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Expt 

No. 

1 

GETTING STARTED WITH MATLAB 
Date of 

Expt: 

 

MATLAB (Matrix Laboratory) is a high-level programming language and 

interactive environment designed for numerical computation, data visualization, 

and algorithm development. When you open MATLAB, you’ll see a user 

interface that’s designed to make working with data, code, and results easy. Let’s 

go through the main tabs and features of the MATLAB interface. 

 

 
1. Home Tab 

The Home tab is the default tab that you see when you launch MATLAB. It 

includes the following key features: 

 New Script: Creates a new script (file with .m extension) where you can 

write MATLAB code. 

 Open: Opens existing MATLAB scripts, functions, or variables. 

 Save/Save As: Allows you to save your scripts and variables. 

 Import Data: Imports data from external files like spreadsheets, text files, 

etc. 

 Preferences: Accesses settings related to the MATLAB environment (like 

display, language, etc.). 

 Add-Ons: Allows you to access and download additional toolboxes and 

apps. 
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2. Plot Tab 

The Plot tab becomes active when you are working with data in MATLAB. It 

provides: 

 2D and 3D Plots: Options for generating various types of plots, such as 

line plots, bar charts, histograms, surface plots, etc. 

 Visualization Customization: Tools to add titles, labels, legends, grid 

lines, and format axes in plots. 

 Different Styles: Quick buttons to change plot styles (e.g., different 

marker types, colors). 

3. Editor Tab 

When you open a new script or function, the Editor tab becomes visible. It’s 

where you write and edit your code. Key features include: 

 Run/Debug: Allows you to run the script or step through it line by line to 

identify errors. 

 Breakpoints: Used to pause execution at specific lines for debugging 

purposes. 

 Comment/Uncomment: Options to comment out parts of code for 

readability or testing. 

 Code Folding: Collapses code sections to simplify navigation in large 

scripts. 

4. Apps Tab 

MATLAB includes many built-in apps for specific tasks. In this tab, you can: 

 Access Apps: Use apps for tasks like machine learning, signal processing, 

control systems, etc. You can search for and launch apps for various 

domains. 

 Install New Apps: Download apps from the MATLAB Add-On Explorer. 

5. View Tab 

The View tab allows you to customize the layout of the MATLAB interface. 

Features include: 

 Command Window: Displays the main window where you can enter 

commands and see output. 

 Workspace: Shows variables that are currently in memory, along with 

their size and class. 

 Current Folder: Displays the files and directories available for use in the 

current session. 

 Figure Windows: Shows open figures and visualizations. 
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 Variable Editor: Allows you to view and edit variables in spreadsheet 

form. 

6. Editor and Live Editor 

MATLAB has two modes for coding: 

 Editor: This is the standard environment where you write your code and 

run scripts. 

 Live Editor: Allows you to create interactive notebooks that combine 

code, output, and formatted text. You can include comments, equations, 

and plots directly in the notebook. 

7. Command Window 

The Command Window is where you interact with MATLAB by typing 

commands directly. It’s ideal for quick calculations, testing code, and seeing 

immediate results. 

8. Workspace 

This panel lists all the variables created in your session. For each variable, you’ll 

see its name, size, and data type. You can double-click any variable to open it in 

the Variable Editor. 

9. Current Folder 

The Current Folder panel shows the files in the working directory. You can 

navigate through your directories, run scripts, and manage files here. 

10. Tool strip Customization 

The tool strip is the bar that includes all these tabs and buttons. You can customize 

it by adding or removing buttons, rearranging tabs, or even creating your own 

custom toolbars. 
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Expt 

No. 

2 

ARRAYS AND MATRICES 
Date of 

Expt: 

 

Ex 2.1 

Procedure: 

Step 1: Array Initialization 

 A: Creates a row vector A containing elements [1 4 5 4]. 

 A1: Creates another row vector A1 containing elements [2, 4, 6, 8]. 

 B: Creates a column vector B by transposing a row vector [10 25 74 35 42] 

using the ' operator. 

 C: Adds 10 to each element of the vector [2 0 4 0], resulting in C = [12 10 

14 10]. 

 

Step 2: Matrix Operations 

 *D = C'A: Transposes C to a column vector and performs matrix 

multiplication with A. Result is a scalar since it's a dot product between a 

column vector and a row vector. 

 *E = A'C: Transposes A to a column vector and performs matrix 

multiplication with C. This is also a dot product, resulting in a scalar. 

 

Step 3: Defining More Arrays 

 F: Creates a column vector F containing elements [3; 6; 9; 12]. 

 G: Creates a row vector G with elements [1 2 3]. 

 H: Creates a column vector H with elements [2; 4]. 

 I = 1:8: Creates a row vector I containing integers from 1 to 8. 

 J = 1:2:8: Creates a row vector J starting at 1, incrementing by 2 up to 8, 

resulting in [1 3 5 7]. 

 

Step 4: Scalar Assignment 

 X = 0.5: Assigns the value 0.5 to the variable X. 

 

Step 5: Matrix Initialization and Concatenation 

 MAT1: Defines a matrix MAT1 with the following values: 

1  2  3  4 

3  6  9  12 

4  8  12 16 

5  10 15 20 
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 MAT2 = [C; MAT1]: Concatenates the row vector C on top of the matrix 

MAT1, creating a new matrix MAT2. 

 

Step 6: Matrix Operations 

 MAT3: Defines a matrix MAT3 with the values: 

2 1 3 

2 5 1 

6 3 4 

 MAT4 = G*MAT3: Multiplies row vector G (1x3) with matrix MAT3 

(3x3), resulting in a 1x3 row vector MAT4. 

