
0101001101100110101

0101001101100110101

1101010101001101100
1010011001010101011

INSTITUTE OF REMOTE SENSING
ANNA UNIVERSITY, CHENNAI - 600 025.

TABLE OF CONTENTS

EXPT.NO INDEX PAGE NO

1. Getting Started with Matlab 1

2. Arrays and Matrices 4

3. Loops 22

4. Errors 30

5. Numerical Differentiation 47

6. Numerical Integration 61

7. Ordinary Differential Equations 72

8. Linear Equations 87

9. Non-Linear Equations 100

10. Algebra and Transforms 109

11. Regression and Interpolation 119

12. Image Processing 125

1

Expt

No.

1

GETTING STARTED WITH MATLAB
Date of

Expt:

MATLAB (Matrix Laboratory) is a high-level programming language and

interactive environment designed for numerical computation, data visualization,

and algorithm development. When you open MATLAB, you’ll see a user

interface that’s designed to make working with data, code, and results easy. Let’s

go through the main tabs and features of the MATLAB interface.

1. Home Tab

The Home tab is the default tab that you see when you launch MATLAB. It

includes the following key features:

 New Script: Creates a new script (file with .m extension) where you can

write MATLAB code.

 Open: Opens existing MATLAB scripts, functions, or variables.

 Save/Save As: Allows you to save your scripts and variables.

 Import Data: Imports data from external files like spreadsheets, text files,

etc.

 Preferences: Accesses settings related to the MATLAB environment (like

display, language, etc.).

 Add-Ons: Allows you to access and download additional toolboxes and

apps.

2

2. Plot Tab

The Plot tab becomes active when you are working with data in MATLAB. It

provides:

 2D and 3D Plots: Options for generating various types of plots, such as

line plots, bar charts, histograms, surface plots, etc.

 Visualization Customization: Tools to add titles, labels, legends, grid

lines, and format axes in plots.

 Different Styles: Quick buttons to change plot styles (e.g., different

marker types, colors).

3. Editor Tab

When you open a new script or function, the Editor tab becomes visible. It’s

where you write and edit your code. Key features include:

 Run/Debug: Allows you to run the script or step through it line by line to

identify errors.

 Breakpoints: Used to pause execution at specific lines for debugging

purposes.

 Comment/Uncomment: Options to comment out parts of code for

readability or testing.

 Code Folding: Collapses code sections to simplify navigation in large

scripts.

4. Apps Tab

MATLAB includes many built-in apps for specific tasks. In this tab, you can:

 Access Apps: Use apps for tasks like machine learning, signal processing,

control systems, etc. You can search for and launch apps for various

domains.

 Install New Apps: Download apps from the MATLAB Add-On Explorer.

5. View Tab

The View tab allows you to customize the layout of the MATLAB interface.

Features include:

 Command Window: Displays the main window where you can enter

commands and see output.

 Workspace: Shows variables that are currently in memory, along with

their size and class.

 Current Folder: Displays the files and directories available for use in the

current session.

 Figure Windows: Shows open figures and visualizations.

3

 Variable Editor: Allows you to view and edit variables in spreadsheet

form.

6. Editor and Live Editor

MATLAB has two modes for coding:

 Editor: This is the standard environment where you write your code and

run scripts.

 Live Editor: Allows you to create interactive notebooks that combine

code, output, and formatted text. You can include comments, equations,

and plots directly in the notebook.

7. Command Window

The Command Window is where you interact with MATLAB by typing

commands directly. It’s ideal for quick calculations, testing code, and seeing

immediate results.

8. Workspace

This panel lists all the variables created in your session. For each variable, you’ll

see its name, size, and data type. You can double-click any variable to open it in

the Variable Editor.

9. Current Folder

The Current Folder panel shows the files in the working directory. You can

navigate through your directories, run scripts, and manage files here.

10. Tool strip Customization

The tool strip is the bar that includes all these tabs and buttons. You can customize

it by adding or removing buttons, rearranging tabs, or even creating your own

custom toolbars.

4

Expt

No.

2

ARRAYS AND MATRICES
Date of

Expt:

Ex 2.1

Procedure:

Step 1: Array Initialization

 A: Creates a row vector A containing elements [1 4 5 4].

 A1: Creates another row vector A1 containing elements [2, 4, 6, 8].

 B: Creates a column vector B by transposing a row vector [10 25 74 35 42]

using the ' operator.

 C: Adds 10 to each element of the vector [2 0 4 0], resulting in C = [12 10

14 10].

Step 2: Matrix Operations

 *D = C'A: Transposes C to a column vector and performs matrix

multiplication with A. Result is a scalar since it's a dot product between a

column vector and a row vector.

 *E = A'C: Transposes A to a column vector and performs matrix

multiplication with C. This is also a dot product, resulting in a scalar.

Step 3: Defining More Arrays

 F: Creates a column vector F containing elements [3; 6; 9; 12].

 G: Creates a row vector G with elements [1 2 3].

 H: Creates a column vector H with elements [2; 4].

 I = 1:8: Creates a row vector I containing integers from 1 to 8.

 J = 1:2:8: Creates a row vector J starting at 1, incrementing by 2 up to 8,

resulting in [1 3 5 7].

Step 4: Scalar Assignment

 X = 0.5: Assigns the value 0.5 to the variable X.

Step 5: Matrix Initialization and Concatenation

 MAT1: Defines a matrix MAT1 with the following values:

1 2 3 4

3 6 9 12

4 8 12 16

5 10 15 20

5

 MAT2 = [C; MAT1]: Concatenates the row vector C on top of the matrix

MAT1, creating a new matrix MAT2.

Step 6: Matrix Operations

 MAT3: Defines a matrix MAT3 with the values:

2 1 3

2 5 1

6 3 4

 MAT4 = G*MAT3: Multiplies row vector G (1x3) with matrix MAT3

(3x3), resulting in a 1x3 row vector MAT4.

Step 7: Matrix Multiplication

 MAT5: Defines a matrix MAT5 with the following values:

1 2

3 4

5 6

 *MAT6 = [7 8; 9 1; 2 3]H: Multiplies matrix [7 8; 9 1; 2 3] (3x2) with

column vector H (2x1), resulting in a 3x1 column vector MAT6.

Step 8: Element-Wise Operations

 MAT7 = [3 4 5 6; 7 8 9 1].^X: Performs an element-wise power operation

on the matrix [3 4 5 6; 7 8 9 1], raising each element to the power X (which

is 0.5, i.e., square root).

 MAT8 = MAT7(1:3): Extracts the first 3 elements of the first row from

MAT7 and stores them in MAT8.

 MAT9 = MAT7(1:2): Extracts the first 2 elements of the first row from

MAT7 and stores them in MAT9.

Step 9: More Matrix Operations

 MAT10: Defines a matrix MAT10 with the following values:

1 2 3

3 2 1

5 4 3

 *MAT11 = MAT10.MAT10: Performs element-wise multiplication of

MAT10 with itself.

 *MAT12 = MAT10.MAT3: Performs element-wise multiplication of

MAT10 with MAT3.

6

Step 10: Linspace Function

 MAT13 = linspace(1,2): Creates a row vector with 100 points linearly

spaced between 1 and 2.

 MAT14 = linspace(1,2,5): Creates a row vector with 5 points linearly

spaced between 1 and 2.

__

Code:

A = [1 4 5 4]

A1 = [2,4,6,8]

B = [10 25 74 35 42]'

C = [2 0 4 0] + 10

D = C'*A

E = A'*C

F = [3;6;9;12]

G = [1 2 3]

H = [2;4]

I = 1:8

J = 1:2:8.

X = 0.5

MAT1 = [1 2 3 4;3 6 9 12;4 8 12 16;5 10 15 20]

MAT2 = [C;MAT1] % Concatenates the row vector C with matrix MAT1

.

MAT3 = [2 1 3;2 5 1;6 3 4]

MAT4 = G*MAT3

MAT5 = [1 2;3 4;5 6] .

MAT6 = [7 8;9 1;2 3]*H

MAT7 = [3 4 5 6; 7 8 9 1].^X % Element-wise power operation. Each element

of the matrix is raised to the power X (0.5 here).

MAT8 = MAT7(1:3) % Extracts the first 3 elements from the first row of

matrix MAT7 into a row vector MAT8.

MAT9 = MAT7(1:2)

MAT10 = [1 2 3; 3 2 1; 5 4 3]

MAT11 = MAT10.*MAT10 % Element-wise multiplication of MAT10 with

itself.

MAT12 = MAT10.*MAT3 % Element-wise multiplication of MAT10 with

MAT3.

7

MAT13 = linspace(1,2) % Row vector of 100 points from 1 to 2

MAT14 = linspace(1,2,5) % 5 points from 1 to 2.

__

O/P (Command Window)

A = 1 4 5 4

A1 = 2 4 6 8

B =

 10

 25

 74

 35

 42

C = 12 10 14 10

D =

 12 48 60 48

 10 40 50 40

 14 56 70 56

 10 40 50 40

E =

 12 10 14 10

 48 40 56 40

 60 50 70 50

 48 40 56 40

F =

 3

 6

 9

 12

G = 1 2 3

8

H =

 2

 4

I = 1 2 3 4 5 6 7 8

J = 1 3 5 7

X = 0.5000

MAT1 =

 1 2 3 4

 3 6 9 12

 4 8 12 16

 5 10 15 20

MAT2 =

 12 10 14 10

 1 2 3 4

 3 6 9 12

 4 8 12 16

 5 10 15 20

MAT3 =

 2 1 3

 2 5 1

 6 3 4

MAT4 = 24 20 17

MAT5 =

 1 2

 3 4

 5 6

MAT6 =

9

 46

 22

 16

MAT7 =

 1.7321 2.0000 2.2361 2.4495

 2.6458 2.8284 3.0000 1.0000

MAT8 =

 1.7321 2.6458 2.0000

MAT9 =

 1.7321 2.6458 2.0000 2.8284 2.2361

MAT10 =

 1 2 3

 3 2 1

 5 4 3

MAT11 =

 1 4 9

 9 4 1

 25 16 9

MAT12 =

 2 2 9

 6 10 1

 30 12 12

MAT13 =

 Columns 1 through 13

 1.0000 1.0101 1.0202 1.0303 1.0404 1.0505 1.0606 1.0707

1.0808 1.0909 1.1010 1.1111 1.1212

10

 Columns 14 through 26

 1.1313 1.1414 1.1515 1.1616 1.1717 1.1818 1.1919 1.2020

1.2121 1.2222 1.2323 1.2424 1.2525

 Columns 27 through 39

 1.2626 1.2727 1.2828 1.2929 1.3030 1.3131 1.3232 1.3333

1.3434 1.3535 1.3636 1.3737 1.3838

 Columns 40 through 52

 1.3939 1.4040 1.4141 1.4242 1.4343 1.4444 1.4545 1.4646

1.4747 1.4848 1.4949 1.5051 1.5152

 Columns 53 through 65

 1.5253 1.5354 1.5455 1.5556 1.5657 1.5758 1.5859 1.5960

1.6061 1.6162 1.6263 1.6364 1.6465

 Columns 66 through 78

 1.6566 1.6667 1.6768 1.6869 1.6970 1.7071 1.7172 1.7273

1.7374 1.7475 1.7576 1.7677 1.7778

 Columns 79 through 91

 1.7879 1.7980 1.8081 1.8182 1.8283 1.8384 1.8485 1.8586

1.8687 1.8788 1.8889 1.8990 1.9091

 Columns 92 through 100

 1.9192 1.9293 1.9394 1.9495 1.9596 1.9697 1.9798 1.9899

2.0000

MAT14 =

11

 1.0000 1.2500 1.5000 1.7500 2.0000

Ex 2.2

Procedure:

Step 1: Vector Initialization

 a: Defines a sample vector a with elements [10, 5, 7, 2, 8, 3, 4, 9, 6, 1].

Step 2: Sum of Elements

 sumOfA = sum(a): Calculates the sum of the elements in vector a.

 fprintf('Sum of a: %d\n', sumOfA): Prints the sum of the vector a.

Step 3: Mean of Elements

 meanOfA = mean(a): Computes the mean (average) value of the

elements in vector a.

 fprintf('Mean of a: %.2f\n', meanOfA): Prints the mean, formatted to

two decimal places.

Step 4: Median of Elements

 medianOfA = median(a): Finds the median value of the elements in

vector a.

 fprintf('Median of a: %.2f\n', medianOfA): Prints the median value,

formatted to two decimal places.

Step 5: Standard Deviation

 stdDevA = std(a): Computes the standard deviation of the elements in

vector a.

 fprintf('Standard Deviation of a: %.2f\n', stdDevA): Prints the

standard deviation, formatted to two decimal places.

Step 6: Minimum Value and Index

 [minVal, minIdx] = min(a): Finds the minimum value of the vector a

and its index.

 fprintf('Minimum value of a: %d (at index %d)\n', minVal, minIdx):

Prints the minimum value and its corresponding index.

Step 7: Maximum Value and Index

 [maxVal, maxIdx] = max(a): Finds the maximum value of the vector a

and its index.

 fprintf('Maximum value of a: %d (at index %d)\n', maxVal,

maxIdx): Prints the maximum value and its corresponding index.

Step 8: Sorting in Ascending Order

12

 sortedAscend = sort(a, 'ascend'): Sorts the vector a in ascending order.

 fprintf('Ascending order of a: '): Prints the sorted vector in ascending

order.

Step 9: Sorting in Descending Order

 sortedDescend = sort(a, 'descend'): Sorts the vector a in descending

order.

 fprintf('Descending order of a: '): Prints the sorted vector in descending

order.

Step 10: Variance of the Elements

 varianceOfA = var(a): Calculates the variance of the elements in vector

a.

 fprintf('Variance of a: %.2f\n', varianceOfA): Prints the variance,

formatted to two decimal places.

Step 11: Cumulative Sum of Elements

 cumSumOfA = cumsum(a): Computes the cumulative sum of the

elements in vector a.

 fprintf('Cumulative sum of a: '): Prints the cumulative sum of vector a.

Step 12: Vector Operations - Dot Product

 b = [2, 3, 4]: Defines vector b.

 c = [5, 6, 7]: Defines vector c.

 dotProduct = dot(b, c): Computes the dot product of vectors b and c.

 fprintf('Dot product of b and c: %d\n', dotProduct): Prints the dot

product of b and c.

Step 13: Vector Operations - Cross Product

 crossProduct = cross(b, c): Computes the cross product of vectors b and

c.

 fprintf('Cross product of b and c: [%d %d %d]\n', crossProduct(1),

crossProduct(2), crossProduct(3)): Prints the cross product of b and c.

Step 14: Division Operations

 d = [2; 3]: Defines a column vector d.

 e = [4; 6]: Defines a column vector e.

 f = [2 3]: Defines a row vector f.

 g = [4 6]: Defines a row vector g.

Now, different division operations are performed:

o d/e: Performs element-wise division between column vectors d and

e.

13

o d\e: Solves d for e in a least-squares sense.

o f/g: Performs element-wise division between row vectors f and g.

o f\g: Solves f for g in a least-squares sense.

The results of these operations are printed using fprintf.

Step 15: Generating Random Numbers and Matrices

 rand(1,5): Generates a 1x5 matrix of random numbers between 0 and 1.

 randperm(5): Generates a random permutation of integers from 1 to 5.

 ones(1,5): Creates a 1x5 matrix of ones.

 zeros(1,5): Creates a 1x5 matrix of zeros.

Code:

a = [10, 5, 7, 2, 8, 3, 4, 9, 6, 1]; % Define a sample vector

sumOfA = sum(a); % Sum

fprintf('Sum of a: %d\n', sumOfA);

meanOfA = mean(a); % Mean

fprintf('Mean of a: %.2f\n', meanOfA);

medianOfA = median(a); % Median

fprintf('Median of a: %.2f\n', medianOfA);

stdDevA = std(a); % Standard deviation

fprintf('Standard Deviation of a: %.2f\n', stdDevA);

[minVal, minIdx] = min(a); % Min

fprintf('Minimum value of a: %d (at index %d)\n', minVal, minIdx);

[maxVal, maxIdx] = max(a); % Max

fprintf('Maximum value of a: %d (at index %d)\n', maxVal, maxIdx);

sortedAscend = sort(a, 'ascend'); % Ascending

fprintf('Ascending order of a: ');

fprintf('%d ', sortedAscend);

fprintf('\n');

sortedDescend = sort(a, 'descend'); % Descending

fprintf('Descending order of a: ');

fprintf('%d ', sortedDescend);

fprintf('\n');

14

varianceOfA = var(a); % Variance

fprintf('Variance of a: %.2f\n', varianceOfA);

cumSumOfA = cumsum(a); % Cumulative sum

fprintf('Cumulative sum of a: ');

fprintf('%d ', cumSumOfA);

b = [2, 3, 4];

c = [5, 6, 7];

dotProduct = dot(b, c);

fprintf('Dot product of b and c: %d\n', dotProduct);

crossProduct = cross(b, c);

fprintf('Cross product of b and c: [%d %d %d]\n', crossProduct(1),

crossProduct(2), crossProduct(3));

d = [2; 3];

e = [4; 6];

f = [2 3];

g = [4 6];

fprintf('Result of d/e: %f\n', d/e);

fprintf('Result of d\\e: %f\n', d\e);

fprintf('Result of f/g: %f\n', f/g);

fprintf('Result of f\\g: %f\n', f\g);

rand(1,5) % 1x5 random numbers

randperm(5) % Random order of 1-5

ones(1,5) % 1x5 matrix of ones

zeros(1,5) % 1x5 matrix of zeros

O/P (Command Window)

Sum of a: 55

Mean of a: 5.50

Median of a: 5.50

Standard Deviation of a: 3.03

Minimum value of a: 1 (at index 10)

Maximum value of a: 10 (at index 1)

Ascending order of a: 1 2 3 4 5 6 7 8 9 10

Descending order of a: 10 9 8 7 6 5 4 3 2 1

Variance of a: 9.17

15

Cumulative sum of a: 10 15 22 24 32 35 39 48 54 55

Dot product of b and c: 56

Cross product of b and c: [-3 6 -3]

Result of d/e: 0.000000

Result of d/e: 0.000000

Result of d/e: 0.333333

Result of d/e: 0.500000

Result of d\e: 2.000000

Result of f/g: 0.500000

Result of f\g: 0.000000

Result of f\g: 1.333333

Result of f\g: 0.000000

Result of f\g: 2.000000

im =

 1 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

ans = 0.9502 0.0344 0.4387 0.3816 0.7655

ans = 2 4 3 5 1

ans = 1 1 1 1 1

ans = 0 0 0 0 0

__

Ex 2.3

Procedure:

Step 1: Temperature Data Initialization

 temperatures: The vector temperatures holds daily temperature data for

a month, where each element represents the temperature recorded for a

specific day.

Step 2: Trend Analysis

 avg_temp = mean(temperatures): Computes the average temperature

for the entire month.

 days_above_avg = sum(temperatures > avg_temp): Counts the number

of days where the temperature was above the monthly average by

comparing each day’s temperature to the average and summing the

boolean results.

16

Step 3: Extreme Days Identification

 hottest_temp = max(temperatures): Identifies the highest temperature

in the month (the hottest day).

 hottest_day = find(temperatures == hottest_temp, 1): Finds the day

corresponding to the hottest temperature. The find function returns the

index of the first occurrence of the maximum temperature.

 coldest_temp = min(temperatures): Identifies the lowest temperature in

the month (the coldest day).

 coldest_day = find(temperatures == coldest_temp, 1): Finds the day

corresponding to the coldest temperature. The find function returns the

index of the first occurrence of the minimum temperature.

 temp_range = hottest_temp - coldest_temp: Calculates the temperature

range by subtracting the coldest temperature from the hottest temperature.

Step 4: Temperature Consistency

 temp_std = std(temperatures): Computes the standard deviation of the

temperatures, which provides a measure of the consistency of the data. A

low standard deviation means the temperatures are close to the average,

whereas a high standard deviation indicates more variation in the

temperatures.

Step 5: Predictive Analysis (Handling Missing Data)

 if isnan(temperatures(11)): This checks if the temperature for the 11th

day is missing (NaN). If so, linear interpolation is used to estimate the

missing value.

 temperatures(11) = mean([temperatures(10), temperatures(12)]): If

the data for the 11th day is missing, the code fills it with the average of

the temperatures on the 10th and 12th days to estimate the missing value.

Step 6: Temperature Anomalies

 anomaly_threshold = avg_temp + 2 * temp_std: Defines an anomaly

threshold, which is the average temperature plus two times the standard

deviation. Any temperature significantly above or below this threshold is

considered an anomaly.

 anomaly_days = find(abs(temperatures - avg_temp) >

anomaly_threshold): Identifies days where the temperature is greater

than the anomaly threshold by comparing the absolute difference between

the day’s temperature and the average.

Step 7: Displaying the Results

 fprintf('Average monthly temperature: %.2f°C\n', avg_temp):

Displays the calculated average temperature for the month.

 fprintf('Number of days above the monthly average: %d\n',

days_above_avg): Displays the number of days where the temperature

exceeded the average.

17

 fprintf('Hottest day: Day %d with %.2f°C\n', hottest_day,

hottest_temp): Displays the day number and temperature of the hottest

day.

 fprintf('Coldest day: Day %d with %.2f°C\n', coldest_day,

coldest_temp): Displays the day number and temperature of the coldest

day.

 fprintf('Temperature range: %.2f°C\n', temp_range): Displays the

range between the hottest and coldest temperatures.

 fprintf('Standard deviation of temperatures: %.2f°C\n', temp_std):

Displays the standard deviation of the temperature data.

 fprintf('Days identified as temperature anomalies: %d ',

anomaly_days): If anomalies are detected, the days with anomalous

temperatures are displayed.

 fprintf('No temperature anomalies identified.\n'): If no anomalies are

found, a message is displayed.

