,	ethylene-butylene-				
	A.R.,	polystyrene				
		membrane in				
		microbial fuel cell for				
		bioelectricity				
		production.				
90.	Sundar, S.S. and	Prolonged	Trends in	26	176-182	2012
	Sangeetha, D.,	Amoxicillin Release	Biomaterials and			
		Kinetics and	Artificial Organs			
		Biocompatibility				
		Using Chitosan/PVA				
		Blend Membranes In-				
		Vitro.				
91.	ani, P. and	Blend membranes for	Chinese Journal of	30	548-560	2012
	Sangeetha, D.,	direct methanol and		50		2012
	Dai15001111, D.,	proton exchange	I -			
		membrane fuel cells.				
92	Bhat, K.A.,	Polymer/silica	Trends in	26	121-129	2012
	Prabhu, N.V. and	_	Biomaterials &	20	121-127	2012
	1	1				
	Sangeetha, D.,	Fabricated by Sol-Gel	_			
		Technique for				
		Medical				
02	Vanue 1 T7 1	Applications.	Dagalinetieu	207	27.45	2012
	Venugopal, K. and		Desalination	296	37-45	2012
	Dnarmalingam, S.,	efficiency of a novel				
		bipolar membrane				
		based on				
		functionalized				

	polysulfone.				
	Multilayered sulphonated polysulfone/silica composite membranes for fuel cell applications.	Electrochimica acta	71	283-293	2012
Sundar, S.S. and Sangeetha, D.,	evaluation of		23	1421-1430	2012
	•		352	143-150	2012
Sundar, S.S. and Sangeetha, D.,	Investigation on		47	2736-2742	2012
Bhavani, P. and Sangeetha, D.,	Characterization of proton exchange membranes based on SPSEBS/SPSU blends.	Research	19	9824	2012
Muruganantham,	Development of a solid polymer electrolyte membrane based on sulfonated poly (ether ether) ketone and polysulfone for fuel cell applications.	Chemistry	90	205-213	2012
Rajangam, P. and	Fabrication and		47	1038-1045	2012

	orthopaedic				
	applications. Carbon supported	Journal of Materials	47	852-859	2012
	* *	Science	1,		2012
0	electrocatalysts for				
	alkaline membrane				
	fuel cells.				
	An efficient catalyst	Industrial &	50	13347-	2011
_	for the large scale			13354	
	production of multi-				
_	walled carbon	· · · · · · · · · · · · · · · · · · ·			
	nanotubes.				
103Ayyaru, S. and	Development of MFC	Bioresource	102	11167-	2011
Dharmalingam, S.,	_			11171	
_	polyether ether				
l F	ketone (SPEEK)				
	membrane for				
	electricity generation				
	from waste water.				
104Bhavani, P. and	SPSEBS/H 3 PO 4	International	15	97-111	2011
Sangeetha, D.,	composite electrolyte	Journal of Plastics			
	membranes for	Technology			
	application in				
	PEMFC and DMFC.				
105Bhavani, P. and	Proton conducting	International journal	36	14858-	2011
Sangeetha, D.,	composite	of hydrogen energy		14865	
	membranes for fuel				
	cell application.				
106Vinodh, R., Bhat,		Journal of Polymer	18	1469-1477	2011
K.A. and	characterization and	Research			
Sangeetha, D.,	invitro bioactivity				
	evaluation of				
	QPSU/TiO 2				
	composite				
	membranes.				
1	-	International journal	36	7291-7302	2011
i i	· •	of hydrogen energy			
M. and Sangeetha,	•				
,	membranes for solid				
	alkaline fuel cell				
	applications.	-		22.50.25.55	
	•	Energy	36	3360-3369	2011
0 , ,	characterization of				
	proton exchange				
	membrane based on				
	SPSEBS/PSU blends				
	for fuel cell				
	applications.	T.C.C. T		155 155	2011
		ECS Transactions	33	157-166	2011
Sozhan&Elamathi,	Polystyrene-Block-				