 

Step 7: Matrix Multiplication 

 MAT5: Defines a matrix MAT5 with the following values: 

1 2 

3 4 

5 6 

 *MAT6 = [7 8; 9 1; 2 3]H: Multiplies matrix [7 8; 9 1; 2 3] (3x2) with 

column vector H (2x1), resulting in a 3x1 column vector MAT6. 

 

Step 8: Element-Wise Operations 

 MAT7 = [3 4 5 6; 7 8 9 1].^X: Performs an element-wise power operation 

on the matrix [3 4 5 6; 7 8 9 1], raising each element to the power X (which 

is 0.5, i.e., square root). 

 MAT8 = MAT7(1:3): Extracts the first 3 elements of the first row from 

MAT7 and stores them in MAT8. 

 MAT9 = MAT7(1:2): Extracts the first 2 elements of the first row from 

MAT7 and stores them in MAT9. 

 

Step 9: More Matrix Operations 

 MAT10: Defines a matrix MAT10 with the following values: 

1 2 3 

3 2 1 

5 4 3 

 *MAT11 = MAT10.MAT10: Performs element-wise multiplication of 

MAT10 with itself. 

 *MAT12 = MAT10.MAT3: Performs element-wise multiplication of 

MAT10 with MAT3. 
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Step 10: Linspace Function 

 MAT13 = linspace(1,2): Creates a row vector with 100 points linearly 

spaced between 1 and 2. 

 MAT14 = linspace(1,2,5): Creates a row vector with 5 points linearly 

spaced between 1 and 2. 

________________________________________________________________ 

 

Code:  

A = [1 4 5 4]              

A1 = [2,4,6,8]            

B = [10 25 74 35 42]'      

C = [2 0 4 0] + 10        

D = C'*A                 

E = A'*C                  

F = [3;6;9;12]            

G = [1 2 3]                

H = [2;4]                  

I = 1:8                    

J = 1:2:8. 

X = 0.5                    

MAT1 = [1 2 3 4;3 6 9 12;4 8 12 16;5 10 15 20]  

MAT2 = [C;MAT1]           % Concatenates the row vector C with matrix MAT1 

. 

MAT3 = [2 1 3;2 5 1;6 3 4]  

MAT4 = G*MAT3              

MAT5 = [1 2;3 4;5 6]     . 

MAT6 = [7 8;9 1;2 3]*H     

MAT7 = [3 4 5 6; 7 8 9 1].^X % Element-wise power operation. Each element 

of the matrix is raised to the power X (0.5 here). 

MAT8 = MAT7(1:3)          % Extracts the first 3 elements from the first row of 

matrix MAT7 into a row vector MAT8. 

MAT9 = MAT7(1:2)           

MAT10 = [1 2 3; 3 2 1; 5 4 3]  

MAT11 = MAT10.*MAT10      % Element-wise multiplication of MAT10 with 

itself. 

MAT12 = MAT10.*MAT3       % Element-wise multiplication of MAT10 with 

MAT3. 
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MAT13 = linspace(1,2)     % Row vector of 100 points from 1 to 2 

MAT14 = linspace(1,2,5)   % 5 points from 1 to 2. 

________________________________________________________________  

O/P (Command Window) 

 

A =     1     4     5     4 

 

A1 =     2     4     6     8 

 

B = 

    10 

    25 

    74 

    35 

    42 

 

C =    12    10    14    10 

 

D = 

    12    48    60    48 

    10    40    50    40 

    14    56    70    56 

    10    40    50    40 

 

E = 

    12    10    14    10 

    48    40    56    40 

    60    50    70    50 

    48    40    56    40 

 

F = 

     3 

     6 

     9 

    12 

 

G =     1     2     3 
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H = 

     2 

     4 

 

I =     1     2     3     4     5     6     7     8 

 

J =     1     3     5     7 

 

X =     0.5000 

 

MAT1 = 

     1     2     3     4 

     3     6     9    12 

     4     8    12    16 

     5    10    15    20 

 

MAT2 = 

    12    10    14    10 

     1     2     3     4 

     3     6     9    12 

     4     8    12    16 

     5    10    15    20 

 

MAT3 = 

     2     1     3 

     2     5     1 

     6     3     4 

 

MAT4 =    24    20    17 

 

MAT5 = 

     1     2 

     3     4 

     5     6 

 

MAT6 = 
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    46 

    22 

    16 

 

MAT7 = 

    1.7321    2.0000    2.2361    2.4495 

    2.6458    2.8284    3.0000    1.0000 

 

MAT8 = 

    1.7321    2.6458    2.0000 

 

MAT9 = 

    1.7321    2.6458    2.0000    2.8284    2.2361 

 

MAT10 = 

     1     2     3 

     3     2     1 

     5     4     3 

 

MAT11 = 

     1     4     9 

     9     4     1 

    25    16     9 

 

 

MAT12 = 

 

     2     2     9 

     6    10     1 

    30    12    12 

 

MAT13 = 

 

  Columns 1 through 13 

 

    1.0000    1.0101    1.0202    1.0303    1.0404    1.0505    1.0606    1.0707    

1.0808    1.0909    1.1010    1.1111    1.1212 
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  Columns 14 through 26 

 

    1.1313    1.1414    1.1515    1.1616    1.1717    1.1818    1.1919    1.2020    

1.2121    1.2222    1.2323    1.2424    1.2525 

 

  Columns 27 through 39 

 

    1.2626    1.2727    1.2828    1.2929    1.3030    1.3131    1.3232    1.3333    

1.3434    1.3535    1.3636    1.3737    1.3838 

 

  Columns 40 through 52 

 