Code:

% Temperature data for a month

temperatures = [23, 25, 26, 24, 23, 28, 29, 30, 28, 29, 31, 30, 29, 28, 27, 26, 25,

25, 24, 24, 23, 22, 23, 23, 24, 24, 25, 25, 26, 26];

% 1. Trend Analysis:

avg_temp = mean(temperatures);

days_above_avg = sum(temperatures > avg_temp);

% 2. Extreme Days:

hottest_temp = max(temperatures);

hottest_day = find(temperatures == hottest_temp, 1); % returns the first

occurrence

coldest_temp = min(temperatures);

coldest_day = find(temperatures == coldest_temp, 1);

temp_range = hottest_temp - coldest_temp;

% 3. Temperature Consistency:

temp_std = std(temperatures);

% 4. Predictive Analysis (using linear interpolation for the 11th day as an

example):

if isnan(temperatures(11)) % Check if the data for the 11th day is missing

 temperatures(11) = mean([temperatures(10), temperatures(12)]);

end

18

% 5. Temperature Anomalies:

anomaly_threshold = avg_temp + 2 * temp_std;

anomaly_days = find(abs(temperatures - avg_temp) > anomaly_threshold);

% Displaying the results:

fprintf('Average monthly temperature: %.2f°C\n', avg_temp);

fprintf('Number of days above the monthly average: %d\n', days_above_avg);

fprintf('Hottest day: Day %d with %.2f°C\n', hottest_day, hottest_temp);

fprintf('Coldest day: Day %d with %.2f°C\n', coldest_day, coldest_temp);

fprintf('Temperature range: %.2f°C\n', temp_range);

fprintf('Standard deviation of temperatures: %.2f°C\n', temp_std);

if ~isempty(anomaly_days)

 fprintf('Days identified as temperature anomalies: ');

 fprintf('%d ', anomaly_days);

 fprintf('\n');

else

 fprintf('No temperature anomalies identified.\n');

end

O/P (Command Window)

Average monthly temperature: 25.83°C

Number of days above the monthly average: 14

Hottest day: Day 11 with 31.00°C

Coldest day: Day 22 with 22.00°C

Temperature range: 9.00°C

Standard deviation of temperatures: 2.51°C

No temperature anomalies identified.

__

Ex 2.4

Procedure:

Step 1: Temperature Matrix Initialization

 temperature_matrix: Initializes a 4x4 matrix representing temperatures

across different locations or sensors:

25, 30, 35, 40

26, 29, 33, 39

24, 28, 34, 38

19

23, 27, 32, 37

Step 2: Setting Border Temperatures to 20°C

 temperature_matrix(1, :) = 20: Sets all the elements in the first row of

the matrix to 20°C.

 temperature_matrix(end, :) = 20: Sets all the elements in the last row of

the matrix to 20°C (i.e., the 4th row in this case).

 temperature_matrix(:, 1) = 20: Sets all the elements in the first column

of the matrix to 20°C.

 temperature_matrix(:, end) = 20: Sets all the elements in the last

column of the matrix to 20°C (i.e., the 4th column).

After this operation, the matrix will look like this:

20, 20, 20, 20

20, 29, 33, 20

20, 28, 34, 20

20, 20, 20, 20

Step 3: Normalizing the Matrix

 min_temp = min(temperature_matrix(:)): Finds the minimum value in

the entire matrix. Here, the minimum value is 20°C.

 max_temp = max(temperature_matrix(:)): Finds the maximum value

in the matrix, which is 34°C.

 normalized_matrix = (temperature_matrix - min_temp) / (max_temp

- min_temp): Normalizes the matrix by subtracting the minimum value

from each element and then dividing by the range (maximum -

minimum). This scales all the values in the matrix between 0 and 1.

The normalized matrix will look something like this:

0, 0, 0, 0

0, 0.45, 0.87, 0

0, 0.40, 1.00, 0

0, 0, 0, 0

20

Step 4: Identifying the Sensor with the Highest Temperature

 [max_val, max_idx] = max(normalized_matrix(:)): Finds the highest

value (after normalization) in the matrix. The variable max_val stores the

value, and max_idx stores its linear index.

 [row_idx, col_idx] = ind2sub(size(normalized_matrix), max_idx):

Converts the linear index (max_idx) to a row and column index (row_idx

and col_idx). This identifies the position of the sensor with the highest

temperature.

In this case, the sensor with the highest temperature is at row 3 and column 3

with a normalized value of 1.00.

Step 5: Rotating the Matrix 90 Degrees Clockwise

 rotated_matrix = rot90(normalized_matrix, -1): Rotates the matrix 90

degrees clockwise. The function rot90 rotates the matrix

counterclockwise by default, so rot90(..., -1) is used to rotate it clockwise.

Step 6: Displaying the Results

 disp('Corrected Matrix:'): Displays the normalized matrix.

 disp(['Sensor with highest temperature is at row ', ...]): Displays the

location of the sensor with the highest temperature after normalization.

 disp('Rotated Matrix:'): Displays the rotated matrix.

Code:

% Temperature matrix

temperature_matrix = [

 25, 30, 35, 40;

 26, 29, 33, 39;

 24, 28, 34, 38;

 23, 27, 32, 37;

];

% 1. Set the border temperatures of the matrix to 20°C.

temperature_matrix(1, :) = 20; % First row

temperature_matrix(end, :) = 20; % Last row

temperature_matrix(:, 1) = 20; % First column

temperature_matrix(:, end) = 20; % Last column

21

% 2. Normalize the entire matrix.

min_temp = min(temperature_matrix(:));

max_temp = max(temperature_matrix(:));

normalized_matrix = (temperature_matrix - min_temp) / (max_temp -

min_temp);

% 3. Identify the sensor with the highest temperature (after normalization).

[max_val, max_idx] = max(normalized_matrix(:));

[row_idx, col_idx] = ind2sub(size(normalized_matrix), max_idx);

% 4. Rotate the matrix 90 degrees clockwise.

rotated_matrix = rot90(normalized_matrix, -1);

% Display results

disp('Corrected Matrix:');

disp(normalized_matrix);

disp(['Sensor with highest temperature is at row ', num2str(row_idx), ' and

column ', num2str(col_idx), ' with value: ', num2str(max_val)]);

disp('Rotated Matrix:');

disp(rotated_matrix);

O/P (Command Window)

ex2_mat

Corrected Matrix:

 0 0 0 0

 0 0.6429 0.9286 0

 0 0.5714 1.0000 0

 0 0 0 0

Sensor with highest temperature is at row 3 and column 3 with value: 1

Rotated Matrix:

 0 0 0 0

 0 0.5714 0.6429 0

 0 1.0000 0.9286 0

 0 0 0 0

22

Expt

No.

3

LOOPS
Date of

Expt:

Ex 3.1

Procedure:

1. FOR Loop

Example 1: Simple Iteration

1. Initialize the loop: Set up a for loop that iterates over a defined range of

numbers (e.g., 1 through 10).

2. Display each value: During each iteration, display the current value of

the loop variable.

3. End the loop: The loop finishes when the last value in the range has been

processed.

Example 2: Dynamic Array Update

1. Initialize an array: Create an array with specified initial values (e.g., all

elements set to 1).

2. Start loop: Begin the loop to iterate over a subset of the array's indices.

3. Update array values: For each iteration, update the current element

based on a formula (e.g., set it to twice the previous element).

4. End the loop: The loop ends after updating all specified elements.

2. WHILE Loop

Example 1: Simple Counter

1. Initialize a counter: Set a variable to hold the initial count value.

2. Check the loop condition: Set a condition to control the loop (e.g., while

the counter is less than or equal to 10).

3. Display the count: For each iteration, display the current value of the

counter.

4. Increment the counter: Increase the counter by a specified amount after

each iteration.

5. End the loop: The loop ends once the condition is no longer true.

Example 2: Factorial Calculation

1. Initialize variables: Set an initial value for the factorial and a variable to

hold the number.

2. Check the loop condition: Continue the loop while the calculated

factorial is less than a certain large number (e.g., 10^100).

3. Update the factorial: Multiply the current factorial by the next integer in

each iteration.

4. End the loop: The loop terminates when the factorial exceeds the

specified limit.

23

3. NESTED LOOP

Example 1: Displaying Pairs of Values

1. Set up the outer loop: Define the first loop that iterates over a set of

values (e.g., 1 to 3).

2. Set up the inner loop: Within the outer loop, define another loop that

iterates over its own set of values.

3. Display paired values: For each pair of values from the outer and inner

loops, display them together.

4. End the loops: Both loops finish when all combinations of values have

been processed.

Example 2: Populating a Matrix

1. Initialize a matrix: Create a matrix with the desired dimensions and

initial values (e.g., all zeros).

2. Set up the outer loop: Iterate over the rows of the matrix.

3. Set up the inner loop: For each row, iterate over the columns of the

matrix.

4. Update matrix elements: Apply a formula to calculate each element

based on its row and column indices.

5. End the loops: The nested loops finish when the matrix is fully

populated.

4. Controlling Loop Execution

Example 1: Using break

1. Initialize the loop: Set up a loop to iterate over a range of values.

2. Check a condition: Inside the loop, check if a certain condition is met

(e.g., if a variable reaches a specific value).

3. Exit the loop: If the condition is met, use the break statement to exit the

loop immediately.

4. End the loop: The loop finishes once it is exited or the range of values is

exhausted.

Example 2: Using continue

1. Initialize the loop: Set up a loop to iterate over a range of values.

2. Check a condition: Inside the loop, check if a certain condition is met

(e.g., if a variable reaches a specific value).

3. Skip to the next iteration: If the condition is met, use the continue

statement to skip the current iteration and move to the next one.

4. End the loop: The loop finishes when all iterations have been completed,

except for those that were skipped.

Code:

1. FOR LOOP

for index = 1:10 % Define a for loop that iterates over numbers 1 through 10

 disp(index) % Display the current value of 'index'

24

end

O/P:

1

2

3

4

5

6

7

8

9

10

x = ones(1,10); % Initializes a 1x10 vector with all elements set to 1

for n = 2:6 % Begins a loop for n ranging from 2 to 6

 x(n) = 2 * x(n - 1); % Sets the nth element of x as double the (n-1)th

element

end % Ends the for loop

O/P:

x = 1 2 4 8 16 32 1 1 1 1

2. WHILE LOOP

count = 1; % Initialize the 'count' variable with a value of 1

while count <= 10 % While the 'count' is less than or equal to 10, execute the

loop

 disp(count) % Display the current value of 'count'

 count = count + 1; % Increment 'count' by 1

end

n = 1; % Sets n to 1

nFactorial = 1; % Initializes factorial of n to 1

while nFactorial < 1e100 % Begins a loop while n's factorial is less than

10^100

 n = n + 1; % Increments n by 1

 nFactorial = nFactorial * n;% Multiplies current nFactorial with n

end

25

O/P:

This loop is computing factorial values, and it stops once it hits a factorial larger

than 1010010100. It doesn't produce a displayed output, but at the end of this

loop, n will be the smallest integer such that n! is greater than 1010010100

3. NESTED LOOP

for i = 1:3 % Outer loop iterating from 1 to 3 for variable 'i'

 for j = 1:3 % Inner loop iterating from 1 to 3 for variable 'j'

 disp(['i = ', num2str(i), ', j = ', num2str(j)]) % Display the current values of

i, j

 end

end

O/P:

i = 1, j = 1

i = 1, j = 2

i = 1, j = 3

i = 2, j = 1

i = 2, j = 2

i = 2, j = 3

i = 3, j = 1

i = 3, j = 2

i = 3, j = 3

A = zeros(5,100); % Initializes a 5x100 matrix with all zeros

for m = 1:5 % Begins an outer loop for m ranging from 1 to 5

 for n = 1:100 % Begins an inner loop for n ranging from 1 to 100

 A(m, n) = 1/(m + n - 1); % Sets the (m,n) element of matrix A based on

given formula

 end % Ends the inner for loop

end % Ends the outer for loop

O/P:

This code initializes a 5x100 matrix A and populates it according to the given

formula. It doesn't produce a displayed output, but the matrix A will be filled

with the results of the formula.

5. CONTROLLING LOOP EXECUTION

- USING BREAK

% Define a for loop that iterates over numbers 1 through 10

for i = 1:10

 if i == 5 % If the value of 'i' is equal to 5

26

 break; % Exit the loop

 end

 disp(i) % Display the current value of 'i' (this won't be executed when i == 5)

end

O/P:

1

2

3

4

- USING CONTINUE

% Define a for loop that iterates over numbers 1 through 10

for i = 1:10

 if i == 5 % If the value of 'i' is equal to 5

 continue; % Skip to the next iteration of the loop

 end

 disp(i) % Display the current value of 'i' (this will skip displaying the number

5)

end

O/P:

1

2

3

4

6

7

8

9

__

Ex 3.2

Procedure:

Step 1: Load the Image

 img = imread('sample.jpeg'): This reads an image file named

'sample.jpeg' into the variable img. The image is stored as a 3D matrix

where the dimensions are:

o m = number of rows (height of the image)

o n = number of columns (width of the image)

27

o c = number of color channels (typically 3 for RGB images)

Step 2: Initialize an Empty Matrix for the Grayscale Image

 [m, n, c] = size(img): Retrieves the size of the image matrix img. This

stores the number of rows (m), columns (n), and color channels (c) in the

variables.

 grayscale_img = zeros(m, n): Initializes a 2D matrix grayscale_img of

size m by n, filled with zeros, which will store the grayscale values of the

image. This matrix has no color channels as it will only store intensity

values for grayscale.

Step 3: Convert the Image to Grayscale Using Loops

 A nested loop is used to process each pixel in the image:

o for i = 1

: Loops over each row of the image.

o for j = 1

: Loops over each column of the image.

o Inside the loop, each pixel's Red (R), Green (G), and Blue (B)

values are extracted from the RGB image, and the grayscale value

is computed using the formula:

 grayscale = 0.299R + 0.587G + 0.114*B: This is the

standard formula for converting an RGB image to grayscale,

giving more weight to the Green channel, which the human

eye perceives as brighter.

 grayscale_img(i, j) = 0.299 * img(i, j, 1) + 0.587 * img(i, j,

2) + 0.114 * img(i, j, 3): For each pixel at position (i, j), this

computes the grayscale intensity and stores it in the

corresponding location in the grayscale_img matrix.

Step 4: Convert Grayscale Image to uint8 Format

 grayscale_img = uint8(grayscale_img): Converts the grayscale_img

matrix, which is currently in double precision, into the uint8 format.

Images in MATLAB are typically represented in uint8 format, where

pixel values range from 0 to 255.

Step 5: Invert the Grayscale Image

 inverted_img = 255 - grayscale_img: Inverts the grayscale image by

subtracting each pixel value from 255. Inversion means that dark pixels

(near 0) become bright (near 255), and bright pixels (near 255) become

dark (near 0).

28

Step 6: Display the Original, Grayscale, and Inverted Images

 subplot(1, 3, 1): Creates a subplot layout where 3 images will be

displayed in one row.

o imshow(img): Displays the original RGB image in the first

subplot.

o title('Original Image'): Adds the title "Original Image" to the first

subplot.

 subplot(1, 3, 2): Moves to the second subplot.

o imshow(grayscale_img): Displays the grayscale image.

o title('Grayscale Image'): Adds the title "Grayscale Image" to the

second subplot.

 subplot(1, 3, 3): Moves to the third subplot.

o imshow(inverted_img): Displays the inverted grayscale image.

o title('Inverted Image'): Adds the title "Inverted Image" to the

third subplot.

Summary:

1. The image is loaded into memory and its dimensions are determined.

2. A grayscale image is created using loops to apply the grayscale

conversion formula to each pixel.

3. The grayscale image is converted to the appropriate format (uint8).

4. The grayscale image is inverted by subtracting pixel values from 255.

5. The original, grayscale, and inverted images are displayed side by side

for comparison.

Code:

% Load an image

img = imread('sample.jpeg');

% Initialize an empty matrix for the grayscale image

[m, n, c] = size(img);

grayscale_img = zeros(m, n);

% Convert the image to grayscale using loops

for i = 1:m

 for j = 1:n

 % Using the standard formula for grayscale conversion:

 % grayscale = 0.299*R + 0.587*G + 0.114*B

 grayscale_img(i, j) = 0.299 * img(i, j, 1) + 0.587 * img(i, j, 2) + 0.114 *

img(i, j, 3);

29

 end

end

% Convert the grayscale image to uint8 format

grayscale_img = uint8(grayscale_img);

% Invert the grayscale image

inverted_img = 255 - grayscale_img;

% Display the original, grayscale, and inverted images

subplot(1, 3, 1);

imshow(img);

title('Original Image');

subplot(1, 3, 2);

imshow(grayscale_img);

title('Grayscale Image');

subplot(1, 3, 3);

imshow(inverted_img);

title('Inverted Image');

O/P

30

Expt

No.

4

ERRORS
Date of

Expt:

Ex 4.1

Procedure:

Step 1: Define the number of terms:

 Set n = 4, which determines how many terms will be used in the series

expansion to approximate the exponential function.

Step 2: Set the value of x:

 Define x = 0.3, the value for which the exponential function 𝑒𝑥 will be

calculated.

Step 3: Initialize the computed exponential value:

 Set expval = 1.0, which is the starting value for the series expansion of

𝑒𝑥. This corresponds to the first term of the series (which is 1 for any

exponential).

Step 4: Initialize the first term of the series:

 Set currentterm = 1.0, which represents the first term in the series

expansion for 𝑒𝑥.

Step 5: Start a loop to compute the series terms:

 A for loop is used to iterate n times (from 1 to n):

1. Update the current term: For each iteration, the next term in the

series is calculated by multiplying the previous term (currentterm)

by 𝑥 and dividing by the current iteration index i.

2. Update the exponential approximation: Add the newly

calculated term to expval, which accumulates the total value of the

exponential approximation.

Step 6: Compute the true value of 𝒆𝒙:

 After the loop, use MATLAB's built-in function exp to compute the exact

value of 𝑒0.3 and store it in trueval.

Step 7: Calculate the error:

 Compute the absolute error between the true value (trueval) and the

approximated value (expval) using the formula:

𝒆𝒓𝒓𝒐𝒓 = |𝒕𝒓𝒖𝒆𝒗𝒂𝒍 − 𝒆𝒙𝒑𝒗𝒂𝒍|

Step 8: Display the results:

 Use the fprintf function to print the following:

o The true value of 𝑒0.3 (trueval)

31

o The computed approximated value (expval)

o The absolute error between the two values (error)

Code:

n=4; % Number of terms to use in the series expansion

x=0.3; % The value for which we want to compute the exponential

expval=1.0; % Initialize the computed exponential value starting with

the first term of the series

currentterm=1.0; % Initialize the first term in the exponential series

for i = 1:n % Loop n times to compute the first n terms of the series

 currentterm = currentterm * x/i; % Calculate the next term in the series

 expval=expval+currentterm; % Update the running total of the

exponential approximation

end

trueval=exp(0.3); % Compute the true value of e^0.3 using MATLAB's

built-in function

error = abs(trueval - expval); % Calculate the absolute error between the true

value and our approximation

fprintf('True Value: %f\n', trueval);

fprintf('Exponential Value: %f\n', expval);

fprintf('Error: %f\n', error);

O/P:

True Value: 1.349859

Exponential Value: 1.349838

Error: 0.000021

__

Ex 4.2

Procedure:

Taylor Series Expansion (First Example):

1. Initialize the Number of Terms:

o Set n = 4, which determines the number of terms in the Taylor

series expansion for exe^xex.

2. Set the Value of xxx:

o Define x = 0.3, the value for which the exponential function 𝑒𝑥

will be evaluated.

32

3. Initialize the Exponential Value:

o Set expval = 1.0 to begin the approximation, which corresponds to

the 0th term in the Taylor series (since 𝑒𝑥 starts with 1).

4. Initialize the Current Term:

o Set currentterm = 1.0, which will be used to calculate each

subsequent term in the series.

5. Loop to Compute Taylor Series Terms:

o Start a loop to compute n terms of the Taylor series expansion:

1. Update the Current Term: For each iteration, calculate the

next term in the series using the previous term, multiplying

by 𝑥/𝑖, where i is the current index.

2. Update the Exponential Value: After calculating each

term, add it to the current sum stored in expval(i+1).

6. Calculate the True Value:

o Use MATLAB’s built-in exp function to compute the actual value

of 𝑒𝑥 at x=0.3x = 0.3x=0.3.

7. Compute the Error:

o Calculate the absolute difference between the true value (trueval)

and the approximated value (expval) to obtain the error for each

iteration.

8. Display Results:

o Print the true value, the approximated value at each iteration, and

the associated error after each term is added.

Taylor Series Expansion with Multiple Values of 𝒙 (Second Example):

1. Initialize the Number of Terms:

o Set n = 4, which determines the number of terms in the Taylor

series expansion.

2. Define Multiple Values of xxx:

o Create a vector xall = [0.1, 0.5, 0.01, 0.02], which contains the

different values of xxx for which the exponential function exe^xex

will be computed.

3. Initialize a Vector of Indices:

o Define vec = [1:n] to represent the powers of xxx in the Taylor

series.

4. Initialize the Error Vector:

o Set Error = [] to store the computed error for each value of xxx.

33

5. Loop Over All Values of xxx:

o Start a loop that iterates over all elements of xall:

1. Select the Current xxx: Pick the current xxx value from

xall.

2. Compute Terms of the Series: Use the powers of 𝑥 and the

cumulative product to compute each term of the Taylor

series.

3. Cumulative Sum of the Series: Use cumsum to compute

the running total for the Taylor series.

4. Compute the True Value: Use MATLAB’s exp function to

compute the actual value of 𝑒𝑥 for the current xxx.

5. Calculate the Error: Compute the absolute error between

the true value and the Taylor series approximation (using the

last value from the cumulative sum).

6. Store the Error: Append the error to the Error array.

6. Plot the Error:

o Plot the error as a function of the values in xall to visually compare

the approximation errors for different xxx values.

7. Display Results:

o Print the true value, the approximated value for each value of xxx,

and the error for each approximation.