	T	· · · · · · · · · · · · · · · · · · ·		,	
Dharmalingam&	(Ethylene-Ran-				
Sangeetha,	Butylene)-Block-				
Jothinathan&	Polystyrene				
Lakshmi,	(SPSEBS) Membrane				
Subramanian &	for Sea Water				
Vasudevan,	Electrolysis to				
Subbiah &	Generate Hydrogen.				
Ravichandran,	, ,				
Rengarajan&					
Balaji,					
Balasingam&Bala					
singam, Suresh					
kannan&					
Swaminathan.					
110Ramaganthan, B.,	Synthesis,	Journal of materials	46	1741-1748	2011
Sivakumar, P.M.		science			
and	novel silicotungstic				
Dharmalingam, S.,					
, , , , , , , , , , , , , , , , , , , ,	SPEEK/PVA-co-				
	ethylene-based				
	composite				
	membranes for fuel				
	cell.				
111Vinodh, R.,	Separation of heavy	Desalination	267	267-276	2011
I '	metals from water				
*	samples using anion				
,	exchange polymers				
	by adsorption				
	process.				
112Guhan, S., Prabhu,	<u> </u>	Polymer Science	53	1159-1166	2011
	sulfonated poly (ether	•			v = *
	ether ketone)				
	electrolyte membrane				
	for applications in				
	hydrogen sensor.				
113Vinodh, R	· ·	Materials Science	167	43-50	2010
1 '	exchange membrane		107	73-30	2010
Elamathi, S. and	_				
Sangeetha, D.,	(ethylene butylene)				
Bangeenia, D.,	polystyrene:				
	synthesis and				
	characterization.				
114Swaminathan, E.		International	13	150-162	2009
		Journal of Plastics	13	150-102	2009
and	1				
Dharmanngam, S.,	polystyrene ethylene	reciniology			
	butylene				
	polystyrene/montmor				
	illonite nano-				
	composites as proton				
	exchange				
	membranes.				

115Guhan, S., Kuma N.A. an		Chinese Journal of Polymer Science	27	157-164	2009
		Polymer Science			
Sangeetha, D.,	ketone/polyvinyl				
	alcohol/phosphotungs				
	tic acid composite				
	membranes for PEM				
	fuel cells.				
	/ I	Ionics	14	377-385	2008
Nithyakalyani, G	1				
Sangeetha, D. an					
Ravichandran, S.,	membranes based on				
	sulfonated-poly				
	(styrene_isobutylene				
	_styrene) membranes				
	for proton exchange				
	membrane fuel cells				
	(PEMFC).				
117Sangeetha, D.,	Conductivity and	European polymer	41	2644-2652	2005
	_	journal			
	proton exchange	P			
	membrane based on				
	polystyrene				
	(ethylene–butylene)				
	polystyrene triblock				
	polymer.				
118Janaki, K		Artificial Organs	22	169-178	2005
	dcharacterization of	_		105 170	2000
Sangeetha, D.,	polymer ceramic				
Sungeema, D.,	composites for				
	orthopedic				
	applications.				
119Sangeetha, D.,	**	Int J PlastTechnol	8	313-321	2004
11 Dangeena, D.,	polystyrene-block-	int J I last I celliloi		313-321	2004
	poly (ethylene–ran–				
	butylene)-block				
	1 -				
	polystyrene as				
	polymer electrolytes				
	for proton exchange				
10017 - 41 11	membrane fuel cell.	T1 - C 1' 1	00	005 1002	2001
120Kothandaraman,		Journal of applied	80	995-1002	2001
	kinetics of styrene				
	.,using coordination				
Nayagam, M.P.M					
and Aminabhav T.M.,	i,rare earth compounds.				
121Kothandaraman,	Effect of the catalyst	European polymer	37	485-495	2001
	a, on the copolymers of				
D.,	styrene with methyl	F			
,	methacrylate by				
	minum yiuu Uy	1		1	
	Ziegler–Natta				

9. Detail of patents.

S.No	Patent Title	Name of Applicant(s)	Patent No.	Award Date	Agency/ Country	Status
1	A process for preparation of polymer membrane	Sangeetha Dharmalingam and Swaminathan Elamathi	258242	20/12/2013	India	Granted
2	Sulphonated polyether ether ketone/sulphonated TiO2 Composite as Proton Exchange Membrane for Microbial Fuel Cell	Dharmalingam Sangeetha and Ayyaru Sivasankaran	313707	23/06/2019	India	Granted
3	Design and development of PEM fuel cell stack	Sangeetha Dharmalingam, V.S. Senthil Kumar, Srinivasan Guhan and Lakshmanan Babu	335241	19/03/2020	India	Granted
4	A method of performance of a cation exchange membrane in a microbial fuel cell to generate electricity	Dharmalingam Sangeetha and Ayyaru Sivasankaran	393201	28/03/2022	India	Granted
5	A novel anion exchange membrane for fuel cell applications	Dharmalingam Sangeetha and Rajangam Vinodh	580/CHE /2011	28/02/20111	India	Filed