    1.3939    1.4040    1.4141    1.4242    1.4343    1.4444    1.4545    1.4646    

1.4747    1.4848    1.4949    1.5051    1.5152 

 

  Columns 53 through 65 

 

    1.5253    1.5354    1.5455    1.5556    1.5657    1.5758    1.5859    1.5960    

1.6061    1.6162    1.6263    1.6364    1.6465 

 

  Columns 66 through 78 

 

    1.6566    1.6667    1.6768    1.6869    1.6970    1.7071    1.7172    1.7273    

1.7374    1.7475    1.7576    1.7677    1.7778 

 

  Columns 79 through 91 

 

    1.7879    1.7980    1.8081    1.8182    1.8283    1.8384    1.8485    1.8586    

1.8687    1.8788    1.8889    1.8990    1.9091 

 

  Columns 92 through 100 

 

    1.9192    1.9293    1.9394    1.9495    1.9596    1.9697    1.9798    1.9899    

2.0000 

 

MAT14 = 
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    1.0000    1.2500    1.5000    1.7500    2.0000 

 

 

Ex 2.2 

Procedure: 

 

Step 1: Vector Initialization 

 a: Defines a sample vector a with elements [10, 5, 7, 2, 8, 3, 4, 9, 6, 1]. 

Step 2: Sum of Elements 

 sumOfA = sum(a): Calculates the sum of the elements in vector a. 

 fprintf('Sum of a: %d\n', sumOfA): Prints the sum of the vector a. 

Step 3: Mean of Elements 

 meanOfA = mean(a): Computes the mean (average) value of the 

elements in vector a. 

 fprintf('Mean of a: %.2f\n', meanOfA): Prints the mean, formatted to 

two decimal places. 

Step 4: Median of Elements 

 medianOfA = median(a): Finds the median value of the elements in 

vector a. 

 fprintf('Median of a: %.2f\n', medianOfA): Prints the median value, 

formatted to two decimal places. 

Step 5: Standard Deviation 

 stdDevA = std(a): Computes the standard deviation of the elements in 

vector a. 

 fprintf('Standard Deviation of a: %.2f\n', stdDevA): Prints the 

standard deviation, formatted to two decimal places. 

Step 6: Minimum Value and Index 

 [minVal, minIdx] = min(a): Finds the minimum value of the vector a 

and its index. 

 fprintf('Minimum value of a: %d (at index %d)\n', minVal, minIdx): 

Prints the minimum value and its corresponding index. 

Step 7: Maximum Value and Index 

 [maxVal, maxIdx] = max(a): Finds the maximum value of the vector a 

and its index. 

 fprintf('Maximum value of a: %d (at index %d)\n', maxVal, 

maxIdx): Prints the maximum value and its corresponding index. 

Step 8: Sorting in Ascending Order 
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 sortedAscend = sort(a, 'ascend'): Sorts the vector a in ascending order. 

 fprintf('Ascending order of a: '): Prints the sorted vector in ascending 

order. 

Step 9: Sorting in Descending Order 

 sortedDescend = sort(a, 'descend'): Sorts the vector a in descending 

order. 

 fprintf('Descending order of a: '): Prints the sorted vector in descending 

order. 

 

Step 10: Variance of the Elements 

 varianceOfA = var(a): Calculates the variance of the elements in vector 

a. 

 fprintf('Variance of a: %.2f\n', varianceOfA): Prints the variance, 

formatted to two decimal places. 

Step 11: Cumulative Sum of Elements 

 cumSumOfA = cumsum(a): Computes the cumulative sum of the 

elements in vector a. 

 fprintf('Cumulative sum of a: '): Prints the cumulative sum of vector a. 

Step 12: Vector Operations - Dot Product 

 b = [2, 3, 4]: Defines vector b. 

 c = [5, 6, 7]: Defines vector c. 

 dotProduct = dot(b, c): Computes the dot product of vectors b and c. 

 fprintf('Dot product of b and c: %d\n', dotProduct): Prints the dot 

product of b and c. 

Step 13: Vector Operations - Cross Product 

 crossProduct = cross(b, c): Computes the cross product of vectors b and 

c. 

 fprintf('Cross product of b and c: [%d %d %d]\n', crossProduct(1), 

crossProduct(2), crossProduct(3)): Prints the cross product of b and c. 

Step 14: Division Operations 

 d = [2; 3]: Defines a column vector d. 

 e = [4; 6]: Defines a column vector e. 

 f = [2 3]: Defines a row vector f. 

 g = [4 6]: Defines a row vector g. 

Now, different division operations are performed: 

o d/e: Performs element-wise division between column vectors d and 

e. 
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o d\e: Solves d for e in a least-squares sense. 

o f/g: Performs element-wise division between row vectors f and g. 

o f\g: Solves f for g in a least-squares sense. 

The results of these operations are printed using fprintf. 

Step 15: Generating Random Numbers and Matrices 

 rand(1,5): Generates a 1x5 matrix of random numbers between 0 and 1. 

 randperm(5): Generates a random permutation of integers from 1 to 5. 

 ones(1,5): Creates a 1x5 matrix of ones. 

 zeros(1,5): Creates a 1x5 matrix of zeros. 