Code:

n=4; % Number of terms in the Taylor series expansion

x=0.3; % Value at which we want to evaluate the exponential function

expval=1.0; % Initialize the Taylor series expansion result to 1.0

currentterm=1.0; % Initialize the current term in the Taylor series to 1.0 (0th

term)

% Loop to compute the Taylor series approximation for exp(0.3)

for i = 1:n

 % Calculate the next term in the Taylor series using the previous term

 currentterm = currentterm * x/i;

 % Update the result array by adding the new term to the previous sum

 expval(i+1) = expval(i) + currentterm;

end

trueval = exp(0.3);

error = abs(trueval - expval);

34

fprintf('True Value: %f\n', trueval);

fprintf('Exponential Value: %f\n', expval);

fprintf('Error: %f\n', error);

O/P:

True Value: 1.349859

Exponential Value: 1.000000

Exponential Value: 1.300000

Exponential Value: 1.345000

Exponential Value: 1.349500

Exponential Value: 1.349838

Error: 0.349859

Error: 0.049859

Error: 0.004859

Error: 0.000359

Error: 0.000021

Ex 4.3

Procedure:

Maclaurin Series Vector Approximation

1. Initialize the Number of Terms:

o Set n = 4, which represents the number of terms in the Maclaurin

series expansion for approximating 𝑒𝑥.

2. Define the Vector of xxx Values:

o Create a vector xall = [0.1, 0.5, 0.01, 0.02], which contains the

different values of xxx for which the exponential function 𝑒𝑥 will

be computed using the series expansion.

3. Initialize the Vector of Indices for the Series:

o Set vec = [1:n], which creates a vector from 1 to n. This represents

the powers of xxx and the factorial denominators in the Maclaurin

series expansion.

4. Initialize an Empty Error Array:

o Set Error = [], which will store the approximation error for each 𝑥

value in xall.

5. Loop Through Each Value of xxx:

o Start a loop that iterates over all elements in the xall vector:

35

1. Select the Current xxx: In each iteration, select the current

value of 𝑥 from xall.

2. Calculate the Terms of the Series: Compute the terms of

the Maclaurin series using the formula:

𝑥𝑘

𝑘!
, where k is the index from 1 to n, and calculate this

for each value of 𝑥.

3. Cumulative Sum for the Series: Use cumsum to compute

the cumulative sum of the terms, which approximates 𝑒𝑥.

The approximation is stored in expval.

4. Compute the True Value: Use MATLAB’s built-in exp(x)

function to calculate the actual value of 𝑒𝑥 for the current

xxx.

5. Compute the Error: Calculate the absolute error between

the true value (trueval) and the final term in the cumulative

sum (expval(end)).

6. Store the Error: Append the computed error to the Error

array for the current value of 𝑥.

6. Plot the Error:

o After looping through all xxx values, plot the Error array against

the values in xall to visualize how the approximation error changes

with different values of xxx.

o Set labels for the x-axis (x values) and the y-axis (Error) on the

plot.

7. Display the Results:

o After processing all xxx values, print the true value of exe^xex, the

final value of the Maclaurin series approximation, and the error for

the last iteration.

Code:

%maclarin_vector

n=4;

xall=[0.1, 0.5, 0.01, 0.02];

vec = [1:n];

Error=[];

for i = 1:length(xall)

 x = xall(i); % Picking the i-th element of xall

36

 terms = x.^vec ./ cumprod(vec); % Calculating each term of the Taylor series

 expval = 1 + cumsum(terms); % Cumulative sum for the exponential

approximation

 trueval = exp(x); % Actual exponential value

 error = abs(trueval - expval(end)); % Error

 Error = [Error; error]; % Storing the error for each x value

end

plot(xall, Error); % Plotting the errors

xlabel('x values'); % Fixing the xlabel and ylabel

ylabel('Error');

fprintf('True Value: %f\n', trueval);

fprintf('Exponential Value: %f\n', expval);

fprintf('Error: %f\n', error);

O/P:

True Value: 1.020201340027

Exponential Value: 1.020000000000

Exponential Value: 1.020200000000

Exponential Value: 1.020201333333

Exponential Value: 1.020201340000

Error: 0.000000000027

Ex 4.3

Procedure:

Estimating the Square Root of 2 Using Heron’s Method (Iterative

Approach)

1. Initialize the Estimate:

o Set the initial guess for the square root of 2:

 𝑥 = 0.5, which is an arbitrary starting point for the iterative

process.

2. Start the Iterative Loop:

o Use a loop to refine the estimate of the square root of 2. In this

example, the loop runs for 7 iterations.

3. Update the Estimate Using Heron’s Method:

37

o In each iteration, calculate the next approximation (xnew) for the

square root of 2 using Heron's method:

𝑥𝑛𝑒𝑤 =
1

2
(𝑥 +

1

2
)

o This formula combines the current estimate with the result of

dividing 2 by the current estimate to get closer to the true value of

√2

4. Calculate the Error:

o After computing the new estimate, calculate the absolute difference

between the current estimate (x) and the new estimate (xnew):

𝑒𝑟𝑟 = |𝑥 − 𝑥𝑛𝑒𝑤|

o This measures how much the estimate is changing with each

iteration, providing an indication of convergence.

5. Update the Estimate:

o Set the current estimate xxx to the newly computed value 𝑥𝑛𝑒𝑤 so

that the next iteration can further refine the estimate.

6. Repeat the Process:

o The loop continues for 7 iterations, progressively refining the

estimate of √2.

7. Display Results:

o After the loop, you can use the fprintf function to print the results,

such as the final estimate of the square root of 2, the true value, and

the error. However, the current code has placeholders for printing

exponential values instead of the square root estimate.

Notes:

 The loop will progressively refine the estimate for √2 with each iteration.

Typically, the more iterations you perform, the closer the estimate will

get to the true value of √2, which is approximately 1.414213562.

 The current code uses 7 iterations, which is generally sufficient for a

good approximation of the square root of 2.

Code:

% Initialize x with an initial guess for the square root of 2

x = 0.5;

% Start a loop that will iterate 7 times to refine the estimate

for i = 1:7

 % Compute the next estimate for the square root of 2 using Heron's method

38

 xnew = 1/2 * (x + 2/x);

 % Calculate the absolute difference between the current estimate and the new

estimate

 % This gives an indication of how much the estimate is changing with each

iteration

 err = abs(x - xnew);

 % Update the estimate x for the next iteration

 x = xnew;

end

fprintf('True Value: %.12f\n', trueval);

fprintf('Exponential Value: %.12f\n', expval);

fprintf('Error: %.12f\n', error);

O/P:

True Value: 1.020201340027

Exponential Value: 1.020000000000

Exponential Value: 1.020200000000

Exponential Value: 1.020201333333

Exponential Value: 1.020201340000

Error: 0.000000000027

Ex 4.4

Procedure:

Approximating the Square Root of 2 Using Heron’s Method (While Loop

Approach)

1. Initialize the Estimate:

o Set the initial guess for the square root of 2:

 𝑥 = 0.5, which serves as the starting point for the iterative

process.

2. Set the Absolute Tolerance:

o Define the absolute tolerance atol = 1.0e-4, which determines how

close the approximation needs to be before the loop terminates.

o This tolerance controls when the algorithm stops refining the

estimate. Once the error is smaller than this tolerance, the

approximation is considered sufficiently accurate.

3. Initialize the Error:

39

o Set the error err = 1 to ensure the loop starts. Initially, the error is

set to a value larger than the tolerance.

4. Start the While Loop:

o The loop will continue running as long as the error (err) is greater

than the absolute tolerance (atol).

5. Update the Estimate Using Heron’s Method:

o Inside the loop, calculate the next approximation (xnew) for the

square root of 2 using Heron's method:

𝑥𝑛𝑒𝑤 =
1

2
(𝑥 +

1

2
)

o This formula combines the current estimate with the result of

dividing 2 by the current estimate to get closer to the true value of

√2

6. Calculate the Error:

o After computing the new estimate, calculate the absolute difference

between the current estimate (x) and the new estimate (xnew):

𝑒𝑟𝑟 = |𝑥 − 𝑥𝑛𝑒𝑤|

o This measures how much the estimate is changing with each

iteration, providing an indication of convergence.

7. Update the Estimate:

o Set the current estimate xxx to the newly computed value 𝑥𝑛𝑒𝑤 so

that the next iteration can further refine the estimate.

8. Repeat the Process:

o The loop continues for 7 iterations, progressively refining the

estimate of √2.

9. Display Results:

o After the loop, you can use the fprintf function to print the results,

such as the final estimate of the square root of 2, the true value, and

the error. However, the current code has placeholders for printing

exponential values instead of the square root estimate.

Code:

%% Heron's algorithm using a while loop to approximate the square root of 2

x = 0.5; % Initialize x with an initial guess for the square root of 2

atol = 1.0e-4; % Set the absolute tolerance for convergence

err = 1; % Initialize the error to a non-zero value to ensure the loop starts

40

% Continue refining the estimate as long as the error is greater than the

tolerance

while (err > atol)

 % Compute the next estimate for the square root of 2 using Heron's method

 xnew = 1/2 * (x + 2/x);

 % Calculate the absolute difference between the current estimate and the new

estimate

 err = abs(x - xnew);

 % Update the estimate x for the next iteration

 x = xnew;

end

% Display the final estimate for the square root of 2 and the error

fprintf('Estimate for the square root of 2: %.12f\n', x);

fprintf('Final error: %.12f\n', err);

O/P:

Estimate for the square root of 2: 1.414213562525

Final error: 0.000020723415

Ex 4.5

Procedure:

Approximating 𝒆𝟎.𝟏 Using the Compound Interest Formula

1. Set Constants:

o Define the target exponent:

 𝑎 = 0.1, which represents the exponent for which you are

calculating 𝒆𝟎.𝟏.

o Define the step size for the approximation:

 ℎ = 0.01, which is the incremental step size used in the

iterative approximation process.

o Calculate the number of iterations required:

 𝑛 = 𝑎/ℎ, which calculates how many iterations are needed

based on the step size ℎ.

2. Calculate the True Value:

o Use MATLAB’s built-in function exp(a) to calculate the true value

of 𝑒0.1, which is stored in the variable truval.

41

o This true value will be used later to compute the error between the

actual value and the approximation.

3. Initialize the Approximation:

o Set expval = 1, which is the starting value for the iterative

approximation. This corresponds to the initial value of the

exponential function when using the compound interest method.

4. Iterate to Approximate 𝒆𝟎.𝟏:

o Start a loop that runs n times (where n = a/h).

o In each iteration, multiply the current approximation expval by

(1 + ℎ), simulating the compound interest formula:

 𝑒𝑥𝑝𝑣𝑎𝑙 = 𝑒𝑥𝑝𝑣𝑎𝑙 × (1 + ℎ)

o This process iteratively builds the approximation of 𝒆𝟎.𝟏.

5. Calculate the Error:

o After completing the iterations, calculate the absolute error

between the true value (truval) and the approximated value

(expval):

 𝑒𝑟𝑟 =∣ 𝑡𝑟𝑢𝑣𝑎𝑙 − 𝑒𝑥𝑝𝑣𝑎𝑙 ∣

o The error represents how far the approximation deviates from the

true value.

6. Display the Results:

o Use disp and num2str to display the results:

 The true value of 𝒆𝟎.𝟏 (calculated with MATLAB’s built-in

function).

 The approximated value obtained using the iterative method.

 The absolute error between the true value and the

approximation.

Code:

% Set constants

a=0.1; % Target exponent for e

h=0.01; % Step size for approximation

n=a/h; % Number of iterations required

% Calculate the true value of e^0.1 for error comparison

truval=exp(a);

% Initialize the approximation value

expval=1; % Start value for iterative approximation

42

% Iterate to approximate e^0.1 using the compound interest formula

for i =1:n

 expval = expval*(1+h);

end

% Calculate the absolute error between true and approximated value

err = abs(truval - expval);

% Display the variables at the end

disp('Results:');

disp(['True Value (truval) = ', num2str(truval)]);

disp(['Approximated Value (expval) = ', num2str(expval)]);

disp(['Absolute Error (err) = ', num2str(err)]);

O/P:

Results:

True Value (truval) = 1.1052

Approximated Value (expval) = 1.1046

Absolute Error (err) = 0.00054879

Ex 4.6

Procedure:

Code:

a = 0.1; % Define the value of 'a'

trueval = exp(a); % Calculate the true value of e^a

expval = 1; % Initialize the expval to 1 (assuming we're trying to calculate

exp(a) using a simple compound interest approximation)

% Preallocate arrays for efficiency

hall = zeros(1,2);

errall = zeros(1,2);

% Start a loop for two iterations

for i = 1:2

 % Compute the step size 'h'

 h = 10^(-i);

 % Update the expval using the compound interest approximation

43

 expval = expval * (1 + a/h);

 % Compute the absolute error between true value and approximate value

 err = abs(trueval - expval);

 % Store the values of 'h' and 'err' in arrays

 hall(i) = h;

 errall(i) = err;

end

% Display the arrays at the end

disp(['hall = ', num2str(hall)]);

disp(['errall = ', num2str(errall)]);

% Plot error against h on a log-log scale

loglog(hall, errall, '--bo');

% Modify x-axis ticks to include more gridlines

set(gca, 'XTick', [10^-2, 5*10^-2, 10^-1, 5*10^-1, 1]);

% Enable the grid

grid on;

% Add labels for clarity

xlabel('Step size (h)');

ylabel('Absolute error');

title('Error Analysis for e^a Approximation');

% Display the absolute errors for each step size

for i = 1:length(hall)

 disp(['Absolute error for h = ', num2str(hall(i)), ': ', num2str(errall(i))]);

end

O/P:

hall = 0.1 0.01

errall = 0.894829 20.8948

Absolute error for h = 0.1: 0.89483

Absolute error for h = 0.01: 20.8948

44

Ex 4.7

Procedure:

Approximating Sin, Cos, and Tan Using Taylor Series

1. Set the Target Value:

o Define 𝑎 = 0.1, which is the value for which the sine, cosine, and

tangent functions will be approximated.

2. Calculate the True Values:

o Use MATLAB’s built-in trigonometric functions to calculate the

exact values for 𝑠𝑖𝑛(𝑎), 𝑐𝑜𝑠(𝑎), 𝑎𝑛𝑑 𝑡𝑎𝑛(𝑎), storing them in

truval_sin, truval_cos, and truval_tan, respectively.

3. Approximate 𝒔𝒊𝒏(𝒂) Using Taylor Series:

o Use the first three terms of the Taylor series expansion for

 𝑠𝑖 𝑛(𝑎) ≈ 𝑎 −
𝑎3

3!
+

𝑎5

5!

o This provides a polynomial approximation of 𝑠𝑖𝑛(𝑎), stored in

approxVal_sin.

4. Approximate 𝒄𝒐𝒔 (𝒂) Using Taylor Series:

o Use the first three terms of the Taylor series expansion for

 cos(𝑎) ≈ 1 −
𝑎2

2!
+

𝑎4

4!

o This provides a polynomial approximation of 𝑐𝑜𝑠(𝑎), stored in

approxVal_cos.

5. Approximate 𝒕𝒂𝒏 (𝒂)

o Use the previously calculated approximations of

𝑠𝑖𝑛(𝑎), 𝑐𝑜𝑠(𝑎), 𝑎𝑛𝑑 𝑡𝑎𝑛(𝑎)

tan(𝑎) ≈
sin(𝑎)

cos(𝑎)

o Store this value in approxVal_tan.

6. Calculate the Absolute Errors:

o Compute the absolute error between the true values and the

approximated values for 𝑠𝑖𝑛(𝑎), 𝑐𝑜𝑠(𝑎), 𝑎𝑛𝑑 𝑡𝑎𝑛(𝑎):

 𝑒𝑟𝑟𝑜𝑟 =∣ 𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒 − 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 ∣

o These errors are stored in err_sin, err_cos, and err_tan.

7. Display the Results:

o Use the disp function to print:

 The true values 𝑠𝑖𝑛(𝑎), 𝑐𝑜𝑠(𝑎), 𝑎𝑛𝑑 𝑡𝑎𝑛(𝑎),

 The approximated values using the Taylor series expansions,

45

 The absolute errors for each function.

Summary:

This procedure uses the first three terms of the Taylor series to approximate

𝑠𝑖𝑛(𝑎), 𝑐𝑜𝑠(𝑎), 𝑎𝑛𝑑 𝑡𝑎𝑛(𝑎), for a given 𝑎 = 0.1. The true values are calculated

using MATLAB's built-in trigonometric functions, and the absolute errors

between the true and approximated values are computed and displayed.

Code:

% Set constant

a = 0.1; % Target value

% Calculate the true values for sin, cos, and tan of a

truval_sin = sin(a);

truval_cos = cos(a);

truval_tan = tan(a);

% Approximate sin(a) using the first 3 terms of its Taylor series

approxVal_sin = a - (a^3)/factorial(3) + (a^5)/factorial(5);

% Approximate cos(a) using the first 3 terms of its Taylor series

approxVal_cos = 1 - (a^2)/factorial(2) + (a^4)/factorial(4);

% Approximate tan(a) using the ratio of approximated sin(a) and cos(a)

approxVal_tan = approxVal_sin / approxVal_cos;

% Calculate the absolute errors

err_sin = abs(truval_sin - approxVal_sin);

err_cos = abs(truval_cos - approxVal_cos);

err_tan = abs(truval_tan - approxVal_tan);

% Display the results

disp('Results:');

disp(['a = ', num2str(a)]);

disp('SIN:');

disp(['True Value of sin(a) = ', num2str(truval_sin)]);

disp(['Approximated Value of sin(a) = ', num2str(approxVal_sin)]);

disp(['Absolute Error for sin = ', num2str(err_sin)]);

disp('---');

disp('COS:');

46

disp(['True Value of cos(a) = ', num2str(truval_cos)]);

disp(['Approximated Value of cos(a) = ', num2str(approxVal_cos)]);

disp(['Absolute Error for cos = ', num2str(err_cos)]);

disp('---');

disp('TAN:');

disp(['True Value of tan(a) = ', num2str(truval_tan)]);

disp(['Approximated Value of tan(a) = ', num2str(approxVal_tan)]);

disp(['Absolute Error for tan = ', num2str(err_tan)]);

O/P:

Results:

a = 0.1

SIN:

True Value of sin(a) = 0.099833

Approximated Value of sin(a) = 0.099833

Absolute Error for sin = 1.9839e-11

COS:

True Value of cos(a) = 0.995

Approximated Value of cos(a) = 0.995

Absolute Error for cos = 1.3886e-09

TAN:

True Value of tan(a) = 0.10033

Approximated Value of tan(a) = 0.10033

Absolute Error for tan = 1.2009e-10

47

Expt

No.

5

NUMERICAL DIFERENTIATION
Date of

Expt:

Ex 5.1

Procedure:

Numerical Derivative Using Forward Difference

1. Define the Value of a:

o Set 𝑎 = 1, which is the point at which the numerical derivative of

𝑓(𝑥) = tan−1(𝑥) will be calculated.

2. Calculate the True Derivative:

o The derivative of 𝑓(𝑥) = tan−1(𝑥) is 𝑓′(𝑥) =
1

1+𝑥2

o Compute the true derivative at 𝑥 = 1, using the formula:

𝑡𝑟𝑢𝑒𝑣𝑎𝑙 =
1

1+𝑎2

o Store the result in trueval for comparison with the numerical

approximation.

3. Set the Step Size:

o Define ℎ = 1.0 × 10−4, which is the step size used in the forward

difference approximation.

4. Apply the Forward Difference Formula:

o Use the forward difference formula to approximate the derivative

of 𝑓(𝑥) = tan−1(𝑥) at 𝑥 = 1,

𝑓′(𝑥) ≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

o In this case, 𝑓(𝑥) = tan−1(𝑥) at 𝑥 = 1, so the formula becomes:

𝑓𝑤𝑑𝑑𝑖𝑓𝑓 ≈
tan−1(𝑎 + ℎ) − tan−1(𝑎)

ℎ

o Store the result in fwddiff.

5. Calculate the Error:

o Compute the absolute error between the true derivative (trueval)

and the forward difference approximation (fwddiff):

𝑒𝑟𝑟𝑓𝑤𝑑 = |𝑡𝑟𝑢𝑒𝑣𝑎𝑙 − 𝑓𝑤𝑑𝑑𝑖𝑓𝑓|

6. Display the Results:

o Use the fprintf function to print the following:

48

 The true value of the derivative at 𝑥 = 1,

 The forward difference approximation of the derivative,

 The absolute error between the true and approximated

derivative.

Code:

% Calculate the numerical derivative of f(x) = atan(x) at x=1 using forward

difference.

a=1; % Set x=1

trueval=1/(1+a^2); % True derivative at x=1

h=1.0e-4; % Step size for approximation

% Forward difference formula for derivative

fwddiff = (atan(a+h)-atan(a))/h;

% Absolute error between true and approximated derivative

errfwd = abs(trueval-fwddiff);

% Display results

fprintf('True value of the derivative at x=1: %.12f\n', trueval);

fprintf('Forward difference approximation: %.12f\n', fwddiff);

fprintf('Absolute error: %.12f\n',errfwd);

O/P:

True value of the derivative at x=1: 0.500000000000

Forward difference approximation: 0.499975000834

Absolute error: 0.000024999166

Ex 5.2

Procedure:

Numerical Derivative Using Different Difference Methods

1. Set the Value of 𝒂:

o Define 𝑎 = 1, which is the point at which the numerical derivative

of 𝑓(𝑥) = tan−1(𝑥) will be calculated.

2. Calculate the True Derivative:

o The derivative of 𝑓(𝑥) = tan−1(𝑥) is 𝑓′(𝑥) =
1

1+𝑥2

o Compute the true derivative at 𝑥 = 1 using the formula:

49

𝑡𝑟𝑢𝑒𝑣𝑎𝑙 =
1

1 + 𝑎2

o Store the result in trueval for comparison with the numerical

approximations.

3. Set the Step Size:

o Define ℎ = 1.0 × 10−4, which is the small increment used in the

difference methods to approximate the derivative.