10. Books/Reports/Chapters/General articles

S.No	Title	Author's Name	Publisher	Year of Publication
1	A text book on Engineering Chemistry	D. Sangeetha	United Global Publishers, Chennai	2008
2	A Manual on Engineering Chemistry Laboratory	D. Sangeetha & G. Ramesh	Essar Publications, Chennai	2007
3	TAMIL BOOK on Engineering Chemistry I		Anna University Chennai Publication (Press: New Century Book House, Chennai)	2010
4	TAMIL Chemistry Laboratory Manual		Anna University Chennai Publication (Press: New Century Book House, Chennai)	2010
5	TAMIL MANUAL for University Dept., Anna University	Dr. D. Sangeetha and S. Elamathi	NCBH, Chennai	2010
6	Bipolar Membrane Electrodialysis	Dharmalingam Sangeetha and Venugopal Krishnaveni	Academic Publishers (USA)	2012
7	Membranes for Microbial Fuel Cells	Dharmalingam Sangeetha , Kugarajah Vaidhegi and Sugumar Moogambigai	Elsevier	2018
8	Proton Exchange Membrane for Microbial Fuel Cells	Sangeetha Dharmalingam, Vaidhegi Kugarajah, Vijayakumar Elumalai	Elsevier	2021
9	Effects of biofouling on polymer electrolyte membranes in scaling-up of microbial electrochemical systems	Sangeetha Dharmalingam, John Solomon	Elsevier	2022
10	Nanomaterials in Biofuel Cells	Sangeetha Dharmalingam, Vaidhegi Kugarajah, John Solomon	Elsevier	2022
11	Fabrication of nanomaterials	Vaidhegi Kugarajah, Hushnaara Hadem, Atul Kumar Ojha, Shivendu Ranjan, Nandita Dasgupta, Bhartendu Nath Mishra, Sangeetha Dharmalingam	Elsevier	2022
12	Nanoparticles and nanofluids: Characteristics and behaviour aspects	Vaidhegi Kugarajah, Atul Kumar Ojha, Hushnaara Hadem, Nandita Dasgupta, Bhartendu Nath Mishra, Shivendu Ranjan, Sangeetha Dharmalingam	Elsevier	2022

11. Government funded projects

Sl. No.	Name of Proposal	Finding agency	Project value (Lakhs)
1	Synthesis and Characterization of Polymer Electrolyte Membranes for Fuel Cell Applications	DST Project: 2005 – 2008	7.32
2	Development of polymer blends as Electrolyte Membranes	BRNS Project: 2007–2010 (JRF: S. Guhan)	13.47
3	Synthesis of a new alkaline hydroxyl conducting crosslinked polymer interface for alkaline fuel cells	DST Project: 2008-2011 (JRF: R. Vinodh)	20.34
4	Study of Polymer Nanohydroxyapatite composite scaffolds for Drug delivery and Tissue Engineering applications	CSIR Project: 2010-2013 (SRF: S. Shanmuga Sundar)	15.62
5	Study of Tribology of Sulfur containing Aromatic Polymer/nanohydroxyapatite Composites for Orthopedic Applications	ICMR Project: 2010-2013 (JRF: K. Aravind, S. Anitha, M. Arun, M. Ashokumar	11.2
6	Development of PEMFC (Terminal Aid Grant Project)	BRNS Project: 2010-2011 (JRF: R. Muruganantham)	9.14
7	Ion exchange membranes for Desalination process	BRNS Project: 2010-2013 (JRF: V.Krishnaveni)	21.62
8	Microbial Fuel Cell Development for Production of Electricity from Waste Biomass	DST (AFT) Project: 2010-2014 (JRFs: N.V.Prabhu and E.Mahendiravarman)	45.98
9	Nano fiber network ion conducting polymer composite for fuel cells	UGC Project: 2011-2013 (JRF: J. Palaniraja)	8.72
10	Electrospun Carbon Nanofibers in Electrode Preparation for Fuel Cells	CSIR Project: 2011-2015 (SRF: C. Ramkumar, E. Vijayakumar)	28.65
11	Development of bone graft material based on electrospun sulphonated poly ether ether ketone / nano hydroxyapatite (SPEEK/nHA) composites	ICMR Project: 2015-2018 (B. Yashasvi, E. Rajalakshmi)	17.13
12	An investigation on a scalable and sustainable microbial fuel cell for continuous electricity production from waste biomass	DBT Project: 2016-2019 (S. Moogambigai & K. Vaidhegi)	52
13	Synthesis of phosphonated polymer electrolyte membranes for high temperature fuel cells	SERB Project:2017-2020 (P. Vairachamy, R. Saranya)	24.06
14	Characterization and biofouling studies on silver incorporated sulphonated poly ether ether ketone (SPEEK) membranes for microbial fuel cell applications	STARS-MHRD Project: 2019-2022 (S. John Solomon)	46.69