 

Code: 

 

a = [10, 5, 7, 2, 8, 3, 4, 9, 6, 1]; % Define a sample vector 

 

sumOfA = sum(a); % Sum 

fprintf('Sum of a: %d\n', sumOfA); 

 

meanOfA = mean(a); % Mean 

fprintf('Mean of a: %.2f\n', meanOfA); 

 

medianOfA = median(a); % Median 

fprintf('Median of a: %.2f\n', medianOfA); 

 

stdDevA = std(a); % Standard deviation 

fprintf('Standard Deviation of a: %.2f\n', stdDevA); 

 

[minVal, minIdx] = min(a); % Min 

fprintf('Minimum value of a: %d (at index %d)\n', minVal, minIdx); 

 

[maxVal, maxIdx] = max(a); % Max 

fprintf('Maximum value of a: %d (at index %d)\n', maxVal, maxIdx); 

 

sortedAscend = sort(a, 'ascend'); % Ascending 

fprintf('Ascending order of a: '); 

fprintf('%d ', sortedAscend); 

fprintf('\n'); 

 

sortedDescend = sort(a, 'descend'); % Descending 

fprintf('Descending order of a: '); 

fprintf('%d ', sortedDescend); 

fprintf('\n'); 
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varianceOfA = var(a); % Variance 

fprintf('Variance of a: %.2f\n', varianceOfA); 

 

cumSumOfA = cumsum(a); % Cumulative sum 

fprintf('Cumulative sum of a: '); 

fprintf('%d ', cumSumOfA); 

 

b = [2, 3, 4]; 

c = [5, 6, 7]; 

 

dotProduct = dot(b, c); 

fprintf('Dot product of b and c: %d\n', dotProduct); 

 

crossProduct = cross(b, c); 

fprintf('Cross product of b and c: [%d %d %d]\n', crossProduct(1), 

crossProduct(2), crossProduct(3)); 

 

d = [2; 3]; 

e = [4; 6]; 

f = [2 3]; 

g = [4 6]; 

 

fprintf('Result of d/e: %f\n', d/e); 

fprintf('Result of d\\e: %f\n', d\e); 

fprintf('Result of f/g: %f\n', f/g); 

fprintf('Result of f\\g: %f\n', f\g); 

 

rand(1,5)   % 1x5 random numbers 

randperm(5) % Random order of 1-5 

ones(1,5)   % 1x5 matrix of ones 

zeros(1,5)  % 1x5 matrix of zeros 

 

O/P (Command Window) 

 

Sum of a: 55 

Mean of a: 5.50 

Median of a: 5.50 

Standard Deviation of a: 3.03 

Minimum value of a: 1 (at index 10) 

Maximum value of a: 10 (at index 1) 

Ascending order of a: 1 2 3 4 5 6 7 8 9 10  

Descending order of a: 10 9 8 7 6 5 4 3 2 1  

Variance of a: 9.17 
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Cumulative sum of a: 10 15 22 24 32 35 39 48 54 55  

Dot product of b and c: 56 

Cross product of b and c: [-3 6 -3] 

Result of d/e: 0.000000 

Result of d/e: 0.000000 

Result of d/e: 0.333333 

Result of d/e: 0.500000 

Result of d\e: 2.000000 

Result of f/g: 0.500000 

Result of f\g: 0.000000 

Result of f\g: 1.333333 

Result of f\g: 0.000000 

Result of f\g: 2.000000 

 

im = 

     1     0     0     0 

     0     1     0     0 

     0     0     1     0 

     0     0     0     1 

 

ans =    0.9502    0.0344    0.4387    0.3816    0.7655 

ans =     2     4     3     5     1 

ans =     1     1     1     1     1 

ans =     0     0     0     0     0 

________________________________________________________________

__________________  

 

Ex 2.3 

Procedure: 

 

Step 1: Temperature Data Initialization 

 temperatures: The vector temperatures holds daily temperature data for 

a month, where each element represents the temperature recorded for a 

specific day. 

Step 2: Trend Analysis 

 avg_temp = mean(temperatures): Computes the average temperature 

for the entire month. 

 days_above_avg = sum(temperatures > avg_temp): Counts the number 

of days where the temperature was above the monthly average by 

comparing each day’s temperature to the average and summing the 

boolean results. 

 

 



16 
 

Step 3: Extreme Days Identification 

 hottest_temp = max(temperatures): Identifies the highest temperature 

in the month (the hottest day). 

 hottest_day = find(temperatures == hottest_temp, 1): Finds the day 

corresponding to the hottest temperature. The find function returns the 

index of the first occurrence of the maximum temperature. 

 coldest_temp = min(temperatures): Identifies the lowest temperature in 

the month (the coldest day). 

 coldest_day = find(temperatures == coldest_temp, 1): Finds the day 

corresponding to the coldest temperature. The find function returns the 

index of the first occurrence of the minimum temperature. 

 temp_range = hottest_temp - coldest_temp: Calculates the temperature 

range by subtracting the coldest temperature from the hottest temperature. 

Step 4: Temperature Consistency 

 temp_std = std(temperatures): Computes the standard deviation of the 

temperatures, which provides a measure of the consistency of the data. A 

low standard deviation means the temperatures are close to the average, 

whereas a high standard deviation indicates more variation in the 

temperatures. 

Step 5: Predictive Analysis (Handling Missing Data) 

 if isnan(temperatures(11)): This checks if the temperature for the 11th 

day is missing (NaN). If so, linear interpolation is used to estimate the 

missing value. 

 temperatures(11) = mean([temperatures(10), temperatures(12)]): If 

the data for the 11th day is missing, the code fills it with the average of 

the temperatures on the 10th and 12th days to estimate the missing value. 

Step 6: Temperature Anomalies 

 anomaly_threshold = avg_temp + 2 * temp_std: Defines an anomaly 

threshold, which is the average temperature plus two times the standard 

deviation. Any temperature significantly above or below this threshold is 

considered an anomaly. 

 anomaly_days = find(abs(temperatures - avg_temp) > 

anomaly_threshold): Identifies days where the temperature is greater 

than the anomaly threshold by comparing the absolute difference between 

the day’s temperature and the average. 