4. Apply the Forward Difference Method:

o Use the forward difference formula to approximate the derivative:

𝑓′(𝑥) ≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

o In this case, 𝑓(𝑥) = tan−1(𝑥), so the forward difference becomes:

𝑓𝑤𝑑𝑑𝑖𝑓𝑓 ≈
tan−1(𝑎 + ℎ) − tan−1(𝑎)

ℎ

o Store the result in fwddiff, and compute the error:

𝑒𝑟𝑟𝑓𝑤𝑑 = |𝑡𝑟𝑢𝑒𝑣𝑎𝑙 − 𝑓𝑤𝑑𝑑𝑖𝑓𝑓|

5. Apply the Central Difference Method:

o Use the Central difference formula to approximate the derivative:

𝑓′(𝑥) ≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ

o In this case, 𝑓(𝑥) = tan−1(𝑥), so the central difference becomes:

𝑐𝑒𝑛𝑡𝑑𝑖𝑓𝑓 ≈
tan−1(𝑎 + ℎ) − tan−1(𝑎 − ℎ)

2ℎ

o Store the result in centdiff, and compute the error:

𝑒𝑟𝑟𝑐𝑒𝑛𝑡 = |𝑡𝑟𝑢𝑒𝑣𝑎𝑙 − 𝑐𝑒𝑛𝑡𝑑𝑖𝑓𝑓|

6. Apply the Backward Difference Method:

o Use the backward difference formula to approximate the

derivative:

𝑓′(𝑥) ≈
𝑓(𝑥) − 𝑓(𝑥 − ℎ)

ℎ

o In this case, 𝑓(𝑥) = tan−1(𝑥), so the backward difference

becomes:

50

𝑏𝑎𝑐𝑘𝑑𝑖𝑓𝑓 ≈
tan−1(𝑎) − tan−1(𝑎 − ℎ)

ℎ

o Store the result in backdiff, and compute the error:

𝑒𝑟𝑟𝑓𝑤𝑑 = |𝑡𝑟𝑢𝑒𝑣𝑎𝑙 − 𝑏𝑎𝑐𝑘𝑑𝑖𝑓𝑓|

7. Display the Results:

o Use disp to print:

 The true value of the derivative at 𝑥 = 1,

 The forward difference approximation and its error,

 The central difference approximation and its error,

 The backward difference approximation and its error.

Code:

% Calculate the numerical derivative of f(x) = atan(x) at x=1 using different

difference methods.

a = 1; % Set x=1

trueval = 1/(1+a^2); % True derivative at x=1

h = 1.0e-4; % Step size for approximation

% Forward difference formula for derivative

fwddiff = (atan(a+h) - atan(a))/h;

errfwd = abs(trueval - fwddiff); % Error for forward difference

% Central difference formula for derivative

centdiff = (atan(a+h) - atan(a-h))/(2*h);

errcent = abs(trueval - centdiff); % Error for central difference

% Backward difference formula for derivative

backdiff = (atan(a) - atan(a-h))/h;

errback = abs(trueval - backdiff); % Error for backward difference

% Display results

disp(['True value of the derivative at x=1: ', num2str(trueval)]);

disp('---');

disp(['Forward difference approximation: ', num2str(fwddiff)]);

disp(['Error (Forward): ', num2str(errfwd)]);

disp('---');

disp(['Central difference approximation: ', num2str(centdiff)]);

disp(['Error (Central): ', num2str(errcent)]);

disp('---');

disp(['Backward difference approximation: ', num2str(backdiff)]);

51

disp(['Error (Backward): ', num2str(errback)]);

O/P:

True value of the derivative at x=1: 0.5

Forward difference approximation: 0.49998

Error (Forward): 2.4999e-05

Central difference approximation: 0.5

Error (Central): 8.3317e-10

Backward difference approximation: 0.50003

Error (Backward): 2.5001e-05

Ex 5.3

Procedure:

Numerical Differentiation with Various Methods

1. Define Step Sizes:

o Create a vector h that holds step sizes from 10−1 𝑡𝑜 10−8 , using

powers of 10:

ℎ = 10. ^[−1: −2: −8];
o These step sizes will be used for the numerical differentiation

methods.

2. Define the Point for Derivative Calculation:

o Set 𝑎 = 2, which is the point where the derivative of the function

𝑓(𝑥) = 𝑥𝑥 will be calculated.

3. Symbolic Differentiation:

o Use symbolic differentiation to compute the true derivative of the

function 𝑓(𝑥) = 𝑥𝑥:

1. Declare x as a symbolic variable using syms 𝑥.

2. Differentiate AssignmentDiffFun1(x) symbolically with

respect to 𝑥.

3. Substitute the value 𝑎 = 2 into the symbolic derivative and

convert the result to a double precision number for

comparison:

𝑡𝑟𝑢𝑒𝑣𝑎𝑙1_𝑎𝑡_𝑎 = 𝑑𝑜𝑢𝑏𝑙𝑒(𝑠𝑢𝑏𝑠(𝑡𝑟𝑢𝑒𝑣𝑎𝑙1, 𝑥, 𝑎))

52

4. Manual Calculation of the Derivative:

o Manually calculate the true derivative of the function 𝑓(𝑥) =

 𝑥𝑥 𝑎𝑡 𝑥 = 2 using the formula:

𝑓′(𝑥) = 𝑥𝑥 × (1 + 𝑙𝑜𝑔 (𝑥))

o Store the manually calculated result in trueval2.

5. Forward Difference Approximation:

o Use the forward difference method to approximate the derivative:

o Compute the forward difference for each step size in h and

calculate the error

6. Central Difference Approximation:

o Use the central difference method to approximate the derivative:

o Compute the central difference for each step size in h and calculate

the error

7. Backward Difference Approximation:

o Use the backward difference method to approximate the derivative:

o Compute the backward difference for each step size in h and

calculate the error

8. Display the Results:

o Print the true derivative values:

 The symbolic derivative calculated using MATLAB’s built-

in functions (trueval1_at_a).

 The manually calculated derivative (trueval2).

o Print the derivatives obtained from the forward, central, and

backward difference methods.

9. Plot the Errors:

o Create a log-log plot to visualize the errors for each method:

 Plot the forward difference errors in red.

 Plot the central difference errors in green.

 Plot the backward difference errors in blue.

o Add labels, title, and a legend to the plot for clarity:

 x-axis: Step Size (h),

 y-axis: Error,

 Title: Error in Differentiation Methods.

o Enable grid for better visualization and turn off hold to release the

plot.

53

Function Definition:

 AssignmentDiffFun1:

o This function defines the function 𝑓(𝑥) = 𝑥𝑥, which is being

differentiated:

function fval = AssignmentDiffFun1(x)

 fval = (x.^x);

end

Code:

% Define a vector of step sizes (h) using powers of 10 from -1 to -8

h = 10.^[-1:-2:-8];

% Define the x value at which the derivative is to be estimated

a = 2;

syms x; % Declare x as a symbolic variable

trueval1 = diff(AssignmentDiffFun1(x), x); % Differentiate symbolically

trueval1_at_a = double(subs(trueval1, x, a)) % Substitute 'a' for 'x' and convert

to double

trueval2 = (a^a)*(1+log(a))

% Calculate forward difference approximation of derivative and associated error

fwddiff = (AssignmentDiffFun1(a+h) - AssignmentDiffFun1(a))./h;

errfwd = abs(trueval2 - fwddiff);

% Calculate central difference approximation of derivative and associated error

centdiff = (AssignmentDiffFun1(a+h) - AssignmentDiffFun1(a-h))./(2*h);

errcent = abs(trueval2 - centdiff);

% Calculate backward difference approximation of derivative and associated

error

backdiff = (AssignmentDiffFun1(a) - AssignmentDiffFun1(a-h))./h;

errback = abs(trueval2 - backdiff);

% Display actual derivative values calculated through symbolic differentiation

and manual calculation

fprintf('Actual Integral (By In-built Integral Formula in MATLAB: %.12f\n',

trueval1_at_a);

fprintf('Actual Derivative (By manually solving): %.12f\n', trueval2);

fprintf('\n');

fprintf('Derivative obtained by Forward Difference Method: %.12f\n:', fwddiff);

fprintf('\n');

54

fprintf('Derivative obtained by Central Difference Method: %.12f\n:', centdiff);

fprintf('\n');

fprintf('Derivative obtained by Backward Difference Method: %.12f\n:',

backdiff);

% Plot errors for each differentiation method on a log-log scale

loglog(h,errfwd,'r'); % Forward difference errors in red

hold on; % Retain current plot when adding more lines

loglog(h,errcent,'g'); % Central difference errors in green

loglog(h,errback,'b'); % Backward difference errors in blue

% Add labels, title, and legend to the plot

xlabel('Step Size (h)');

ylabel('Error');

title('Error in Differentiation Methods');

legend('Forward Difference', 'Central Difference', 'Backward Difference');

% Enable grid on plot for better visibility of data points

grid on;

% Release the current plot

hold off;

Function File:

function fval = AssignmentDiffFun1(x)

 fval = (x.^x);

end

O/P:

Actual Derivative (By In-built Differentiation Formula in MATLAB:

6.772588722240

Actual Derivative (By manually solving): 6.772588722240

:Derivative obtained by Forward Difference Method: 7.496380917422

:Derivative obtained by Forward Difference Method: 6.779326982042

:Derivative obtained by Forward Difference Method: 6.772656057752

:Derivative obtained by Forward Difference Method: 6.772589387083

:Derivative obtained by Central Difference Method: 6.820338739119

:Derivative obtained by Central Difference Method: 6.772593484604

:Derivative obtained by Central Difference Method: 6.772588722792

:Derivative obtained by Central Difference Method: 6.772588720949

:Derivative obtained by Backward Difference Method: 6.144296560815

55

:Derivative obtained by Backward Difference Method: 6.765859987167

:Derivative obtained by Backward Difference Method: 6.772521387832

:Derivative obtained by Backward Difference Method: 6.772588054815

Ex 5.4

Code:

% Define a vector of step sizes (h) using powers of 10 from -1 to -8

h = 10.^[-6:-1:-10];

% Define the x value at which the derivative is to be estimated

a = 2;

syms x; % Declare x as a symbolic variable

trueval1 = diff(AssignmentDiffFun2(x), x); % Differentiate symbolically

trueval1_at_a = double(subs(trueval1, x, a)); % Substitute 'a' for 'x' and convert

to double

trueval2 = (a^sin(a))*((sin(a)/a) + log(a)*cos(a)) + ((sin(a))^a)*(a*cot(a) +

log(sin(a)));

% Calculate forward difference approximation of derivative and associated error

fwddiff = (AssignmentDiffFun2(a+h) - AssignmentDiffFun2(a))./h;

errfwd = abs(trueval2 - fwddiff);

% Calculate central difference approximation of derivative and associated error

centdiff = (AssignmentDiffFun2(a+h) - AssignmentDiffFun2(a-h))./(2*h);

errcent = abs(trueval2 - centdiff);

56

% Calculate backward difference approximation of derivative and associated

error

backdiff = (AssignmentDiffFun2(a) - AssignmentDiffFun2(a-h))./h;

errback = abs(trueval2 - backdiff);

% Display actual derivative values calculated through symbolic differentiation

and manual calculation

fprintf('Actual Derivative (By In-built Integral Formula in MATLAB: %.12f\n',

trueval1_at_a);

fprintf('Actual Derivative (By manually solving): %.12f\n', trueval2);

fprintf('\n');

fprintf('Derivative obtained by Forward Difference Method: %.12f\n:', fwddiff);

fprintf('\n');

fprintf('Derivative obtained by Central Difference Method: %.12f\n:', centdiff);

fprintf('\n');

fprintf('Derivative obtained by Backward Difference Method: %.12f\n:',

backdiff);

% Plot errors for each differentiation method on a log-log scale

loglog(h,errfwd,'r'); % Forward difference errors in red

hold on; % Retain current plot when adding more lines

loglog(h,errcent,'g'); % Central difference errors in green

loglog(h,errback,'b'); % Backward difference errors in blue

% Add labels, title, and legend to the plot

xlabel('Step Size (h)');

ylabel('Error');

title('Error in Differentiation Methods');

legend('Forward Difference', 'Central Difference', 'Backward Difference');

% Enable grid on plot for better visibility of data points

grid on;

% Release the current plot

hold off;

Function File:

function fval = AssignmentDiffFun2(x)

 fval = (x.^sin(x)) + ((sin(x)).^x);

end

O/P:

Actual Derivative (By In-built Differentiation Formula in MATLAB: -

0.523278215751

57

Actual Derivative (By manually solving): -0.523278215751

:Derivative obtained by Forward Difference Method: -0.523280342613

:Derivative obtained by Forward Difference Method: -0.523278429476

:Derivative obtained by Forward Difference Method: -0.523278220754

:Derivative obtained by Forward Difference Method: -0.523278309572

:Derivative obtained by Forward Difference Method: -0.523279197751

:

:Derivative obtained by Central Difference Method: -0.523278215869

:Derivative obtained by Central Difference Method: -0.523278216313

:Derivative obtained by Central Difference Method: -0.523278198550

:Derivative obtained by Central Difference Method: -0.523278309572

:Derivative obtained by Central Difference Method: -0.523279197751

:

:Derivative obtained by Backward Difference Method: -0.523276089126

:Derivative obtained by Backward Difference Method: -0.523278003151

:Derivative obtained by Backward Difference Method: -0.523278176345

:Derivative obtained by Backward Difference Method: -0.523278309572

:Derivative obtained by Backward Difference Method: -0.523279197751

Ex 5.5

Code:

% Define a vector of step sizes (h) using powers of 10 from -1 to -8

h = 10.^[-4:-1:-9];

% Define the x value at which the derivative is to be estimated

58

a = 2;

syms x; % Declare x as a symbolic variable

trueval1 = diff(AssignmentDiffFun3(x), x); % Differentiate symbolically

trueval1_at_a = double(subs(trueval1, x, a)); % Substitute 'a' for 'x' and convert

to double

trueval2 = (a+1/a)^a*(((a^2 - 1)/(a^2 + 1)) + log(a+1/a)) +

a^(1+1/a)*(((1/a)+(1/(a^2)) - (log(a)/(a^2))));

% Calculate forward difference approximation of derivative and associated error

fwddiff = (AssignmentDiffFun3(a+h) - AssignmentDiffFun3(a))./h;

errfwd = abs(trueval2 - fwddiff);

% Calculate central difference approximation of derivative and associated error

centdiff = (AssignmentDiffFun3(a+h) - AssignmentDiffFun3(a-h))./(2*h);

errcent = abs(trueval2 - centdiff);

% Calculate backward difference approximation of derivative and associated

error

backdiff = (AssignmentDiffFun3(a) - AssignmentDiffFun3(a-h))./h;

errback = abs(trueval2 - backdiff);

% Display actual derivative values calculated through symbolic differentiation

and manual calculation

fprintf('Actual Derivative (By In-built Differentiation Formula in MATLAB:

%.12f\n', trueval1_at_a);

fprintf('Actual Derivative (By manually solving): %.12f\n', trueval2);

fprintf('\n');

fprintf('Derivative obtained by Forward Difference Method: %.12f\n:', fwddiff);

fprintf('\n');

fprintf('Derivative obtained by Central Difference Method: %.12f\n:', centdiff);

fprintf('\n');

fprintf('Derivative obtained by Backward Difference Method: %.12f\n:',

backdiff);

% Plot errors for each differentiation method on a log-log scale

loglog(h,errfwd,'r'); % Forward difference errors in red

hold on; % Retain current plot when adding more lines

loglog(h,errcent,'g'); % Central difference errors in green

loglog(h,errback,'b'); % Backward difference errors in blue

% Add labels, title, and legend to the plot

59

xlabel('Step Size (h)');

ylabel('Error');

title('Error in Differentiation Methods');

legend('Forward Difference', 'Central Difference', 'Backward Difference');

% Enable grid on plot for better visibility of data points

grid on;

% Release the current plot

hold off;

Function File:

function fval = AssignmentDiffFun3(x)

 fval = ((x + 1./x).^x) + x.^(1+1./x);

end

O/P:

Actual Derivative (By In-built Differentiation Formula in MATLAB:

11.108008346039

Actual Derivative (By manually solving): 11.108008346039

:Derivative obtained by Forward Difference Method: 11.108903793708

:Derivative obtained by Forward Difference Method: 11.108097885248

:Derivative obtained by Forward Difference Method: 11.108017302419

:Derivative obtained by Forward Difference Method: 11.108009232430

:Derivative obtained by Forward Difference Method: 11.108008202143

:Derivative obtained by Forward Difference Method: 11.108008735050

:

:Derivative obtained by Central Difference Method: 11.108008408600

:Derivative obtained by Central Difference Method: 11.108008346739

:Derivative obtained by Central Difference Method: 11.108008346916

:Derivative obtained by Central Difference Method: 11.108008335370

:Derivative obtained by Central Difference Method: 11.108008113325

:Derivative obtained by Central Difference Method: 11.108008735050

:

:Derivative obtained by Backward Difference Method: 11.107113023492

:Derivative obtained by Backward Difference Method: 11.107918808229

:Derivative obtained by Backward Difference Method: 11.107999391413

:Derivative obtained by Backward Difference Method: 11.108007438310

:Derivative obtained by Backward Difference Method: 11.108008024507

:Derivative obtained by Backward Difference Method: 11.108008735050

60

61

Expt

No.

6

NUMERICAL INTEGRATION
Date of

Expt:

Ex 6.1

Procedure:

Numerical Integration Using the Trapezoidal Rule

1. Define the Limits of Integration:

o Set a = π/4 and b = π/2, which represent the lower and upper limits

for the integral.

2. Calculate the True Value of the Integral (Method 1):

o Use MATLAB’s built-in integral function to calculate the true

value of the integral numerically:

o trueval1 = integral(@AssignmentIntFun1, a, b)

3. Calculate the True Value of the Integral (Method 2):

o Manually solve the integral using the given formula:

trueval2 = (2 * log|sin²(b) - 4sin(b) + 5| + 7atan(sin(b) - 2)) - (2 *

log|sin²(a) - 4sin(a) + 5| + 7atan(sin(a) - 2))

4. Define an Array of n Values:

o Set up an array of values for n (the number of sub intervals for the

trapezoidal rule): n_values = [2, 5, 20, 40, 80, 160]

o This array will be used to compute the integral with different

resolutions (i.e., with increasing numbers of sub intervals).

5. Initialize an Array to Store Errors:

o Create an array errors initialized to zero, which will store the error

values for each n:

 errors = zeros(size(n_values))

6. Loop Over Different nnn Values:

o Start a loop that iterates over each value in n_values:

1. Set n: For each iteration, set n to the current number of sub

intervals from n_values.

2. Calculate Step Size: Compute the step size h for the

trapezoidal rule: h = (b - a) / n

3. Create xxx Vector: Create a vector xvec of n+1n+1n+1

points from a to b spaced by h.

62

4. Evaluate Function: Compute the function values at each

point in xvec using AssignmentIntFun1(xvec) and store

them in fvec.

5. Apply the Trapezoidal Rule:

 Initialize an array interval to store the contribution of

each interval.

 Use the trapezoidal rule formula to compute the

integral for each sub interval:

linterval(i) = (h/2) * (fvec(i) + fvec(i+1))

 Sum up the contributions of all intervals to get the

total integral approximation ItrapI_{\text{trap}}Itrap.

6. Compute the Error:

 Calculate the absolute error for the current n by

comparing the numerical integral

errors(idx) = |trueval1 - I_trap|

7. Plot the Error vs. n in a Log-Log Plot:

o Create a log-log plot to visualize how the error decreases as n

increases:

 x-axis: Number of sub-intervals n,

 y-axis: Absolute error.

o Plot the error for each value of n and add labels, title, and grid to

the plot for clarity.

8. Display Results:

o Use the fprintf function to display:

 The true value of the integral calculated using MATLAB’s

built-in integral function (trueval1).

 The manually calculated integral value (trueval2).

 The computed integral using the trapezoidal rule (I_trap).

 The array of errors for each n.

Code:

a = pi/4;

b = pi/2;

trueval1 = integral(@AssignmentIntFun1, a, b);

trueval2 = (2*log(abs(sin(b).^2 - 4*sin(b) + 5)) + 7*atan(sin(b) - 2)) -

(2*log(abs(sin(a).^2 - 4*sin(a) + 5)) + 7*atan(sin(a) - 2));

n_values = [2, 5, 20, 40, 80, 160]; % Array of n values

63

errors = zeros(size(n_values)); % Array to store error for each n value

% Loop over different n values

for idx = 1:length(n_values)

 n = n_values(idx);

 % Trapezoidal rule calculation

 h = (b-a)/n;

 xvec = a:h:b;

 fvec = AssignmentIntFun1(xvec);

 linterval = zeros(n,1);

 for i = 1:n

 linterval(i) = h/2 * (fvec(i) + fvec(i+1));

 disp(linterval(i))

 end

 I_trap = sum(linterval);

 % Compute and store error for current n

value

 errors(idx) = abs(trueval1 - I_trap);

end

% Plot error versus n in log-log plot

loglog(n_values, errors, 'o-', 'LineWidth', 2)

xlabel('Number of Sub intervals')

ylabel('Absolute Error')

title('Error Analysis of Trapezoidal Rule')

grid on

fprintf('Actual Integral (By In-built Integral Formula in MATLAB): %.12f\n',

trueval1)

fprintf('Actual Integral (By manually solving): %.12f\n', trueval2)

fprintf('Computed Integral: %.12f\n', I_trap)

disp('Absolute Error:')

disp(errors)

Function File:

function fval = AssignmentIntFun1(x)

 fval = (2.*sin(2*x) - cos(x))./(6 - cos(x).^2 - 4.*sin(x));

end

64

O/P:

Actual Integral (By In-built Integral Formula in MATLAB): 0.310320165564

Actual Integral (By manually solving): 0.310320165564

Computed Integral: 0.310315957052

Absolute Error:

 0.0276 0.0043 0.0003 0.0001 0.0000 0.0000

Ex 6.2

Procedure:

Numerical Integration Using Simpson's 1/3 Rule

1. Define the Limits of Integration:

o Set the limits of integration a=15a = 15a=15 and b=28b = 28b=28.

2. Calculate the True Value of the Integral (Method 1):

o Use MATLAB’s built-in integral function to compute the exact

value of the integral:

trueval1 = integral(@AssignmentIntFun3, a, b);

3. Calculate the True Value of the Integral (Method 2):

o Manually solve the integral using the provided formula:

trueval2 = 1/4*(sin(12*b)/12 + sin(8*b)/8 + b + sin(4*b)/4) -

1/4*(sin(12*a)/12 + sin(8*a)/8 + a + sin(4*a)/4)

4. Set the Number of Sub intervals n:

o Choose n=50n = 50n=50 for the Simpson's 1/3 rule.

o Calculate the step size h:

h = (b-a)/n;

5. Create x Vector and Evaluate Function:

65

o Create a vector xvec that holds the points from a to b spaced by h,

and evaluate the function AssignmentIntFun3(x) at those points to

get fvec:

xvec = a:h:b;

fvec = AssignmentIntFun3(xvec);

6. Simpson’s 1/3 Rule Calculation:

o Use a for-loop to apply Simpson’s 1/3 rule over every pair of

intervals:

 For Simpson’s rule, the formula for the composite

Simpson’s rule is:

𝐼𝑠𝑖𝑚𝑝 =
ℎ

3
(𝑓(𝑥0) + 4𝑓(𝑥1) + 2𝑓(𝑥2) + 4𝑓(𝑥3) + ⋯ . +𝑓(𝑏))

 This is implemented by iterating over the odd-indexed points

and applying Simpson’s 1/3 rule:

linterval = zeros(n,1);

for i = 1:2:n-1

 linterval(i) = h/3 * (fvec(i) + 4*fvec(i+1) + fvec(i+2));

end

I_simp3 = sum(linterval);

7. Calculate the Error:

o Compute the absolute error between the true value (trueval1) and

the computed integral (I_simp3):

err1 = abs(trueval1 - I_simp3);

8. Display Results:

o Use fprintf to print the results:

 The true value of the integral (computed using MATLAB's

integral function).

 The manually calculated value using the given formula.

 The computed integral using Simpson’s 1/3 rule.

 The absolute error between the true and computed values.

Code:

a = 15;

b = 28;

trueval1 = integral(@AssignmentIntFun3, a, b);

66

trueval2 = 1/4*(sin(12*b)/12 + sin(8*b)/8 + b + sin(4*b)/4) - 1/4*(sin(12*a)/12

+ sin(8*a)/8 + a + sin(4*a)/4);

n = 50;

%% Simpson's 1/3rd rule

h = (b-a)/n;

xvec = a:h:b;

fvec = AssignmentIntFun3(xvec);

linterval = zeros(n,1);

%% Simpson's 1/3rd rule

for i = 1:2:n-1

 linterval(i) = h/3 * (fvec(i) + 4*fvec(i+1) + fvec(i+2));

end

I_simp3 = sum(linterval);

err1 = abs(trueval1 - I_simp3); % Error between true value and computed

integral

% Displaying results

fprintf('Actual Integral (By In-built Integral Formula in MATLAB): %.12f\n',

trueval1)

fprintf('Actual Integral (By manually solving): %.12f\n', trueval2)

fprintf('Computed Integral: %.12f\n', I_simp3)

disp('Absolute Error:')

disp(err1)

Function File:

function fval = AssignmentIntFun3(x)

 fval = cos(2.*x).*cos(4.*x).*cos(6.*x);

end

O/P:

Actual Integral (By In-built Integral Formula in MATLAB): 3.189731183736

Actual Integral (By manually solving): 3.189731183736

Computed Integral: 4.115455602037

Absolute Error: 0.9257

Ex 6.3:

67

Code:

% Error Analyis of Integration by Simpsons 1/3rd Rule

a = 15;

b = 16;

truval1 = integral(@AssignmentIntFun3, a, b);

truval2 = 1/4*(sin(12*b)/12 + sin(8*b)/8 + b + sin(4*b)/4) - 1/4*(sin(12*a)/12 +

sin(8*a)/8 + a + sin(4*a)/4);

n_values = [1:1000];

errors = zeros(size(n_values));

for idx = 1:length(n_values)

 n = n_values(idx);

 h = (b-a)/n;

 xvec = a:h:b;

 fvec = AssignmentIntFun3(xvec);

 linterval = zeros(n,1);

% Simpsons 1/3rd Rule

% Thats why in for loop we divide by 2 steps at each iterations

 for i = 1:2:n-1

 linterval(i) = h/3*(fvec(i) + 4*fvec(i+1) + fvec(i+2));

 end

I_simp3 = sum(linterval);

err1(idx) = abs(truval1 - I_simp3);

end

% Plot error versus n in lo-log plot

loglog(n_values, err1, 'o-')

xlabel('Number of Sub intervals')

ylabel('Absolute Error')

title('Error Analysis of Simpsons 1/3rd Rule')

grid on

fprintf('Actual Integral (By In-built Integral Formula in MATLAB): %.12f\n',

truval1);

fprintf('Actual Integral (By Manual solving): %.12f\n', truval2);

fprintf('Computed Integral: %.12f\n', I_simp3)

disp('Absolute Error:')

disp(err1)

Function File:

68

function fval = AssignmentIntFun3(x)

 fval = cos(2.*x).*cos(4.*x).*cos(6.*x);

end

O/P:

Actual Integral (By In-built Integral Formula in MATLAB): 0.340236750946

Actual Integral (By Manual solving): 0.340236750946

Computed Integral: 0.340236750947

Absolute Error - Maximum: 0.3402

Ex 6.4:

Procedure:

Here we have used Simpson’s 3/8th Rule:

𝐼3/8 =
3ℎ

8
(𝑓(𝑎) + 3𝑓(𝑥1) + 3𝑓(𝑥2). +𝑓(𝑏))

Code:

a = 15;

b = 20;

trueval1 = integral(@AssignmentIntFun5, a, b);

trueval2 = (b^2/2*asin(b) + 1/2*(b/2*sqrt(1-b^2) + 1/2*asin(b) - asin(b))) -

(a^2/2*asin(a) + 1/2*(b/2*sqrt(1-a^2) + 1/2*asin(a) - asin(a)));

n = 150;

%% Simpson's 3/8th rule

h = (b-a)/n;

xvec = a:h:b;

fvec = AssignmentIntFun5(xvec);

69

linterval = zeros(n,1);

%% Simpson's 3/8th rule

for i = 1:3:n-2

 if i+3 <= length(fvec)

 linterval(i) = 3*h/8 * (fvec(i) + 3*fvec(i+1) + 3*fvec(i+2) + fvec(i+3));

 end

end

I_simp8 = sum(linterval);

err1 = abs(trueval1 - I_simp8); % Error between true value and computed

integral

% Displaying results

fprintf('Actual Integral (By In-built Integral Formula in MATLAB): %.12f\n',

trueval1)

fprintf('Actual Integral (By manually solving): %.12f\n', trueval2)

fprintf('Computed Integral: %.12f\n', I_simp8)

disp('Absolute Error:')

disp(err1)

Function File:

function fval = AssignmentIntFun5(x)

 fval = x.*asin(x);

end

O/P:

Actual Integral (By In-built Integral Formula in MATLAB): 137.444678594553

Actual Integral (By manually solving): 137.444678594553

Computed Integral: 137.444678594553

Absolute Error:

 2.9729e-11

Ex 6.5:

Procedure:

% Error Analysis of Integration by Simpsons 3/8th Rule

a = 15;

b = 16;

truval1 = integral(@AssignmentIntFun3, a, b);

70

truval2 = 1/4*(sin(12*b)/12 + sin(8*b)/8 + b + sin(4*b)/4) - 1/4*(sin(12*a)/12 +

sin(8*a)/8 + a + sin(4*a)/4);

n_values = [1:1000];

errors = zeros(size(n_values));

for idx = 1:length(n_values)

 n = n_values(idx);

 h = (b-a)/n;

 xvec = a:h:b;

 fvec = AssignmentIntFun3(xvec);

 linterval = zeros(n,1);

% Simpsons 3/8th Rule

% That’s why, in ‘for’ loop we divide by 3 steps at each iterations

for i = 1:3:n-2

 if i+3 <= length(fvec)

 linterval(i) = 3*h/8 * (fvec(i) + 3*fvec(i+1) + 3*fvec(i+2) + fvec(i+3));

 end

end

I_simp3 = sum(linterval);

err1(idx) = abs(truval1 - I_simp3);

end

% Plot error versus n in lo-log plot

loglog(n_values, err1, 'o-r')

xlabel('Number of Sub intervals')

ylabel('Absolute Error')

title('Error Analysis of Simpsons 1/3rd Rule')

grid on

fprintf('Actual Integral (By In-built Integral Formula in MATLAB): %.12f\n',

truval1);

fprintf('Actual Integral (By Manual solving): %.12f\n', truval2);

fprintf('Computed Integral: %.12f\n', I_simp3)

disp('Absolute Error - Maximum:')

disp(max(err1))

Function File:

function fval = AssignmentIntFun3(x)

 fval = cos(2.*x).*cos(4.*x).*cos(6.*x);

end

71

O/P:

Actual Integral (By In-built Integral Formula in MATLAB): 0.340236750946

Actual Integral (By Manual solving): 0.340236750946

Computed Integral: 0.340242642660

Absolute Error - Maximum: 0.3402

72

Expt

No.

7

ORDINARY DIFFERENTIAL EQUATIONS
Date of

Expt:

Ex 7.1:

Procedure:

Using Euler's Explicit Method

We are solving the following ODE using Euler's Explicit Method:

𝑑𝑦

𝑑𝑥
= −5𝑡2𝑦3

with the initial condition 𝑦(0) = 1, over the interval [0,10] with step size h=0.1

1. Define the Problem

 Initial condition: 𝑦(0) = 1

 Time interval: t∈[0,10]

 Differential equation: 𝑦′ − 5𝑡2𝑦3

2. Set Parameters

 𝑡0 = 0: initial time

 𝑦𝑜 = 1: initial value of y

 𝑡𝑒𝑛𝑑 = 10: end time

 Step size h=0.1

 Number of time steps 𝑁 = (
𝑡𝑒𝑛𝑑− 𝑡0

ℎ
)

3. Initialize Variables

 Define the time vector T from 𝑡0 to 𝑡𝑒𝑛𝑑 with step size h.

 Create an array Y to store the solution of 𝑦(𝑡). Initialize 𝑌(0) = 𝑦0

4. Euler's Explicit Method Formula

For each time step i, compute the next value of 𝑌(𝑖 + 1) using the

formula:

𝑌(𝑖 + 1) = 𝑌(𝑖) + ℎ. 𝑓(𝑇(𝑖), 𝑌(𝑖))

where 𝑓(𝑡, 𝑦) = −5𝑡2𝑦3 is the right-hand side of the ODE.

5. Implementing the Method

Loop through all time steps from i= 1 to N, calculating 𝑌(𝑖 + 1) using the

explicit Euler formula.

6. Plot the Results

Once the solution is obtained, plot the values of 𝑦(𝑡) over the interval

[0,10].

73

7. Calculate the True Solution and Error

Use ode45, MATLAB's built-in ODE solver, to compute the true solution

for comparison. Calculate the error as the absolute difference between the

Euler solution and the true solution.

Code:

EULER’S EXPLICIT METHOD

% Solve ODE - IVP using Euler's Explicit method

% y' = -5*t^2*y^3

% y(0) = 1

t0 = 0;

y0 = 1;

tEnd = 10;

h = 0.1 ;

N = (tEnd - t0)/h;

%% Initializing Solutions

T = [t0:h:tEnd]';

Y = zeros(N+1, 1);

Y(1) = y0;

%% Solving using Euler's Explicit Method

for i = 1:N

 fi = myFunEx1(T(i),Y(i));

 Y(i+1) = Y(i) + h*fi;

end

%% Plot Results

plot(T, Y);

title('Solution of y'' = -5*t^2*y^3');

xlabel('t');

ylabel('y(t)');

%% Obtain errors

[t, Ytrue] = ode45(@myFunEx1, T, y0); % element by element squaring

ERR = abs(Ytrue - Y);

maxError = max(ERR)

Function File:

function dy = myFunEx1(x,y)

 dy = -5*x^2*y^3;

74

end

O/P:

maxError1 = 0.0282

Ex 7.2:

Code:

% Solve ODE - IVP using Euler's Explicit method

% y' = -14ty

% y(0) = 1

t0 = 0;

y0 = 1;

tEnd = 2;

h = 0.1 ;

N = (tEnd - t0)/h;

%% Initializing Solutions

T = [t0:h:tEnd]';

Y = zeros(N+1, 1);

Y(1) = y0;

%% Solving using Euler's Explicit

Method

for i = 1:N

 fi = -14*T(i)*Y(i);

 Y(i+1) = Y(i) + h*fi;

end

%% Plot Results and obtain errors

plot(T,Y);

title('Solution of y'' = -14*t*y');

xlabel('t');

ylabel('y(t)');

Ytrue = exp(-7.*(T.^2));

ERR = abs(Ytrue - Y)

maxError = max(ERR)

O/P:

maxError = 0.1042

75

Ex 7.3:

Code:

% Solve ODE - IVP using Euler's Explicit method

% y' = (2-(2*x)+(3*x^2))*y

% y(0) = 1

t0 = 0;

y0 = 1;

tEnd = 1;

h = 0.1 ;

N = (tEnd - t0)/h;

%% Initializing Solutions

T = [t0:h:tEnd]';

Y = zeros(N+1, 1);

Y(1) = y0;

%% Solving using Euler's Explicit Method

for i = 1:N

 fi = myFunEx2(T(i),Y(i));

 Y(i+1) = Y(i) + h*fi;

end

%% Plot Results and obtain errors

plot(T,Y);

title('Solution of y'' = (2-(2*x)+(3*x^2))*y');

xlabel('t');

ylabel('y(t)');

Ytrue = exp(T-(T.^2)+(T.^3));

ERR = abs(Ytrue - Y)

maxError = max(ERR)

O/P:

maxError = 3.2271

Ex 7.4:

Procedure:

Using Euler's Implicit Method

We are solving the following ODE using Euler's Implicit Method:

76

𝑑𝑦

𝑑𝑥
= −14𝑡𝑦

with the initial condition 𝑦(0) = 1, over the interval [0,2] with step size h=0.1

1. Define the Problem

 Initial condition: 𝑦(0) = 1

 Time interval: t∈[0,2]

 Differential equation: 𝑦′ − 14𝑡𝑦

2. Set Parameters

 𝑡0 = 0: initial time

 𝑦𝑜 = 1: initial value of y

 𝑡𝑒𝑛𝑑 = 2: end time

 Step size h=0.1

 Number of time steps 𝑁 = (
𝑡𝑒𝑛𝑑− 𝑡0

ℎ
)

3. Initialize Variables

 Define the time vector T from 𝑡0 to 𝑡𝑒𝑛𝑑 with step size h.

 Create an array Y to store the solution of 𝑦(𝑡). Initialize 𝑌(0) = 𝑦0

4. Euler's Implicit Method Formula

Implicit Euler's method involves solving for Y(i+1)Y(i+1)Y(i+1) from the

following equation:

𝑌(𝑖 + 1) = 𝑌(𝑖) + ℎ. 𝑓(𝑇(𝑖 + 1), 𝑌(𝑖 + 1))

where 𝑓(𝑡, 𝑦) = −14𝑡𝑦 is the right-hand side of the ODE.

Since 𝑌(𝑖 + 1) appears on both sides, we need to solve this non-linear equation

for 𝑌(𝑖 + 1). This is typically done using a numerical solver like fsolve in

MATLAB.

5. Implementing the Method

 For each time step, use fsolve to solve for 𝑌(𝑖 + 1) implicitly.

 Update the time and solution vectors after each iteration.

6. Plot the Results

Once the solution is obtained, plot the values of 𝑦(𝑡) over the interval [0,2].

7. Calculate the True Solution and Error

The true solution is 𝑌(𝑡) = 𝑒−7𝑡2
. Compare the implicit Euler solution to the

true solution and calculate the error.

77

Code:

2. EULER’S IMPLICIT METHOD

% ODE-IVP using Euler's Implicit

method

% y' = -14ty

% y(0) = 1

t0 = 0;

y0 = 1;

tEnd = 2;

h = 0.1 ;

N = (tEnd - t0)/h;

%% Initializing Solutions

T = [t0:h:tEnd]';

Y = zeros(N+1, 1);

Y(1) = y0;

%% Solving using Euler's Implicit Method

for i = 1:N

 t = T(i) + h;

 y = fsolve(@(y) y - Y(i) + h*(14*t*y), Y(i));

 T(i+1) = t;

 Y(i+1) = y;

end

%% Plot Results and obtain errors

plot(T,Y);

title('Solution of y'' = -14*t*y');

xlabel('t');

ylabel('y(t)');

Ytrue = exp(-7.*(T.^2));

ERR = abs(Ytrue - Y)

maxError = max(ERR)

O/P:

maxError = 0.0705

Ex 7.5:

Code:

% Solve ODE - IVP using Euler's Implicit method

78

% y' = (2-(2*t)+(3*t^2))*y

% y(0) = 1

t0 = 0;

y0 = 1;

tEnd = 1;

h = 0.1 ;

N = (tEnd - t0)/h;

%% Initializing Solutions

T = [t0:h:tEnd]';

Y = zeros(N+1, 1);

Y(1) = y0;

%% Solving using Euler's Implicit Method

for i = 1:N

 t = T(i) + h;

 y = fsolve(@(y) y - Y(i) + h*((2-(2*t)+(3*t^2))*y), Y(i));

 T(i+1) = t;

 Y(i+1) = y;

end

%% Plot Results and obtain errors

plot(T,Y);

title('Solution of y'' = (2-(2*t)+(3*t^2))*y');

xlabel('t');

ylabel('y(t)');

Ytrue = exp(T-(T.^2)+(T.^3));

ERR = abs(Ytrue - Y)

maxError = max(ERR)

O/P:

maxError = 7.4154

Ex 7.6:

Procedure:

Using RK-2 -Huen’s Method

We are solving the following ODE using RK-2 -Huen’s Method:

𝑑𝑦

𝑑𝑥
= −14𝑡𝑦

79

with the initial condition 𝑦(0) = 1, over the interval [0,5] with step size h=0.1

1. Define the Problem

 Initial condition: 𝑦(0) = 1

 Time interval: t∈[0,5]

 Differential equation: 𝑦′ − 14𝑡𝑦

2. Set Parameters

 𝑡0 = 0: initial time

 𝑦𝑜 = 1: initial value of y

 𝑡𝑒𝑛𝑑 = 5: end time

 Step size h=0.1

 Number of time steps 𝑁 = (
𝑡𝑒𝑛𝑑− 𝑡0

ℎ
)

3. Initialize Variables

 Define the time vector T from 𝑡0 to 𝑡𝑒𝑛𝑑 with step size h.

 Create an array Y to store the solution of 𝑦(𝑡). Initialize 𝑌(0) = 𝑦0

4. Huen’s Method Formula

Huen’s method is a two-stage Runge-Kutta method:

1. Predictor step (Euler method):

𝑘1 = 𝑓(𝑡𝑖 , 𝑦𝑖) = −14𝑡𝑖𝑦𝑖

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑦𝑖 + ℎ ∙ 𝑘1

𝑡𝑛𝑒𝑤 = 𝑡𝑖 + ℎ

2. Corrector step:

𝑘2 = 𝑓(𝑡𝑛𝑒𝑤 , 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡) = −14𝑡𝑛𝑒𝑤𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

2
(𝑘1 + 𝑘2)

5. Implementing the Method

 For each time step, compute the values of 𝑘1 and 𝑘2.

Update the solution using the corrector formula

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

2
(𝑘1 + 𝑘2)

 6. Plot the Results

Once the solution is obtained, plot the values of 𝑦(𝑡) over the interval [0,5].

7. Calculate the True Solution and Error

The true solution is 𝑌(𝑡) = 𝑒−7𝑡2
. Compare the implicit Euler solution to the

true solution and calculate the error.