Step 7: Displaying the Results 

 fprintf('Average monthly temperature: %.2f°C\n', avg_temp): 

Displays the calculated average temperature for the month. 

 fprintf('Number of days above the monthly average: %d\n', 

days_above_avg): Displays the number of days where the temperature 

exceeded the average. 
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 fprintf('Hottest day: Day %d with %.2f°C\n', hottest_day, 

hottest_temp): Displays the day number and temperature of the hottest 

day. 

 fprintf('Coldest day: Day %d with %.2f°C\n', coldest_day, 

coldest_temp): Displays the day number and temperature of the coldest 

day. 

 fprintf('Temperature range: %.2f°C\n', temp_range): Displays the 

range between the hottest and coldest temperatures. 

 fprintf('Standard deviation of temperatures: %.2f°C\n', temp_std): 

Displays the standard deviation of the temperature data. 

 fprintf('Days identified as temperature anomalies: %d ', 

anomaly_days): If anomalies are detected, the days with anomalous 

temperatures are displayed. 

 fprintf('No temperature anomalies identified.\n'): If no anomalies are 

found, a message is displayed. 

 

Code: 

 

% Temperature data for a month  

temperatures = [23, 25, 26, 24, 23, 28, 29, 30, 28, 29, 31, 30, 29, 28, 27, 26, 25, 

25, 24, 24, 23, 22, 23, 23, 24, 24, 25, 25, 26, 26]; 

 

% 1. Trend Analysis: 

avg_temp = mean(temperatures); 

days_above_avg = sum(temperatures > avg_temp); 

 

% 2. Extreme Days: 

hottest_temp = max(temperatures); 

hottest_day = find(temperatures == hottest_temp, 1); % returns the first 

occurrence 

coldest_temp = min(temperatures); 

coldest_day = find(temperatures == coldest_temp, 1); 

temp_range = hottest_temp - coldest_temp; 

 

% 3. Temperature Consistency: 

temp_std = std(temperatures); 

 

% 4. Predictive Analysis (using linear interpolation for the 11th day as an 

example): 

if isnan(temperatures(11)) % Check if the data for the 11th day is missing 

    temperatures(11) = mean([temperatures(10), temperatures(12)]); 

end 
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% 5. Temperature Anomalies: 

anomaly_threshold = avg_temp + 2 * temp_std; 

anomaly_days = find(abs(temperatures - avg_temp) > anomaly_threshold); 

 

% Displaying the results: 

fprintf('Average monthly temperature: %.2f°C\n', avg_temp); 

fprintf('Number of days above the monthly average: %d\n', days_above_avg); 

fprintf('Hottest day: Day %d with %.2f°C\n', hottest_day, hottest_temp); 

fprintf('Coldest day: Day %d with %.2f°C\n', coldest_day, coldest_temp); 

fprintf('Temperature range: %.2f°C\n', temp_range); 

fprintf('Standard deviation of temperatures: %.2f°C\n', temp_std); 

 

if ~isempty(anomaly_days) 

    fprintf('Days identified as temperature anomalies: '); 

    fprintf('%d ', anomaly_days); 

    fprintf('\n'); 

else 

    fprintf('No temperature anomalies identified.\n'); 

end 

 

O/P (Command Window) 

 

Average monthly temperature: 25.83°C 

Number of days above the monthly average: 14 

Hottest day: Day 11 with 31.00°C 

Coldest day: Day 22 with 22.00°C 

Temperature range: 9.00°C 

Standard deviation of temperatures: 2.51°C 

No temperature anomalies identified. 

________________________________________________________________

__________________ 

Ex 2.4 

Procedure: 

Step 1: Temperature Matrix Initialization 

 temperature_matrix: Initializes a 4x4 matrix representing temperatures 

across different locations or sensors: 

25, 30, 35, 40 

26, 29, 33, 39 

24, 28, 34, 38 
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23, 27, 32, 37 

Step 2: Setting Border Temperatures to 20°C 

 temperature_matrix(1, :) = 20: Sets all the elements in the first row of 

the matrix to 20°C. 

 temperature_matrix(end, :) = 20: Sets all the elements in the last row of 

the matrix to 20°C (i.e., the 4th row in this case). 

 temperature_matrix(:, 1) = 20: Sets all the elements in the first column 

of the matrix to 20°C. 

 temperature_matrix(:, end) = 20: Sets all the elements in the last 

column of the matrix to 20°C (i.e., the 4th column). 

After this operation, the matrix will look like this: 

20, 20, 20, 20 

20, 29, 33, 20 

20, 28, 34, 20 

20, 20, 20, 20 

Step 3: Normalizing the Matrix 

 min_temp = min(temperature_matrix(:)): Finds the minimum value in 

the entire matrix. Here, the minimum value is 20°C. 

 max_temp = max(temperature_matrix(:)): Finds the maximum value 

in the matrix, which is 34°C. 

 normalized_matrix = (temperature_matrix - min_temp) / (max_temp 

- min_temp): Normalizes the matrix by subtracting the minimum value 

from each element and then dividing by the range (maximum - 

minimum). This scales all the values in the matrix between 0 and 1. 

The normalized matrix will look something like this: 

0,   0,   0,   0 

0, 0.45, 0.87, 0 

0, 0.40, 1.00, 0 

0,   0,   0,   0 
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Step 4: Identifying the Sensor with the Highest Temperature 

 [max_val, max_idx] = max(normalized_matrix(:)): Finds the highest 

value (after normalization) in the matrix. The variable max_val stores the 

value, and max_idx stores its linear index. 