80

Code:

RUNGE KUTTA (RK-2) - HUEN’S

METHOD

% Solve ODE - IVP using RK2 - Huen's

Method

% y' = -14ty

% y(0) = 1

t0 = 0;

y0 = 1;

tEnd = 5;

h = 0.1 ;

N = (tEnd - t0)/h;

%% Initializing Solutions

T = [t0:h:tEnd]';

Y = zeros(N+1, 1);

Y(1) = y0;

%% Solving using Huen's Method

for i = 1:N

 k1 = myFunEx3(T(i),Y(i));

 tNew = T(i) + h;

 yNew = Y(i) + h*k1;

 k2 = -2*tNew*yNew;

 Y(i+1) = Y(i) + h/2*(k1+k2);

end

%% Plot Results and obtain errors

plot(T,Y);

xlabel('t');

ylabel('y(t)');

Ytrue = exp(-7*(T.^2)) % element by element squaring

ERR = abs(Ytrue - Y)

maxError = max(ERR)

Function File:

function dy = myFunEx3(x,y)

 dy = -14*x*y;

end

81

O/P:

maxError = 0.2547

Ex 7.7:

Procedure:

RK-2 Mid-point Method

The second-order Runge-Kutta method (midpoint method) can be described as:

Predictor (k1) step:

𝑘1 = 𝑓(𝑡𝑖 , 𝑦𝑖) = −14𝑡𝑖𝑦𝑖

𝑦𝑚𝑖𝑑 = 𝑦𝑖 +
ℎ

2
𝑘1

𝑡𝑚𝑖𝑑 = 𝑡𝑖 +
ℎ

2

3. Corrector step:

𝑘2 = 𝑓(𝑡𝑚𝑖𝑑, 𝑦𝑚𝑖𝑑) = −14𝑡𝑚𝑖𝑑𝑦𝑚𝑖𝑑

𝑦𝑖+1 = 𝑦𝑖 + ℎ. 𝑘2

Code:

RUNGE KUTTA (RK-2) – MID POINT METHOD

% Solve ODE - IVP using RK2 - Huen's Method

% y' = -14ty

% y(0) = 1

t0 = 0;

y0 = 1;

tEnd = 1;

h = 0.1 ;

N = (tEnd - t0)/h;

%% Initializing Solutions

T = [t0:h:tEnd]';

Y = zeros(N+1, 1);

Y(1) = y0;

%% Solving using Huen's Method

for i = 1:N

 k1 = myFunEx3(T(i),Y(i));

 tNew = T(i) + h/2;

 yNew = Y(i) + h*k1/2;

 k2 = myFunEx3(tNew,yNew);

 Y(i+1) = Y(i) + h*(k2);

end

82

%% Plot Results and obtain errors

plot(T,Y);

xlabel('t');

ylabel('y(t)');

Ytrue = exp(-7*(T.^2)) % element by element squaring

ERR = abs(Ytrue - Y)

maxError = max(ERR)

Function File:

function dy = myFunEx3(x,y)

 dy = -14*x*y;

end

O/P:

maxError = 0.0095

Ex 7.8:

Procedure:

RK-4 Method Formula

The fourth-order Runge-Kutta method can be described by the following steps:

1. k1 (at 𝒕𝒊):

𝑘1 = 𝑓(𝑡𝑖 , 𝑦𝑖) = −14𝑡𝑖𝑦𝑖

2. k2 (at 𝑡𝑖 +
ℎ

2
):

𝑘2 = 𝑓 (𝑡𝑖 +
ℎ

2
, 𝑦𝑖 +

ℎ

2
𝑘1)

3. k3 (at 𝑡𝑖 +
ℎ

2
):

𝑘3 = 𝑓 (𝑡𝑖 +
ℎ

2
, 𝑦𝑖 +

ℎ

2
𝑘1)

4. k4 (𝑡𝑖 + ℎ):

𝑘1 = 𝑓(𝑡𝑖 + ℎ, 𝑦𝑖 + ℎ𝑘3)

Update the solution using the formula:

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

Code:

STANDARD RUNGE KUTTA (RK-4) METHOD

% Solve ODE - IVP using RK2 - Huen's Method

% y' = -14ty

% y(0) = 1

83

t0 = 0;

y0 = 1;

tEnd = 1;

h = 0.1 ;

N = (tEnd - t0)/h;

%% Initializing Solutions

T = [t0:h:tEnd]';

Y = zeros(N+1, 1);

Y(1) = y0;

%% Solving using Standard RK-4 Method

for i = 1:N

 k1 = myFunEx3(T(i),Y(i));

 k2 = myFunEx3(T(i)+h/2,Y(i)+h*k1/2);

 k3 = myFunEx3(T(i)+h/2,Y(i)+h*k2/2);

 k4 = myFunEx3(T(i)+h,Y(i)+h*k3);

 Y(i+1) = Y(i) +

h/6*(k1+2*k2+2*k3+k4);

end

%% Plot Results and obtain errors

plot(T,Y);

xlabel('t');

ylabel('y(t)');

Ytrue = exp(-7*(T.^2)) % element by element squaring

ERR = abs(Ytrue - Y)

maxError = max(ERR)

Function File:

function dy = myFunEx3(x,y)

 dy = -14*x*y;

end

O/P:

maxError = 5.3192e-04

% Solve ODE - IVP using Standard RK-4

Method

% y' = -(10*x^2 - 2*y)/(exp(x+y))

% y(0) = 1

84

x0 = 0;

y0 = 1;

%xspan = [x0, y0];

xEnd = 1;

h = 0.1 ;

N = (xEnd - x0)/h;

%% Initializing Solutions

X = [x0:h:xEnd]';

Y = zeros(N+1, 1);

Y(1) = y0;

%% Solving using Standard RK-4 Method

for i = 1:N

 k1 = myFunEx4(X(i),Y(i));

 k2 = myFunEx4(X(i)+h/2,Y(i)+h*k1/2);

 k3 = myFunEx4(X(i)+h/2,Y(i)+h*k2/2);

 k4 = myFunEx4(X(i)+h,Y(i)+h*k3);

 Y(i+1) = Y(i) + h/6*(k1+2*k2+2*k3+k4);

end

%% Plot Results and obtain errors

plot(X,Y);

[x, Ytrue] = ode45(@myFunEx4, X, y0) % element by element squaring

ERR = abs(Ytrue - Y)

maxError = max(ERR)

Function File:

function dy = myFunEx4(x,y)

 dy = (10.*x^2 - 2*y)./(exp(x+y));

end

O/P:

maxError = 2.3717e-06

Ex 7.9:

Procedure:

RK-5 Method Formula

The fifth-order Runge-Kutta (RK-5) method uses six intermediate slopes

𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6to update the solution.

1. k1:

85

𝑘1 = ℎ ∙ 𝑓(𝑡𝑖 , 𝑦𝑖)

2. k2:

𝑘2 = ℎ ∙ 𝑓 (𝑡𝑖 +
ℎ

2
, 𝑦𝑖 +

𝑘1

2
)

3. k3:

𝑘3 = ℎ ∙ 𝑓 (𝑡𝑖 +
ℎ

4
, 𝑦𝑖 +

3

16
𝑘1 +

1

16
𝑘2)

4. k4:

𝑘4 = ℎ ∙ 𝑓 (𝑡𝑖 +
ℎ

2
, 𝑦𝑖 +

𝑘3

2
)

5. k5:

𝑘5 = ℎ ∙ 𝑓 (𝑡𝑖 +
3ℎ

4
, 𝑦𝑖 −

3

16
𝑘2 +

6

16
𝑘3 +

9

16
𝑘4)

6. k6:

𝑘6 = ℎ ∙ 𝑓 (𝑡𝑖 + ℎ, 𝑦𝑖 +
1

7
𝑘1 +

4

7
𝑘2 +

6

7
𝑘3 −

12

7
𝑘4 +

8

7
𝑘5)

Update the solution:

𝑦𝑖+1 = 𝑦𝑖 +
1

90
(7𝑘1 + 32𝑘3 + 12𝑘4 + 32𝑘5 + 7𝑘6)

RUNGE KUTTA (RK-5) METHOD

% Solve ODE - IVP using Standard RK-4

Method

% y' = -(10*x^2 - 2*y)/(exp(x+y))

% y(0) = 1

t0 = 0;

y0 = 1;

tEnd = 1;

h = 0.1 ;

N = (tEnd - t0)/h;

%% Initializing Solutions

T = [t0:h:tEnd]';

Y = zeros(N+1, 1);

Y(1) = y0;

%% Solving using Standard RK-5 Method

for i = 1:N

 k1 = h*myFunEx4(T(i),Y(i));

 k2 = h*myFunEx4(T(i)+h/2,Y(i)+k1/2);

 k3 = h*myFunEx4(T(i)+h/4,Y(i)+3*k1/16+k2/16);

 k4 = h*myFunEx4(T(i)+h/2,Y(i)+k3/2);

86

 k5 = h*myFunEx4(T(i)+3*h/4,Y(i)-3*k2/16+6*k3/16+9*k4/16);

 k6 = h*myFunEx4(T(i)+h,Y(i)+k1/7+4*k2/7+6*k3/7-12*k4/7+8*k5/7);

 Y(i+1) = Y(i) + 1/90*(7*k1+32*k3+12*k4+32*k5+7*k6);

end

%% Plot Results and obtain errors

plot(X,Y);

[x, Ytrue] = ode45(@myFunEx4, X, y0) % element by element squaring

ERR = abs(Ytrue - Y)

maxError = max(ERR)

Function File:

function dy = myFunEx4(x,y)

 dy = (10.*x^2 - 2*y)./(exp(x+y));

end

O/P:

maxError = 1.4692e-08

87

Expt

No.

8

LINEAR EQUATIONS
Date of

Expt:

Ex 8.1:

Procedure:

Naive Gauss Elimination

1. Form the Augmented Matrix:

Combine the coefficient matrix 𝐴 and the right-hand side vector 𝑏 into an

augmented matrix 𝐴𝑏.

2. Forward Elimination:

Perform the following steps to eliminate the elements below the diagonal,

converting the system into an upper triangular form:

o For each row iii from 2 to n, where n is the number of rows in the

matrix:

 Divide the first element of the i-th row by the pivot element

(the leading element of the current row).

 Subtract the scaled row from the current row to eliminate the

i-th element in the column.

o Continue this process for each column, choosing the diagonal

element of the current row as the pivot.

3. Back Substitution:

After forward elimination, you will have an upper triangular matrix.

Solve for the unknowns starting from the last row and working upward:

o Start by solving for 𝑥𝑛 in the last equation.

o Substitute 𝑥𝑛 into the second-last equation to solve for 𝑥𝑛−1.

o Continue substituting and solving for each unknown, moving

upwards through the system.

4. Solution:

Once back substitution is complete, you will have the values of all the

unknowns 𝑥1, 𝑥2, 𝑥3 𝑥𝑛 .

Code:

GAUSS ELIMINATION METHOD

% Solve Ax = b using Naive Gauss Elimination

A = [2 8 10; 12 17 23; 34 47 -28];

b = [41; 7; 9];

88

%% Gauss Elimination

% Get Augmented Matrix

Ab = [A, b];

n = length(A);

% With A(1,1) as Pivot Element

for i = 2:3

 alpha = A(i,1)/A(1,1);

 Ab(i,:) = Ab(i,:) - alpha*Ab(1,:);

end

% With A(2,2) as Pivot Element

i = 3;

alpha = Ab(i,2)/Ab(2,2);

Ab(i,:) = Ab(i,:) - alpha*Ab(2,:);

%% Back Substitution

x = zeros(n,1);

x(3) = Ab(3,end)/Ab(3,3);

for i = n-1:-1:1

 x(i) = (Ab(i,end) - Ab(i,i+1:n)*x(i+1:n))/Ab(i,i);

end

O/P:

x =

 -10.3432

 7.6858

 0.0200

A = [1 1 1 1; 2 1 3 6; 3 4 -2 9; 1 5 7 9];

b = [4; 7; 9; 5];

x = naiveGaussElimination(A, b)

Function File:

function x = naiveGaussElimination(A, b)

 n = size(A, 1); % Determine the order of the matrix

 Ab = [A, b]; % Create the augmented matrix

 % Forward elimination

 for i = 1:n-1

89

 for j = i+1:n

 alpha = Ab(j,i) / Ab(i,i);

 Ab(j,:) = Ab(j,:) - alpha * Ab(i,:);

 end

 end

 % Back substitution

 x = zeros(n, 1); % Preallocate the solution vector x

 x(n) = Ab(n,end) / Ab(n,n); % Compute the last variable

 for i = n-1:-1:1 % Loop from the second-to-last row up to the first row

 x(i) = (Ab(i,end) - Ab(i,i+1:n) * x(i+1:n)) / Ab(i,i);

 end

end

O/P:

x =

 3.6531

 0.2755

 0.3367

 -0.2653

Ex 8.2:

Procedure:

LU Decomposition

1. Initialize Matrices:

o Define the matrix 𝐴 and the vector 𝑏.

o Create the augmented matrix 𝐴𝑏 by appending 𝑏 to 𝐴.

o Initialize the identity matrix 𝐿 of the same size as 𝐴.

2. Gauss Elimination:

o For each column j:

 For each row i below the diagonal:

 Compute the multiplier 𝛼 using the element in the

pivot column.

 Update the 𝐿 matrix with 𝛼.

 Eliminate the elements below the pivot by subtracting

α times the pivot row from the current row.

90

3. Extract Matrices:

o Extract the upper triangular matrix 𝑈 from the augmented matrix

𝐴𝑏.

Summary of Steps

1. Define 𝐴 and 𝑏.

2. Create 𝐴𝑏 = [𝐴, 𝑏] and initialize 𝐿.

3. Perform Gauss elimination to make 𝐴 upper triangular:

o Eliminate below each pivot element.

4. Extract 𝑈 from 𝐴𝑏.

This procedure will decompose matrix 𝐴 into lower triangular matrix 𝐿 and

upper triangular matrix 𝑈, such that 𝐴 = 𝐿𝑈.

Code:

LU DECOMPOSITION

% LU Decomposition using Naive Gauss Elimination Method

A = [11 12 13;27 14 3; 13 14 -24];

b= [14;17;9];

%% Gauss elimination

% creating augmented matrix

Ab = [A,b];

n = length(A);

L = eye(n);

%% with A(1,1) as pivot element

for i = 2:3

alpha = Ab(i,1)/Ab(1,1);

L(i,1) = alpha;

Ab(i,:) = Ab(i,:)-alpha*Ab(1,:);

end

%% with A(2,2) as pivot element

for i=3;

alpha = Ab(i,2)/Ab(2,2);

L(i,2) = alpha;

Ab(i,:) = Ab(i,:)-alpha*Ab(2,:);

End

U = Ab(1:n,1:n);

91

O/P:

L =

 1.0000 0 0

 2.4545 1.0000 0

 1.1818 0.0118 1.0000

U =

 11.0000 12.0000 13.0000

 0 -15.4545 -28.9091

 0 0 -39.0235

Ex 8.3:

Procedure:

LU Decomposition with Partial Pivoting

1. Initialize Matrices:

o Define matrix 𝐴 and vector 𝑏.

o Create augmented matrix 𝐴𝑏 by appending 𝑏 to 𝐴.

2. Gauss Elimination with Partial Pivoting:

Step 1: Pivoting for the First Column

o Find the largest element in the first column of 𝐴𝑏.

o Swap the current row with the row containing the largest element.

o Perform elimination to zero out elements below the pivot in the

first column.

Step 2: Pivoting for the Second Column

o Find the largest element in the remaining rows of the second

column.

o Swap the current row with the row containing the largest element

(adjust row index if needed).

o Perform elimination to zero out elements below the pivot in the

second column.

3. Back Substitution:

o Initialize solution vector 𝑥 with zeros.

o Compute values for 𝑥 starting from the last equation and working

backward.

This procedure decomposes matrix A into a lower triangular matrix 𝐿 and an

upper triangular matrix 𝑈, while solving 𝐴𝑋 = 𝑏 using partial pivoting to

enhance numerical stability.

92

Code:

LU DECOMPOSITION AND PARTIAL PIVOTING

% solving AX = b using Gauss Elimination with Partial Pivoting

A = [11 12 13;27 14 3; 13 14 -24];

b= [14;17;9];

%% Gauss elimination

% creating augmented matrix

Ab = [A, b];

n= length(A);

%% with A(1,1) as pivot element

% Row exchange to ensure A(1,1) is the largest in column 1

col1=Ab(:,1);

[dummy,idx] = max(col1);

dummy = Ab(1,:);

Ab(1,:) = Ab(idx,:);

Ab(idx,:) = dummy;

for i = 2:3

alpha = Ab(i,1)/Ab(1,1);

Ab(i,:) = Ab(i,:)-alpha*Ab(1,:);

end

%% with A(2,2) as pivot element

% Row exchange to ensure A(2,2) is the largest in column 2

col2=Ab(2:end,2);

[dummy,idx] = max(col2);

dummy = Ab(2,:);

Ab(2,:) = Ab(idx,:);

Ab(idx,:) = dummy;

for i=3;

alpha = Ab(i,2)/Ab(2,2);

Ab(i,:) = Ab(i,:)-alpha*Ab(2,:);

end

%% Back substitution

x = zeros(3,1);

x(3) = Ab(3,end)/Ab(3,3);

x(2) = (Ab(2,end) - Ab(2,3)*x(3))/Ab(2,2);

x(1) = (Ab(1,end) - (Ab(1,3)*x(3)+Ab(1,2)*x(2)))/Ab(1,1);

93

O/P:

Ab =

 27.0000 14.0000 3.0000 17.0000

 0 6.2963 11.7778 7.0741

 0 0 -39.0235 -7.3412

x =

 0.2086

 0.7716

 0.1881

Ex 8.4:

Procedure:

Gauss-Seidel Method (Iterative Method)

1. Initialize:

o Define matrix 𝐴 and vector 𝑏.

o Create the initial guess for vector 𝑥 (e.g., zeros).

o Set max_iter for maximum iterations and tolerance for

convergence criteria.

2. Gauss-Seidel Iterations:

o For each iteration up to max_iter:

 Store the current 𝑥 values as x_old.

 For each variable 𝑘:

𝑆𝑢𝑚 = ∑ 𝐴(𝑘, 𝑗) ∙ 𝑥(𝑗)

𝑗≠𝑘

 Compute the sum of the known variables:

 Update 𝑥(𝑘):

𝑥(𝑘) =
𝑏(𝑘) − 𝑠𝑢𝑚

𝐴(𝑘, 𝑘)

 Compute the error:

𝑒𝑟𝑟𝑜𝑟 = ||𝑥 − 𝑥𝑜𝑙𝑑||

 Check if the error is less than tolerance for convergence:

 If converged, exit the loop.

3. Display Solution:

o Output the final values of 𝑥.

94

Code:

GAUSS SEIDAL METHOD (ITERATIVE METHOD)

% Solving AX = b using Gauss-Seidel iteration method

A = [4 -1 0; -1 4 -1; 0 -1 3];

b = [8; 7; 3];

Ab = [A, b];

% Initialising

n = 3;

x = zeros(n, 1);

max_iter = 25;

tolerance = 1e-5;

%% Gauss-Seidel iterations

for iter = 1:max_iter

 x_old = x;

 for k = 1:n

 sum = 0;

 for j = 1:n

 if j ~= k

 sum = sum + A(k, j) * x(j);

 end

 end

 x(k) = (b(k) - sum) / A(k, k);

 end

 % Error calculation

 err = norm(x - x_old);

 disp(['Iteration ', num2str(iter), ': Error ', num2str(err)])

 % Convergence check

 if err < tolerance

 disp('Convergence achieved.');

 break;

 end

end

% Display the solution

disp('Solution X:');

disp(x);

O/P:

Iteration 1: Error 3.4821

95

Iteration 2: Error 0.82932

Iteration 3: Error 0.16967

Iteration 4: Error 0.024743

Iteration 5: Error 0.0036084

Iteration 6: Error 0.00052622

Iteration 7: Error 7.6741e-05

Iteration 8: Error 1.1191e-05

Iteration 9: Error 1.6321e-06

Convergence achieved.

Solution X:

 2.7317

 2.9268

 1.9756

Ex 8.5:

Procedure:

Jacobi Method (Iterative Method)

1. Initialize:

o Define matrix 𝐴 and vector 𝑏.

o Create the initial guess for vector 𝑥 (e.g., zeros).

o Set max_iter for maximum iterations and tolerance for

convergence criteria.

2. Jacobi Iterations:

o For each iteration up to max_iter:

 Initialize a new vector 𝑥𝑛𝑒𝑤 as a copy of 𝑥.

 For each variable 𝑘:

 Compute the sum of the off-diagonal elements:

𝑆𝑢𝑚 = ∑ 𝐴(𝑘, 𝑗) ∙ 𝑥(𝑗)

𝑗≠𝑘

 Update 𝑥𝑛𝑒𝑤(𝑘):

𝑥𝑛𝑒𝑤(𝑘) =
𝑏(𝑘) − 𝑠𝑢𝑚

𝐴(𝑘. 𝑘)

Compute the error: 𝑒𝑟𝑟𝑜𝑟 =∥ 𝑥𝑛𝑒𝑤 − 𝑥 ∥

 Update 𝑥 to 𝑥𝑛𝑒𝑤 .

 Display the current iteration number and error.

 Check if the error is less than tolerance for convergence:

 If converged, exit the loop.

3. Display Solution:

o Output the final values of 𝑥.

96

o Optionally, compute and display the residual to check if the

solution satisfies the original equations:

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =∥ 𝐴 ⋅ 𝑥 − 𝑏 ∥

Code:

JACOBI METHOD (ITERATIVE METHOD)

% Solving AX = b using Jacobi iteration method

A = [10 -1 2;

 -1 10 -2;

 1 1 5];

b = [7; 6; 5];

Ab = [A, b];

% Initialising

n = size(A,1);

x = zeros(n, 1);

x_new = x;

max_iter = 100; % Increase the number of iterations if needed

tolerance = 1e-5;

% Jacobi iterations

for iter = 1:max_iter

 for k = 1:n

 % Calculate the sum for off-diagonal elements

 sum = 0;

 for j = 1:n

 if j ~= k

 sum = sum + A(k,j) * x(j);

 end

 end

 % Update x_new

 x_new(k) = (b(k) - sum) / A(k, k);

 end

 % Calculate error and update x

 err = norm(x_new - x);

 x = x_new;

 % Display current iteration and error

 disp(['Iteration ', num2str(iter), ': Error ', num2str(err)])

97

 % Convergence check

 if err < tolerance

 disp('Convergence achieved.');

 break;

 end

end

% Display the solution

disp('Solution X:');

disp(x);

% Optional: Check if solution satisfies original equations

residual = norm(A*x - b);

disp('Residual (A*x - b):');

disp(residual);

O/P:

Iteration 1: Error 1.3601

Iteration 2: Error 0.40012

Iteration 3: Error 0.10617

Iteration 4: Error 0.0040012

Iteration 5: Error 0.0010617

Iteration 6: Error 4.0012e-05

Iteration 7: Error 1.0617e-05

Iteration 8: Error 4.0012e-07

Convergence achieved.

Solution X:

 0.6384

 0.8061

 0.7111

Residual (A*x - b):

 1.0376e-06

Ex 8.6:

Procedure:

Tri-Diagonal Matrix Algorithm (TDMA)

1. Initialize:

o Define the subdiagonal vector 𝑒, diagonal vector 𝑓, superdiagonal

vector 𝑔, and the right-hand side vector 𝑟.

o Ensure the vectors are correctly sized for the problem (i.e., 𝑒 and 𝑔

should be of size 𝑛 − 1, and 𝑓 and 𝑟 should be of size 𝑛).