 [row_idx, col_idx] = ind2sub(size(normalized_matrix), max_idx): 

Converts the linear index (max_idx) to a row and column index (row_idx 

and col_idx). This identifies the position of the sensor with the highest 

temperature. 

In this case, the sensor with the highest temperature is at row 3 and column 3 

with a normalized value of 1.00. 

Step 5: Rotating the Matrix 90 Degrees Clockwise 

 rotated_matrix = rot90(normalized_matrix, -1): Rotates the matrix 90 

degrees clockwise. The function rot90 rotates the matrix 

counterclockwise by default, so rot90(..., -1) is used to rotate it clockwise. 

Step 6: Displaying the Results 

 disp('Corrected Matrix:'): Displays the normalized matrix. 

 disp(['Sensor with highest temperature is at row ', ...]): Displays the 

location of the sensor with the highest temperature after normalization. 

 disp('Rotated Matrix:'): Displays the rotated matrix. 

Code: 

% Temperature matrix  

temperature_matrix = [ 

    25, 30, 35, 40; 

    26, 29, 33, 39; 

    24, 28, 34, 38; 

    23, 27, 32, 37; 

]; 

 

% 1. Set the border temperatures of the matrix to 20°C. 

temperature_matrix(1, :) = 20;       % First row 

temperature_matrix(end, :) = 20;     % Last row 

temperature_matrix(:, 1) = 20;       % First column 

temperature_matrix(:, end) = 20;     % Last column 
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% 2. Normalize the entire matrix. 

min_temp = min(temperature_matrix(:)); 

max_temp = max(temperature_matrix(:)); 

normalized_matrix = (temperature_matrix - min_temp) / (max_temp - 

min_temp); 

 

% 3. Identify the sensor with the highest temperature (after normalization). 

[max_val, max_idx] = max(normalized_matrix(:)); 

[row_idx, col_idx] = ind2sub(size(normalized_matrix), max_idx); 

 

% 4. Rotate the matrix 90 degrees clockwise. 

rotated_matrix = rot90(normalized_matrix, -1); 

 

% Display results 

disp('Corrected Matrix:'); 

disp(normalized_matrix); 

 

disp(['Sensor with highest temperature is at row ', num2str(row_idx), ' and 

column ', num2str(col_idx), ' with value: ', num2str(max_val)]); 

 

disp('Rotated Matrix:'); 

disp(rotated_matrix); 

 

O/P (Command Window) 

ex2_mat 

Corrected Matrix: 

         0         0         0         0 

         0    0.6429    0.9286         0 

         0    0.5714    1.0000         0 

         0         0         0         0 

 

Sensor with highest temperature is at row 3 and column 3 with value: 1 

Rotated Matrix: 

         0         0         0         0 

         0    0.5714    0.6429         0 

         0    1.0000    0.9286         0 

         0         0         0         0 
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Expt 

No. 

3 

LOOPS 
Date of 

Expt: 

 

Ex 3.1 

Procedure:  

 

1. FOR Loop 

Example 1: Simple Iteration 

1. Initialize the loop: Set up a for loop that iterates over a defined range of 

numbers (e.g., 1 through 10). 

2. Display each value: During each iteration, display the current value of 

the loop variable. 

3. End the loop: The loop finishes when the last value in the range has been 

processed. 

Example 2: Dynamic Array Update 

1. Initialize an array: Create an array with specified initial values (e.g., all 

elements set to 1). 

2. Start loop: Begin the loop to iterate over a subset of the array's indices. 

3. Update array values: For each iteration, update the current element 

based on a formula (e.g., set it to twice the previous element). 

4. End the loop: The loop ends after updating all specified elements. 

 
2. WHILE Loop 

Example 1: Simple Counter 

1. Initialize a counter: Set a variable to hold the initial count value. 

2. Check the loop condition: Set a condition to control the loop (e.g., while 

the counter is less than or equal to 10). 

3. Display the count: For each iteration, display the current value of the 

counter. 

4. Increment the counter: Increase the counter by a specified amount after 

each iteration. 

5. End the loop: The loop ends once the condition is no longer true. 

Example 2: Factorial Calculation 

1. Initialize variables: Set an initial value for the factorial and a variable to 

hold the number. 

2. Check the loop condition: Continue the loop while the calculated 

factorial is less than a certain large number (e.g., 10^100). 

3. Update the factorial: Multiply the current factorial by the next integer in 

each iteration. 

4. End the loop: The loop terminates when the factorial exceeds the 

specified limit. 
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3. NESTED LOOP 

Example 1: Displaying Pairs of Values 

1. Set up the outer loop: Define the first loop that iterates over a set of 

values (e.g., 1 to 3). 

2. Set up the inner loop: Within the outer loop, define another loop that 

iterates over its own set of values. 

3. Display paired values: For each pair of values from the outer and inner 

loops, display them together. 

4. End the loops: Both loops finish when all combinations of values have 

been processed. 

Example 2: Populating a Matrix 

1. Initialize a matrix: Create a matrix with the desired dimensions and 

initial values (e.g., all zeros). 

2. Set up the outer loop: Iterate over the rows of the matrix. 

3. Set up the inner loop: For each row, iterate over the columns of the 

matrix. 

4. Update matrix elements: Apply a formula to calculate each element 

based on its row and column indices. 

5. End the loops: The nested loops finish when the matrix is fully 

populated. 

 
4. Controlling Loop Execution 

Example 1: Using break 

1. Initialize the loop: Set up a loop to iterate over a range of values. 

2. Check a condition: Inside the loop, check if a certain condition is met 

(e.g., if a variable reaches a specific value). 

3. Exit the loop: If the condition is met, use the break statement to exit the 

loop immediately. 

4. End the loop: The loop finishes once it is exited or the range of values is 

exhausted. 

Example 2: Using continue 

1. Initialize the loop: Set up a loop to iterate over a range of values. 

2. Check a condition: Inside the loop, check if a certain condition is met 

(e.g., if a variable reaches a specific value). 

3. Skip to the next iteration: If the condition is met, use the continue 

statement to skip the current iteration and move to the next one. 

4. End the loop: The loop finishes when all iterations have been completed, 

except for those that were skipped. 

 

Code: 

1. FOR LOOP 

for index = 1:10 % Define a for loop that iterates over numbers 1 through 10 

    disp(index) % Display the current value of 'index' 
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end 

 

O/P: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

 

x = ones(1,10);                % Initializes a 1x10 vector with all elements set to 1 

for n = 2:6                    % Begins a loop for n ranging from 2 to 6 

    x(n) = 2 * x(n - 1);       % Sets the nth element of x as double the (n-1)th 

element 

end                            % Ends the for loop 

 

O/P: 

x = 1  2  4  8  16  32  1  1  1  1  

 

 

2. WHILE LOOP 

 

count = 1; % Initialize the 'count' variable with a value of 1 

while count <= 10  % While the 'count' is less than or equal to 10, execute the 

loop 

    disp(count) % Display the current value of 'count' 

    count = count + 1; % Increment 'count' by 1 

end 

 

n = 1;                         % Sets n to 1 

nFactorial = 1;                % Initializes factorial of n to 1 

while nFactorial < 1e100       % Begins a loop while n's factorial is less than 

10^100 

    n = n + 1;                 % Increments n by 1 

    nFactorial = nFactorial * n;% Multiplies current nFactorial with n 

end      
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O/P: 

This loop is computing factorial values, and it stops once it hits a factorial larger 

than 1010010100. It doesn't produce a displayed output, but at the end of this 

loop, n will be the smallest integer such that n! is greater than 1010010100 

 

3. NESTED LOOP 

 

for i = 1:3 % Outer loop iterating from 1 to 3 for variable 'i' 

    for j = 1:3  % Inner loop iterating from 1 to 3 for variable 'j' 

        disp(['i = ', num2str(i), ', j = ', num2str(j)]) % Display the current values of 

i, j 

    end 

end 

 

O/P: 

i = 1, j = 1 

i = 1, j = 2 

i = 1, j = 3 

i = 2, j = 1 

i = 2, j = 2 

i = 2, j = 3 

i = 3, j = 1 

i = 3, j = 2 

i = 3, j = 3 

 

A = zeros(5,100);              % Initializes a 5x100 matrix with all zeros 

for m = 1:5                    % Begins an outer loop for m ranging from 1 to 5 

    for n = 1:100              % Begins an inner loop for n ranging from 1 to 100 

        A(m, n) = 1/(m + n - 1); % Sets the (m,n) element of matrix A based on 

given formula 

    end                        % Ends the inner for loop 

end                            % Ends the outer for loop 

 

O/P: 

This code initializes a 5x100 matrix A and populates it according to the given 

formula. It doesn't produce a displayed output, but the matrix A will be filled 

with the results of the formula. 

 

5.  CONTROLLING LOOP EXECUTION  

- USING BREAK 

% Define a for loop that iterates over numbers 1 through 10 

for i = 1:10 

    if i == 5 % If the value of 'i' is equal to 5 
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        break; % Exit the loop 

    end 

    disp(i) % Display the current value of 'i' (this won't be executed when i == 5) 

end 

 

O/P: 

1 

2 

3 

4 

 

- USING CONTINUE 

% Define a for loop that iterates over numbers 1 through 10 

for i = 1:10 

    if i == 5 % If the value of 'i' is equal to 5 

        continue; % Skip to the next iteration of the loop 

    end 

    disp(i) % Display the current value of 'i' (this will skip displaying the number 

5) 

end 

 

O/P: 

1 

2 

3 

4 

6 

7 

8 

9 

________________________________________________________________

________________ 

 

Ex 3.2 

Procedure:  

 

Step 1: Load the Image 

 img = imread('sample.jpeg'): This reads an image file named 

'sample.jpeg' into the variable img. The image is stored as a 3D matrix 

where the dimensions are: 

o m = number of rows (height of the image) 

o n = number of columns (width of the image) 
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o c = number of color channels (typically 3 for RGB images) 

Step 2: Initialize an Empty Matrix for the Grayscale Image 

 [m, n, c] = size(img): Retrieves the size of the image matrix img. This 

stores the number of rows (m), columns (n), and color channels (c) in the 

variables. 

 grayscale_img = zeros(m, n): Initializes a 2D matrix grayscale_img of 

size m by n, filled with zeros, which will store the grayscale values of the 

image. This matrix has no color channels as it will only store intensity 

values for grayscale. 

Step 3: Convert the Image to Grayscale Using Loops 

 A nested loop is used to process each pixel in the image: 

o for i = 1 

: Loops over each row of the image. 

o for j = 1 

: Loops over each column of the image. 

o Inside the loop, each pixel's Red (R), Green (G), and Blue (B) 

values are extracted from the RGB image, and the grayscale value 

is computed using the formula: 

 grayscale = 0.299R + 0.587G + 0.114*B: This is the 

standard formula for converting an RGB image to grayscale, 

giving more weight to the Green channel, which the human 

eye perceives as brighter. 

 grayscale_img(i, j) = 0.299 * img(i, j, 1) + 0.587 * img(i, j, 

2) + 0.114 * img(i, j, 3): For each pixel at position (i, j), this 

computes the grayscale intensity and stores it in the 

corresponding location in the grayscale_img matrix. 