98

2. Forward Elimination:

o For each 𝑘 from 2 to 𝑛:

 Compute the factor to eliminate the subdiagonal element:

𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑒(𝑘)

𝑓(𝑘 − 1)

 Update the diagonal element:

𝑓(𝑘) = 𝑓(𝑘) − 𝑓𝑎𝑐𝑡𝑜𝑟 ⋅ 𝑔(𝑘 − 1)

 Update the right-hand side element:

𝑟(𝑘) = 𝑟(𝑘) − 𝑓𝑎𝑐𝑡𝑜𝑟 ⋅ 𝑟(𝑘 − 1)

3. Back Substitution:

o Solve for the last unknown:

𝑥(𝑛) =
𝑟(𝑛)

𝑓(𝑛)

o For each 𝑘 from 𝑛 − 1:

 Compute the unknown x(k)x(k)x(k) using:

𝑥(𝑘) =
𝑟(𝑘) − 𝑔(𝑘) ⋅ 𝑥(𝑘 + 1)

𝑓(𝑘)

4. Output Solution:

o Display the computed values of 𝑥.

Code:

TRI-DIAGONAL MATRIX ALGORITHM

% Solving linear equation using TDMA algorithm

% Input

% e = Subdiagonal vector

% f = Diagonal vector

% g = Superdiagonal vector

% r = Right hand side vector

%% Problem Setting

n = 4;

e = [2;-1;10;0];

f = [2;4;6;5];

g = [0;1;5;3];

r = [1;2;3;5];

%% Forward Elimination

for k = 2:n

factor = e(k)/f(k-1);

f(k) = f(k) - factor *g(k-1);

r(k) = r(k) - factor* r(k-1);

99

end

%% Back Substitution

x(n) = r(n)/f(n);

for k = n-1:-1:1

x(k) = (r(k) - g(k)*x(k+1))/f(k);

end

O/P:

x =

 0.5000

 0.7391

 -2.3571

 1.0000

x =

 0.5000

 1.2143

 -2.3571

 1.0000

x =

 0.5000

 1.2143

 -2.3571

 1.0000

100

Expt

No.

9

NON-LINEAR EQUATIONS
Date of

Expt:

Ex 9.1:

Procedure:

Bisection Method (Bracketing Method)

1. Define the Function:

o Specify 𝑓(𝑥).

2. Set Initial Guesses:

o Choose 𝑥𝑙 and 𝑥𝑢 such that 𝑓(𝑥𝑙) and 𝑓(𝑥𝑢) have opposite signs.

3. Evaluate Function at Initial Guesses:

o Compute 𝑓𝑙 = 𝑓(𝑥𝑙) and 𝑓𝑢 = 𝑓(𝑥𝑢).

4. Check Validity:

o Ensure 𝑓𝑙 × 𝑓𝑢 < 0 (i.e., the function values at the guesses have

opposite signs).

5. Set Tolerance and Initialize Error:

o Define tolerance tol and initialize err.

6. Iterate:

o While err>tol:

 Compute the midpoint

𝑥𝑛𝑒𝑤 =
𝑥𝑙 + 𝑥𝑢

2

 Evaluate 𝑓(𝑥𝑛𝑒𝑤).

 Update 𝑥𝑙 or 𝑥𝑢 based on the sign of 𝑓(𝑥𝑛𝑒𝑤).

 Update err as 𝑒𝑟𝑟 =∣ 𝑥𝑙 − 𝑥𝑢|

7. Display Results:

o Print the final values of 𝑥𝑙, 𝑥𝑢, and the approximate root 𝑥𝑛𝑒𝑤.

Code:

BISECTION METHOD (BRACKETING METHOD)

% Define the function f(x)

f = @(x) x^2 - 4*x + 3;

% Initial guesses

xl = 0; % Lower bound

xu = 2; % Upper bound (chosen so that the root at x = 1 lies between xl and xu)

% Evaluate f at the initial guesses

101

fl = f(xl);

fu = f(xu);

% Check if the initial guesses are valid

if (fl * fu > 0)

 error('Initial guess should have different signs')

end

% Define the error tolerance

tol = 1e-6; % Tolerance for the stopping criterion

err = abs(xl - xu);

% Bisection method loop

while err > tol

 xnew = (xl + xu) / 2; % Midpoint

 fnew = f(xnew); % Evaluate f at the midpoint

 if (fl * fnew > 0)

 xl = xnew; % Update lower bound

 fl = fnew; % Update function value at lower bound

 else

 xu = xnew; % Update upper bound

 end

 err = abs(xl - xu); % Update error

end

% Print current values

fprintf('xl = %.4f\n', xl);

fprintf('fl = %.4f\n', fl);

fprintf('fu = %.4f\n', fu);

fprintf('xu = %.4f\n\n', xu);

% Display the final approximation

fprintf('The root is approximately at x = %f\n', xnew);

O/P:

xl = 1.0000

fl = 0.0000

fu = -1.0000

xu = 1.0000

The root is approximately at x = 0.999999

102

Ex 9.2:

Procedure:

Regula Falsi Method (Bracketing Method)

1. Define the Function:

o Specify 𝑓(𝑥).

2. Set Initial Guesses:

o Choose 𝑥𝑙 and 𝑥𝑢 such that 𝑓(𝑥𝑙) and 𝑓(𝑥𝑢) have opposite signs.

3. Evaluate Function at Initial Guesses:

o Compute 𝑓𝑙 = 𝑓(𝑥𝑙) and 𝑓𝑢 = 𝑓(𝑥𝑢).

4. Check Validity:

o Ensure 𝑓𝑙 × 𝑓𝑢 < 0 (i.e., the function values at the guesses have

opposite signs).

5. Set Tolerance and Maximum Iterations:

o Define the tolerance and maximum number of iterations

maxIterations.

6. Iterate:

o For i=1 to maxIterations:

 Compute the new estimate 𝑥𝑛𝑒𝑤 =
𝑥𝑙−𝑓𝑙×(𝑥𝑢−𝑥𝑙)

𝑓𝑢−𝑓𝑙

 Evaluate 𝑓(𝑥𝑛𝑒𝑤)

 Update the bounds based on the sign of 𝑓(𝑥𝑛𝑒𝑤):

 If 𝑓𝑙 × 𝑓(𝑥𝑛𝑒𝑤) > 0, set 𝑥𝑙=𝑥𝑛𝑒𝑤 and 𝑓𝑙 = 𝑓(𝑥𝑛𝑒𝑤)

 Otherwise, set 𝑥𝑢 = 𝑥𝑛𝑒𝑤 and 𝑓𝑢 = 𝑓(𝑥𝑛𝑒𝑤).

 Check for convergence:

 If ∣ 𝑓(𝑥𝑛𝑒𝑤) ∣< 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, stop iterating

7. Display Results:

o Print the approximate root and the number of iterations.

Code:

REGULA FALSI METHOD (BRACKETING METHOD)

% Define the function f(x)

f = @(x) exp(x) - 3*x;

% Adjusted initial guesses

xl = 0; % Lower bound

xu = 1; % Upper bound

103

% Evaluate f at the initial guesses

fl = f(xl);

fu = f(xu);

% Check if the initial guesses bracket a root

if (fl * fu > 0)

 error('Initial guess should have different signs');

end

% Define the tolerance and maximum number of iterations

tolerance = 1e-6;

maxIterations = 100;

% Regula Falsi (False Position) method

for i = 1:maxIterations

 xnew = xl - fl * (xu - xl) / (fu - fl); % Compute the root estimate

 fnew = f(xnew); % Evaluate the function at the new estimate

 % Update the bounds

 if (fl * fnew > 0)

 xl = xnew;

 fl = fnew;

 else

 xu = xnew;

 fu = fnew;

 end

 % Check for convergence

 if abs(fnew) < tolerance

 break;

 end

end

% Display the results

fprintf('Approximate root: %f\n', xnew);

fprintf('Number of iterations: %d\n', i);

O/P:

Approximate root: 0.619062

Number of iterations: 12

104

Ex 9.3:

Procedure:

Secant Method (Open Method)

1. Define the Function:

o Specify 𝑓(𝑥).

2. Set Initial Guesses:

o Choose initial guesses 𝑥0 and 𝑥1.

3. Set Parameters:

o Define the maximum number of iterations

maxiter\text{maxiter}maxiter and the tolerance tolx.

4. Secant Method Loop:

o For 𝑖 = 1 to maxiter:

 Compute 𝑓(𝑥0) and 𝑓(𝑥1).

 Update 𝑥 using the Secant formula:

𝑥 = 𝑥1 −
𝑓(𝑥1) ⋅ (𝑥1 − 𝑥0)

𝑓(𝑥1) − 𝑓(𝑥0)

 Calculate the error 𝑒𝑟𝑟 =∣ 𝑥 − 𝑥1|

 If err < tolx, stop iterating.

 Update guesses:

 Set 𝑥0= 𝑥1

 Set 𝑥1= 𝑥

5. Display the Result:

o Print the approximate root 𝑥.

Code:

SECANT METHOD (OPEN METHOD)

% Define the function f(x)

f = @(x) cos(x) - x;

% Initial guesses

x0 = 0;

x1 = 1;

maxiter = 50;

tolx = 1e-4;

% Secant method loop

for i = 1:maxiter

 fx0 = f(x0);

105

 fx1 = f(x1);

 % Update x using the Secant formula

 x = x1 - (fx1 * (x1 - x0)) / (fx1 - fx0);

 % Calculate the error

 err = abs(x - x1);

 if err < tolx

 break;

 end

 % Update the guesses

 x0 = x1;

 x1 = x;

end

% Display the result

fprintf('The root is approximately at x = %f\n', x);

O/P:

The root is approximately at x = 0.739085

Ex 9.4:

Procedure:

Fixed Point Iterations (Open Method)

1. Define Initial Parameters:

o Set initial guess 𝑥0.

o Define the maximum number of iterations maxiter and the

tolerance tolx.

2. First Rearrangement: 𝒙 = √𝒔𝒊𝒏 (𝒙)

o Initialize 𝑥 and 𝑥𝑜𝑙𝑑 with 𝑥0.

o Fixed Point Iteration Loop:

 For 𝑖 = 1 to maxiter:

 Update 𝑥 using the formula 𝑥 = √si n(𝑥)

 Compute the error 𝑒𝑟𝑟 =∣ 𝑥 − 𝑥𝑜𝑙𝑑|

 Update 𝑥𝑜𝑙𝑑 with the current 𝑥.

 If err < tolx, stop iterating.

o Store the result in 𝑥1.

3. Second Rearrangement: 𝒙 = 𝐬𝐢𝐧−𝟏(𝒙𝟐)

106

o Initialize 𝑥 and 𝑥𝑜𝑙𝑑 with 𝑥0.

o Fixed Point Iteration Loop:

 For 𝑖 = 1 to maxiter:

 Update x using the formula 𝑥 = sin−1(𝑥2)

 Compute the error 𝑒𝑟𝑟 =∣ 𝑥 − 𝑥𝑜𝑙𝑑|

 Update 𝑥𝑜𝑙𝑑 with the current 𝑥.

 If err < tolx, stop iterating.

o Store the result in 𝑥2.

4. Display the Results:

o Print 𝑥1 for the first rearrangement.

o Print 𝑥2 for the second rearrangement.

Code:

FIXED POINT ITERATIONS (OPEN METHOD)

% Define the initial guess and parameters

x0 = 0.5; % Initial guess (adjust as needed)

maxiter = 50;

tolx = 1e-4;

% First rearrangement: x = sqrt(sin(x))

x = x0;

xold = x0;

for i = 1:maxiter

 x = sqrt(sin(x)); % Update using the first rearrangement

 err = abs(x - xold);

 xold = x;

 if (err < tolx)

 break;

 end

end

x1 = x; % Store the result from the first rearrangement

% Second rearrangement: x = asin(x^2)

x = x0;

xold = x0;

for i = 1:maxiter

 x = asin(x^2); % Update using the second rearrangement

 err = abs(x - xold);

 xold = x;

 if (err < tolx)

107

 break;

 end

end

x2 = x; % Store the result from the second rearrangement

% Display the outputs

fprintf('Output using first rearrangement (x = sqrt(sin(x))): x = %f\n', x1);

fprintf('Output using second rearrangement (x = asin(x^2)): x = %f\n', x2);

O/P:

Output using first rearrangement (x = sqrt(sin(x))): x = 0.876699

Output using second rearrangement (x = asin(x^2)): x = 0.000000

Ex 9.5:

Procedure:

Newton-Raphson Method (Open Method)

1. Define Initial Parameters:

o Set the initial guess 𝑥0.

o Define the maximum number of iterations maxiter and the

tolerance tolx.

2. Newton-Raphson Iteration Loop:

o Initialize 𝑥 and 𝑥𝑜𝑙𝑑 with 𝑥0.

o For 𝑖 = 1 to maxiter:

 Define the function 𝑓(𝑥) and its derivative 𝑓′(𝑥):

 𝑓(𝑥) = 𝑠𝑖𝑛 (𝑥) −
𝑥

2

 𝑓′(𝑥) = 𝑐𝑜𝑠 (𝑥) −
1

2

 Update 𝑥 using the Newton-Raphson formula:

𝑥 = 𝑥 −
𝑓(𝑥)

𝑓′(𝑥)

Compute the error 𝑒𝑟𝑟 =∣ 𝑥 − 𝑥𝑜𝑙𝑑 ∣

 Update 𝑥𝑜𝑙𝑑 with the current 𝑥.

 If err < tolx, stop iterating.

3. Display the Result:

o Print the final value of 𝑥 as the approximate root.

Code:

NEWTON RAPHSON METHOD (OPEN METHOD)

108

% Initial guess

x0 = 2; % Adjust if necessary

maxiter = 50;

tolx = 1e-4;

% Newton-Raphson loop

x = x0;

xold = x0;

for i = 1:maxiter

 % Define the function f(x) and its derivative df(x)

 f = sin(x) - x/2;

 df = cos(x) - 1/2;

 % Update x using the Newton-Raphson formula

 x = x - f/df;

 % Calculate the error

 err = abs(x - xold);

 xold = x;

 % Check if the error is within the tolerance

 if (err < tolx)

 break;

 end

end

% Display the result

fprintf('The root is approximately at x = %f\n', x);

O/P:

The root is approximately at x = 1.895494

109

Expt

No.

10

ALGEBRA AND TRANSFORMS
Date of

Expt:

Ex 10.1:

Procedure:

Solving Quadratic Equations Using solve Function

1. Declare the Symbolic Variable:

o Use syms x to define x as a symbolic variable.

2. Formulate Each Quadratic Equation:

o Define each quadratic equation in the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0

using symbolic expressions.

3. Solve the Equations:

o Apply the solve function to each equation to find the roots.

4. Output the Solutions:

o Display the solutions for each quadratic equation.

Code:

SOLVING QUADRACTIC EQUATION USING SOLVE FUNCTION -

REAL AND IMAGINARY ROOTS

syms x

% Equation 1: 2x^2 - 4x + 2 = 0

eqn1 = 2*x^2 - 4*x + 2 == 0;

sol1 = solve(eqn1, x);

% Equation 2: 3x^2 + 6x + 3 = 0

eqn2 = 3*x^2 + 6*x + 3 == 0;

sol2 = solve(eqn2, x);

% Equation 3: x^2 + 2x + 6 = 0

eqn3 = x^2 + 2*x + 6 == 0;

sol3 = solve(eqn3, x);

% Equation 4: 3x^2 + 3x + 7 = 0

eqn4 = 3*x^2 + 3*x + 7 == 0;

sol4 = solve(eqn4, x);

% Display solutions

sol1, sol2, sol3, sol4

O/P:
sol1 =

1
1

sol2 =

-1
-1

sol3 =

- 1 - 5^(1/2)*1i
- 1 + 5^(1/2)*1i

sol4 =

- (3^(1/2)*5i)/6 - 1/2
 (3^(1/2)*5i)/6 - ½

110

Ex 10.2:

Procedure:

Solving Quadratic Equations Using the Quadratic Formula

1. Identify Coefficients:

o For each quadratic equation of the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0,

determine the coefficients 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐.

2. Compute the Discriminant:

o Calculate the discriminant 𝛥 = 𝑏2 − 4𝑎𝑐.

3. Calculate the Roots:

o Use the quadratic formula to find the roots:

𝑥1,2 =
−𝑏 ± √𝛥

2𝑎

o Compute the roots 𝑥1 and 𝑥2 for each equation, considering both

the positive and negative square root of the discriminant.

4. Handle Complex Roots:

o If the discriminant is negative, the square root will be imaginary.

Ensure to compute the roots as complex numbers.

5. Display the Solutions:

o Present the solutions for each quadratic equation, including both

real and imaginary parts if applicable.

Code:

SOLVING QUADRACTIC EQUATION USING QUADRACTIC

FORMULA- REAL AND IMAGINARY ROOTS

% Equation 1: 2x^2 - 4x + 2 = 0

a1 = 2; b1 = -4; c1 = 2;

x1_1 = ((-b1) + sqrt(b1^2 - 4*a1*c1)) / (2*a1);

x1_2 = ((-b1) - sqrt(b1^2 - 4*a1*c1)) / (2*a1);

% Equation 2: 3x^2 + 6x + 3 = 0

a2 = 3; b2 = 6; c2 = 3;

x2_1 = ((-b2) + sqrt(b2^2 - 4*a2*c2)) / (2*a2);

x2_2 = ((-b2) - sqrt(b2^2 - 4*a2*c2)) / (2*a2);

% Equation 3: x^2 + 2x + 6 = 0

a3 = 1; b3 = 2; c3 = 6;

x3_1 = ((-b3) + sqrt(b3^2 - 4*a3*c3)) / (2*a3);

x3_2 = ((-b3) - sqrt(b3^2 - 4*a3*c3)) / (2*a3);

% Equation 4: 3x^2 + 3x + 7 = 0

a4 = 3; b4 = 3; c4 = 7;

x4_1 = ((-b4) + sqrt(b4^2 - 4*a4*c4)) / (2*a4);

x4_2 = ((-b4) - sqrt(b4^2 - 4*a4*c4)) / (2*a4);

111

% Display solutions

[x1_1, x1_2; x2_1, x2_2; x3_1, x3_2; x4_1, x4_2]

O/P:

ans =

 1.0000 + 0.0000i 1.0000 + 0.0000i

 -1.0000 + 0.0000i -1.0000 + 0.0000i

 -1.0000 + 2.2361i -1.0000 - 2.2361i

 -0.5000 + 1.4434i -0.5000 - 1.4434i

Ex 10.3:

Code:

LIMITS

syms x

% Example 1: Exponential and Polynomial Function

limit_exp_poly_1 = limit(exp(x)/(x^2 + 1), x, Inf);

limit_exp_poly_2 = limit(x^3/(exp(x) - 1), x, Inf);

% Example 2: Trigonometric and Polynomial Function

limit_trig_poly_1 = limit(sin(x)/x, x, 0);

limit_trig_poly_2 = limit((x^2 + 2*x + 1)/(cos(x) + 2), x, Inf);

% Display the results

[limit_exp_poly_1, limit_exp_poly_2; limit_trig_poly_1, limit_trig_poly_2]

O/P:

ans =

[Inf, 0]

[1, Inf]

syms x

% Example 1: Function k(x) = sin(x)/abs(x)

k = sin(x)/abs(x);

limit_k_left = limit(k, x, 0, 'left');

limit_k_right = limit(k, x, 0, 'right');

% Example 2: Function m(x) = |x|/x

112

m = abs(x)/x;

limit_m_left = limit(m, x, 0, 'left');

limit_m_right = limit(m, x, 0, 'right');

% Display the results

[limit_k_left, limit_k_right; limit_m_left, limit_m_right]

O/P:

ans =

[-1, 1]

[-1, 1]

Ex 10.4:

Procedure:

Differentiation and Solving Differential Equations

1. Differentiate a Function:

o Use diff(function) to find the derivative of the function.

2. Higher Order Differentiation:

o Use diff(function, n) to find the n-th order derivative of the

function.

3. Solve a Differential Equation:

o Use dsolve('differential_equation') to find the general solution of

the differential equation.

4. Solve Differential Equation with Initial and Boundary Conditions:

o Use dsolve('differential_equation', 'initial_condition1',

'initial_condition2', ...) to find a particular solution with specified

initial and boundary conditions.

5. Display Results:

o Collect and display the results from differentiation and differential

equation solutions.

Code:

DIFFERENTIATION

syms x

% Differentiation Example

diff_example = diff(4*x^2);

% Higher Order Differentiation Example

113

diff_high_order_example = diff(2*x^5, 2);

% Differential Equation Solution Example

syms y(t)

dsolve_example = dsolve('D2y + 3*y = 0');

% Differential Equation with Initial and Boundary Conditions Example

dsolve_ibc_example = dsolve('D2y + 3*y = 0', 'y(0) = 1', 'Dy(0) = -1');

% Display the results

[diff_example, diff_high_order_example, dsolve_example,

dsolve_ibc_example]

O/P:

ans =

[8*x, 40*x^3, C1*cos(3^(1/2)*t) - C2*sin(3^(1/2)*t), cos(3^(1/2)*t) -

(3^(1/2)*sin(3^(1/2)*t))/3]

syms x t

% Non-Linear Differential Equation Example

syms y(t)

nonlinear_ode = (diff(y, t) - y)^2 == 4;

nonlinear_cond = y(0) == 1;

nonlinear_ysol(t) = dsolve(nonlinear_ode, nonlinear_cond);

% Display Non-Linear Differential Equation Solution

disp('Solution to Non-Linear Differential Equation:');

disp(nonlinear_ysol(t));

% Maxima and Minima Example

y_function = x^4 - 6*x^3 + 11*x^2 - 6*x;

m_derivative = diff(y_function);

stationary_points = solve(m_derivative);

% Display Stationary Points for Maxima and Minima

disp('Stationary Points for Maxima and Minima:');

disp(stationary_points);

O/P:

Solution to Non-Linear Differential Equation:

3*exp(t) - 2

114

 2 - exp(t)

Stationary Points for Maxima and Minima:

 3/2

3/2 - 5^(1/2)/2

5^(1/2)/2 + 3/2

Ex 10.5:

Procedure:

Integration

1. Compute Indefinite Integrals:

o Use int(function) to compute the indefinite integral of a function.

2. Compute Definite Integrals:

o Use int(function, lower_limit, upper_limit) to compute the definite

integral of a function over a specified range.

3. Compute Area Under the Curve:

o Define the function and use int(function, lower_limit, upper_limit)

to find the area under the curve over the specified range.

4. Plot the Function (Optional):

o Use ezplot(function, [lower_limit, upper_limit]) to plot the

function over the specified range.

5. Display Results:

o Use disp() to display the results of the integrals and area under the

curve.

Code:

INTEGRATION

syms x

% Integration Examples

f1 = 2 + x;

int_f1 = int(f1);

f2 = sin(x);

int_f2 = int(f2);

f3 = x^3 + 2*x^2 + 3*x - 16;

int_f3 = int(f3, 1, 2);

% Display Integration Results

disp('Indefinite Integral of 2 + x:');

115

disp(int_f1);

disp('Indefinite Integral of sin(x):');

disp(int_f2);

disp('Definite Integral of x^3 + 2*x^2 + 3*x - 16 from 1 to 2:');

disp(int_f3);

% Area Under the Curve Example

f4 = x^2*cos(x);

area_f4 = int(f4, -4, 9);

% Display Area Under the Curve Result

disp('Area under the curve of x^2*cos(x) from -4 to 9:');

disp(area_f4);

% Plot the function

ezplot(f4, [-4, 9]);

O/P:

Indefinite Integral of 2 + x:(x*(x + 4))/2

Indefinite Integral of sin(x):-cos(x)

Definite Integral of x^3 + 2*x^2 + 3*x - 16 from 1 to 2:-37/12

Area under the curve of x^2*cos(x) from -4 to 9:8

116

Ex 10.6:

Procedure:

Laplace Transform

1. Compute Laplace Transform:

o Use laplace(function) to compute the Laplace transform of a

function with respect to t.

2. Compute Inverse Laplace Transform:

o Use ilaplace(expression, s, t) to compute the inverse Laplace

transform of an expression with respect to s, returning a function in

terms of t.

3. Display Results:

o Use disp() to display the results of the Laplace and inverse Laplace

transforms.

Code:

LAPLACE TRANSFORM

syms t s

% Laplace Transform Example

laplace_t_example = laplace(t^3);

% Display Laplace Transform Result

disp('Laplace Transform of t^3:');

disp(laplace_t_example);

% Inverse Laplace Transform Examples

ilaplace_x_example = ilaplace(cos(s), s, t);

ilaplace_s_example = ilaplace(1/s^3, s, t);

% Display Inverse Laplace Transform Results

disp('Inverse Laplace Transform of cos(s):');

disp(ilaplace_x_example);

disp('Inverse Laplace Transform of 1/s^3:');

disp(ilaplace_s_example);

O/P:

Laplace Transform of t^3:6/s^4

Inverse Laplace Transform of cos(s):ilaplace(cos(s), s, t)

Inverse Laplace Transform of 1/s^3:t^2/2

117

Ex 10.7:

Procedure:

Fourier Transform

1. Compute Fourier Transform:

o Use fourier(function) to compute the Fourier transform of a

function with respect to x.

2. Compute Inverse Fourier Transform:

o Use ifourier(expression) to compute the inverse Fourier transform

of an expression with respect to w.

3. Display Results:

o Use disp() to display the results of the Fourier and inverse Fourier

transforms.

Code:

FOURIER TRANSFORM

syms x w

% Fourier Transform Examples

fourier_x_example = fourier(cos(x));

fourier_x2_example = fourier(sin(x));

% Display Fourier Transform Results

disp('Fourier Transform of cos(x):');

disp(fourier_x_example);

disp('Fourier Transform of sin(x):');

disp(fourier_x2_example);

% Inverse Fourier Transform Examples

ifourier_x_example = ifourier(exp(-w^2));

ifourier_x2_example = ifourier(1/(1 + w^2));

% Display Inverse Fourier Transform Results

disp('Inverse Fourier Transform of exp(-w^2):');

disp(ifourier_x_example);

disp('Inverse Fourier Transform of 1/(1 + w^2):');

disp(ifourier_x2_example);

O/P:

Fourier Transform of cos(x):pi*(dirac(w - 1) + dirac(w + 1))

118

Fourier Transform of sin(x):-pi*(dirac(w - 1) - dirac(w + 1))*1i

Inverse Fourier Transform of exp(-w^2):exp(-x^2/4)/(2*pi^(1/2))

Inverse Fourier Transform of 1/(1 + w^2):exp(-abs(x))/2

119

Expt

No.

11

REGRESSION AND INTERPOLATION
Date of

Expt:

Ex 11.1:

Procedure:

Newton Divided Difference Method

1. Define Variables:

o Set the number of data points, nnn.

o Define the vectors 𝑥 and 𝑓𝑥 for the data points and their

corresponding function values.

2. Initialize Divided Difference Table:

o Create an (𝑛 + 1) × (𝑛 + 1) matrix 𝐹 and set the first column to

𝑓𝑥.

3. Compute Divided Differences:

o Use nested loops to fill in the matrix FFF using the divided

difference formula:

𝐹(𝑖 + 1, 𝑗 + 1) =
𝐹(𝑖 + 1, 𝑗) − 𝐹(𝑖, 𝑗)

𝑥(𝑖 + 1) − 𝑥(𝑖 − 𝑗 + 1)

4. Extract Coefficients:

o Extract the coefficients of the Newton polynomial from the

diagonal of matrix 𝐹.

5. Evaluate Newton Polynomial:

o Generate values for the variable (e.g., 𝑝𝑙𝑜𝑡𝑥).

o Compute the corresponding values using the Newton polynomial

formula with the coefficients obtained.

6. Plot Results:

o Plot the Newton polynomial and the original data points to

visualize the interpolation.

Code:

NEWTON DIVIDED DIFFERENCE METHOD

n=4;

x=[1;2;3;4;5];

fx=[2.5;3.6;1.8;3.1;2.0];

F=zeros(n+1, n+1);

F(:,1)=fx;

% Compute the Newton divided differences.

for i=1:n

120

 for j=1:i

 F(i+1,j+1)=(F(i+1,j)-F(i,j))/(x(i+1)-x(i-j+1));

 end

end

a=diag(F)

hold on

plotx=1:0.1:5;

ploty = a(n+1)*ones(size(plotx));

for i=n:(-1):1

 ploty = a(i) + ploty.*(plotx-x(i));

end

figure(1);

plot(plotx,ploty,'-',x,fx,'*');

O/P:

a =

 2.5000

 1.1000

 -1.4500

 1.0000

 -0.4792

Ex 11.2:

Procedure:

Regression Method

1. Define Variables:

o Set up the vectors 𝑋 and 𝑌 for the independent and dependent

variables.

o Determine the number of data points, 𝑛.

121

2. Construct the Matrix 𝑨 and Vector 𝒃:

o Matrix 𝐴 contains sums related to 𝑋 and X2:

𝐴 = [
𝑛 ∑ 𝑋

∑ 𝑋 ∑ X2
]

o Vector 𝑏 contains sums related to 𝑌 and 𝑋 ⋅ 𝑌:

𝑏 = [
∑ 𝑋

∑(𝑋 ⋅ 𝑌)
]

3. Compute the Coefficients:

o Solve for the coefficients φ by computing:

𝜑 = 𝑖𝑛𝑣(𝐴) ⋅ 𝑏

o φ will contain the intercept and slope of the regression line.

4. Plot Results:

o Plot the original data points (𝑋, 𝑌) as blue squares.

o Plot the regression line using the computed coefficients φ in red.

This method fits a linear regression model to the given data.

Code:

REGRESSION METHOD

X = [1; 2; 3; 4; 5];

Y = [2.1; 3.9; 5.8; 8.2; 10.1];

n = length(X);

A = [n, sum(X); sum(X), sum(X.*X)];

b = [sum(Y); sum(X.*Y)];

phi = inv(A)*b;

plot(X, Y, 'bs', [0 5], phi(1) + phi(2)*[0 5], '-r');

O/P:

122

Ex 11.3:

Procedure:

Multi-Regression Method

1. Initialize Data:

o Define the independent variable and dependent variable datasets.

2. Set Up the Regression Matrix:

o Construct a matrix that includes a column of ones (to account for

the intercept) and the independent variable data.

3. Compute Regression Coefficients:

o Use the ordinary least squares method to calculate the regression

coefficients.

4. Plot Data and Regression Line:

o Create a plot showing the original data points and overlay the

regression line.

5. Output the Coefficients:

o Display the calculated regression coefficients.

Code:

MULTI-REGRESSION METHOD

% Data

x = [1.2; 2.1; 3.3; 4.5; 5.2; 6.1];

y = [2.8; 3.4; 5.2; 6.8; 7.9; 8.3];

n = length(x);

% Regression setup

X = [ones(n,1), x];

Y = y;

% Compute regression coefficients

phi = inv(X'*X)*X'*Y;

123

% Plot

plot(x, y, 'bs', [1 6], phi(1) + phi(2)*[1 6], '-

r');

title('Linear Regression');

xlabel('x');

ylabel('y');

legend('Data points', 'Regression line');

% Output

phi

O/P:

phi =

 1.1670

 1.2231

Ex 11.4:

Procedure:

Spline and PCHIP Interpolation

1. Initialize Data:

o Define the time vector T and corresponding values vector S.

2. Plot Original Data:

o Plot the original data points using a specified line style and color.

3. Perform Spline Interpolation:

o Compute spline interpolation values for a finer time vector.

o Plot the spline interpolation results using a different marker and

color.

4. Perform PCHIP Interpolation:

o Compute PCHIP (Piecewise Cubic Hermite Interpolating

Polynomial) interpolation values for the same finer time vector.

o Plot the PCHIP interpolation results using a different line style and

marker.

5. Enhance the Plot:

o Add title, axis labels, and a legend to distinguish between the

original data, spline interpolation, and PCHIP interpolation.

Code:

SPLINE AND PCHIP INTERPOLATION

% Data

T = 0:5:40;

124

S = [10, 15, 20, 18, 22, 30, 25, 28, 35];

% Plot original data

plot(T, S, '-r');

hold on;

% Spline Interpolation

TI = 0:40;

SI = spline(T, S, TI);

plot(TI, SI, 'xb');

% PCHIP Interpolation

TIP = 0:40;

SI_P = pchip(T, S, TIP);

plot(TI, SI_P, '--v');

% Enhance the plot

title('Spline and PCHIP Interpolation');

xlabel('Time');

ylabel('Values');

legend('Original Data', 'Spline Interpolation', 'PCHIP Interpolation');

O/P:

125

Expt

No.

12

IMAGE PROCESSING
Date of

Expt:

The Image Processing Toolbox in MATLAB is a powerful collection of

functions and tools designed to assist with a wide range of image processing

tasks. It provides an extensive set of algorithms and workflows for processing,

analyzing, visualizing, and algorithm development in the field of image and video

data. Here are some of its key features:

1. Image Importing and Exporting:

 Supports various image formats such as JPEG, PNG, TIFF, BMP, and

others.

 Allows for importing data from specialized formats like DICOM (for

medical imaging) and GeoTIFF (for geospatial data).

2. Image Enhancement:

 Functions for improving image quality, such as contrast enhancement,

histogram equalization, noise reduction, and filtering.

 Includes advanced methods like adaptive histogram equalization and

Wiener filtering.

3. Geometric Transformations:

 Enables transformations like scaling, rotating, cropping, and translating

images.

 Tools for image registration, aligning different images for comparison,

and combining data from multiple sources.

4. Filtering and Convolution:

126

 Offers a variety of linear and nonlinear filtering options, such as

Gaussian, median, and Sobel filters.

 Convolution operations to enhance or detect features in an image.

5. Segmentation:

 Tools for dividing an image into meaningful regions, such as

thresholding, edge detection, and watershed segmentation.

 Advanced segmentation techniques include active contours (snakes) and

region-growing methods.

6. Morphological Operations:

 Functions for image morphology such as dilation, erosion, opening,

closing, and skeletonization, useful for analyzing shapes and structures

within an image.

7. Feature Detection and Extraction:

 Supports feature detection methods such as edge detection, corner

detection, and blob analysis.

 Functions to find shapes, objects, and boundaries in images, including the

Hough transform and region properties analysis.

8. Image Registration:

 Tools for aligning images taken at different times or from different

perspectives.

 Techniques include intensity-based, feature-based, and multimodal

registration.

9. Object Detection and Measurement:

 Supports measuring and analyzing objects within an image, including

area, centroid, perimeter, and shape characteristics.

 Tools for object detection, classification, and tracking in sequences of

images or videos.

127

10. 3D Image Processing:

 Capabilities to handle 3D image volumes, such as medical scans (MRI or

CT) and microscopy data.

 Functions for visualizing, processing, and analyzing volumetric data.

11. Image Annotation and Visualization:

 Tools for marking images with text, shapes, and lines.

 Visualization tools that can overlay images, display histograms, and

generate 3D plots.

12. GPU Acceleration:

 Many functions in the toolbox are optimized to leverage GPU

acceleration, making it easier to process large images or perform

computations faster.

13. Machine Learning and Deep Learning Integration:

 Supports integrating image processing with machine learning and deep

learning workflows.

 Includes pretrained networks for tasks such as image classification, object

detection, and semantic segmentation.

Ex 12. 1: Reading and Displaying Images

 Objective: Learn how to read and display images in MATLAB.

 Procedure:

1. Read an image using imread.

A = imread('nature.jpg');

2. Display the image using imshow.

imshow(A);

3. Check the size of the image.

size(A);

4. Open the image in a separate figure.

figure; imshow(A);

Ex 12.2: Image Resizing

 Objective: Resize an image and visualize the results.

 Procedure:

128

1. Resize the image to twice its size.

B = imresize(A, 2);

2. Display the original and resized images.

subplot(1, 2, 1); imshow(A); title('Original Image');

subplot(1, 2, 2); imshow(B); title('Resized Image');

Ex 12. 3: Image Rotation

 Objective: Rotate an image by 45 degrees.

 Procedure:

1. Rotate the image by 45 degrees.

C = imrotate(A, 45);

2. Display the rotated image.

imshow(C);

Ex 12.4: Grayscale Conversion

 Objective: Convert a color image to grayscale.

 Procedure:

1. Convert the image to grayscale.

gray_A = rgb2gray(A);

2. Display the grayscale image.

imshow(gray_A);

Ex 12. 5: Image Histogram and Histogram Equalization

 Objective: Equalize the histogram of an image to enhance contrast.

 Procedure:

1. Convert the image to grayscale.

gray_A = rgb2gray(A);

2. Apply histogram equalization.

hist_A = histeq(gray_A);

3. Display the original and histogram-equalized images along with

their histograms.

subplot(2, 2, 1); imshow(gray_A); title('Original Image');

subplot(2, 2, 2); imshow(hist_A); title('Histogram Equalized

Image');

subplot(2, 2, 3); imhist(gray_A); title('Original Histogram');

129

subplot(2, 2, 4); imhist(hist_A); title('Equalized Histogram');

Ex 12. 6: Filtering: Gaussian and Median

 Objective: Apply different filters to remove noise.

 Procedure:

1. Convert the image to grayscale.

gray_A = rgb2gray(A);

2. Apply Gaussian and Median filters.

h_gaussian = fspecial('gaussian', 3, 0.5);

A_gaussian = imfilter(gray_A, h_gaussian);

A_median = medfilt2(gray_A);

3. Display the original, Gaussian, and median filtered images.

subplot(1, 3, 1); imshow(gray_A); title('Original');

subplot(1, 3, 2); imshow(A_gaussian); title('Gaussian Filter');

subplot(1, 3, 3); imshow(A_median); title('Median Filter');

Ex 12.7: Edge Detection (Sobel, Prewitt, Canny)

 Objective: Detect edges using different operators.

 Procedure:

1. Convert the image to grayscale.

gray_A = rgb2gray(A);

2. Apply Sobel, Prewitt, and Canny edge detection.

A_sobel = edge(gray_A, 'sobel');

A_prewitt = edge(gray_A, 'prewitt');

A_canny = edge(gray_A, 'canny');

3. Display all results in a subplot.

subplot(2, 2, 1); imshow(A); title('Original Image');

subplot(2, 2, 2); imshow(A_sobel); title('Sobel');

subplot(2, 2, 3); imshow(A_prewitt); title('Prewitt');

subplot(2, 2, 4); imshow(A_canny); title('Canny');

Ex 12. 8: Morphological Operations (Erosion and Dilation)

 Objective: Perform erosion and dilation operations.

 Procedure:

1. Convert the image to grayscale.

gray_A = rgb2gray(A);

130

2. Define a structuring element.

se = strel('disk', 5);

3. Apply erosion and dilation.

A_eroded = imerode(gray_A, se);

A_dilated = imdilate(gray_A, se);

4. Display the original, eroded, and dilated images.

subplot(1, 3, 1); imshow(gray_A); title('Original');

subplot(1, 3, 2); imshow(A_eroded); title('Eroded');

subplot(1, 3, 3); imshow(A_dilated); title('Dilated');

Ex 12.9: Image Thresholding

 Objective: Convert an image to binary using thresholding.

 Procedure:

1. Convert the image to grayscale and double format.

gray_A = im2double(rgb2gray(A));

2. Apply different threshold levels.

B_thresh100 = im2bw(gray_A, 100/255);

3. Display the original and thresholded images.

subplot(1, 2, 1); imshow(gray_A); title('Original Image');

subplot(1, 2, 2); imshow(B_thresh100); title('Thresholded Image');

Ex 12.10: Noise Addition and Removal

 Objective: Add different types of noise and remove them using filters.

 Procedure:

1. Add Gaussian and salt & pepper noise.

B_gaussian = imnoise(A, 'gaussian');

B_saltpepper = imnoise(A, 'salt & pepper');

2. Apply a median filter to remove noise.

B_filtered = medfilt2(rgb2gray(B_saltpepper));

3. Display the noisy and filtered images.

subplot(1, 2, 1); imshow(B_saltpepper); title('Salt & Pepper

Noise');

subplot(1, 2, 2); imshow(B_filtered); title('Filtered Image');

131

Ex 12.11: Slope Calculation Using DEM

 Objective: Calculate the slope from a Digital Elevation Model (DEM).

 Procedure:

1. Load the DEM file (ensure you have a DEM image or .tif file).

DEM = imread('dem.tif');

DEM = double(DEM); % Convert to double for calculation

2. Calculate the gradient in the x and y directions using the gradient

function.

[Gx, Gy] = gradient(DEM);

3. Compute the slope in degrees.

slope = atan(sqrt(Gx.^2 + Gy.^2)) * (180/pi); % Convert radians to

degrees

4. Display the slope map.

imagesc(slope);

colorbar;

title('Slope Map');

Ex 12.12: Slope and Aspect Calculation

 Objective: Compute both the slope and aspect from a DEM.

 Procedure:

1. Load the DEM and compute its gradients.

DEM = imread('dem.tif');

DEM = double(DEM);

[Gx, Gy] = gradient(DEM);

2. Calculate the slope.

slope = atan(sqrt(Gx.^2 + Gy.^2)) * (180/pi);

3. Calculate the aspect (direction of the steepest slope).

aspect = atan2(Gy, Gx) * (180/pi); % Convert to degrees

aspect(aspect < 0) = aspect(aspect < 0) + 360; % Convert to 0-360

degrees

4. Display both slope and aspect maps.

subplot(1, 2, 1);

imagesc(slope); colorbar; title('Slope Map');

subplot(1, 2, 2);

imagesc(aspect); colorbar; title('Aspect Map');

Ex 12.13: Slope Generation Using 3D Surface

132

 Objective: Generate a synthetic 3D surface and calculate its slope.

 Procedure:

1. Create a synthetic surface using a function (e.g., a Gaussian

surface).

[X, Y] = meshgrid(-5:0.1:5, -5:0.1:5);

Z = exp(-X.^2 - Y.^2); % Gaussian surface

2. Compute the slope of the surface.

[Gx, Gy] = gradient(Z);

slope = atan(sqrt(Gx.^2 + Gy.^2)) * (180/pi); % Slope in degrees

3. Display the 3D surface and its slope map.

figure;

subplot(1, 2, 1);

surf(X, Y, Z); title('3D Surface');

subplot(1, 2, 2);

imagesc(slope); colorbar; title('Slope Map');

Ex 12.14: Slope Classification Based on Terrain Types

 Objective: Classify slopes into different categories (e.g., gentle,

moderate, steep).

 Procedure:

1. Calculate slope from DEM as in previous experiments.

2. Define slope categories (e.g., gentle: 0-10°, moderate: 10-30°,

steep: >30°).

gentle = slope < 10;

moderate = slope >= 10 & slope <= 30;

steep = slope > 30;

3. Create a classified slope map.

slope_class = zeros(size(slope));

slope_class(gentle) = 1; % Gentle

slope_class(moderate) = 2; % Moderate

slope_class(steep) = 3; % Steep

imagesc(slope_class);

colormap([0.8 1 0.8; 1 1 0.5; 1 0.5 0.5]); % Color coding

colorbar; title('Classified Slope Map');

	Ex 12. 1: Reading and Displaying Images
	Ex 12.2: Image Resizing
	Ex 12. 3: Image Rotation
	Ex 12.4: Grayscale Conversion
	Ex 12. 5: Image Histogram and Histogram Equalization
	Ex 12. 6: Filtering: Gaussian and Median
	Ex 12.7: Edge Detection (Sobel, Prewitt, Canny)
	Ex 12. 8: Morphological Operations (Erosion and Dilation)
	Ex 12.9: Image Thresholding
	Ex 12.10: Noise Addition and Removal