Step 4: Convert Grayscale Image to uint8 Format 

 grayscale_img = uint8(grayscale_img): Converts the grayscale_img 

matrix, which is currently in double precision, into the uint8 format. 

Images in MATLAB are typically represented in uint8 format, where 

pixel values range from 0 to 255. 

Step 5: Invert the Grayscale Image 

 inverted_img = 255 - grayscale_img: Inverts the grayscale image by 

subtracting each pixel value from 255. Inversion means that dark pixels 

(near 0) become bright (near 255), and bright pixels (near 255) become 

dark (near 0). 
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Step 6: Display the Original, Grayscale, and Inverted Images 

 subplot(1, 3, 1): Creates a subplot layout where 3 images will be 

displayed in one row. 

o imshow(img): Displays the original RGB image in the first 

subplot. 

o title('Original Image'): Adds the title "Original Image" to the first 

subplot. 

 subplot(1, 3, 2): Moves to the second subplot. 

o imshow(grayscale_img): Displays the grayscale image. 

o title('Grayscale Image'): Adds the title "Grayscale Image" to the 

second subplot. 

 subplot(1, 3, 3): Moves to the third subplot. 

o imshow(inverted_img): Displays the inverted grayscale image. 

o title('Inverted Image'): Adds the title "Inverted Image" to the 

third subplot. 

Summary: 

1. The image is loaded into memory and its dimensions are determined. 

2. A grayscale image is created using loops to apply the grayscale 

conversion formula to each pixel. 

3. The grayscale image is converted to the appropriate format (uint8). 

4. The grayscale image is inverted by subtracting pixel values from 255. 

5. The original, grayscale, and inverted images are displayed side by side 

for comparison. 

 

Code: 

% Load an image 

img = imread('sample.jpeg'); 

 

% Initialize an empty matrix for the grayscale image 

[m, n, c] = size(img); 

grayscale_img = zeros(m, n); 

 

% Convert the image to grayscale using loops 

for i = 1:m 

    for j = 1:n 

        % Using the standard formula for grayscale conversion:  

        % grayscale = 0.299*R + 0.587*G + 0.114*B 

        grayscale_img(i, j) = 0.299 * img(i, j, 1) + 0.587 * img(i, j, 2) + 0.114 * 

img(i, j, 3); 
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    end 

end 

 

% Convert the grayscale image to uint8 format 

grayscale_img = uint8(grayscale_img); 

 

% Invert the grayscale image 

inverted_img = 255 - grayscale_img; 

 

% Display the original, grayscale, and inverted images 

subplot(1, 3, 1); 

imshow(img); 

title('Original Image'); 

 

subplot(1, 3, 2); 

imshow(grayscale_img); 

title('Grayscale Image'); 

 

subplot(1, 3, 3); 

imshow(inverted_img); 

title('Inverted Image'); 

 

O/P  
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Expt 

No. 

4 

ERRORS 
Date of 

Expt: 

 

Ex 4.1 

Procedure:  

 

Step 1: Define the number of terms: 

 Set n = 4, which determines how many terms will be used in the series 

expansion to approximate the exponential function. 

Step 2: Set the value of x: 

 Define x = 0.3, the value for which the exponential function 𝑒𝑥 will be 

calculated. 

Step 3: Initialize the computed exponential value: 

 Set expval = 1.0, which is the starting value for the series expansion of 

𝑒𝑥. This corresponds to the first term of the series (which is 1 for any 

exponential). 

Step 4: Initialize the first term of the series: 

 Set currentterm = 1.0, which represents the first term in the series 

expansion for 𝑒𝑥. 

Step 5: Start a loop to compute the series terms: 

 A for loop is used to iterate n times (from 1 to n): 

1. Update the current term: For each iteration, the next term in the 

series is calculated by multiplying the previous term (currentterm) 

by 𝑥 and dividing by the current iteration index i. 

2. Update the exponential approximation: Add the newly 

calculated term to expval, which accumulates the total value of the 

exponential approximation. 

Step 6: Compute the true value of 𝒆𝒙: 

 After the loop, use MATLAB's built-in function exp to compute the exact 

value of 𝑒0.3 and store it in trueval. 

Step 7: Calculate the error: 

 Compute the absolute error between the true value (trueval) and the 

approximated value (expval) using the formula: 

𝒆𝒓𝒓𝒐𝒓 = |𝒕𝒓𝒖𝒆𝒗𝒂𝒍 − 𝒆𝒙𝒑𝒗𝒂𝒍| 

Step 8: Display the results: 

 Use the fprintf function to print the following: 

o The true value of 𝑒0.3 (trueval) 
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o The computed approximated value (expval) 

o The absolute error between the two values (error) 

 

Code: 

n=4;                        % Number of terms to use in the series expansion 

x=0.3;                      % The value for which we want to compute the exponential 

expval=1.0;                 % Initialize the computed exponential value starting with 

the first term of the series 

currentterm=1.0;            % Initialize the first term in the exponential series 

 

for i = 1:n                 % Loop n times to compute the first n terms of the series 

    currentterm = currentterm * x/i;  % Calculate the next term in the series 

    expval=expval+currentterm;       % Update the running total of the 

exponential approximation 

end 

 

trueval=exp(0.3);           % Compute the true value of e^0.3 using MATLAB's 

built-in function 

error = abs(trueval - expval);      % Calculate the absolute error between the true 

value and our approximation 

 

fprintf('True Value: %f\n', trueval); 

fprintf('Exponential Value: %f\n', expval); 

fprintf('Error: %f\n', error); 

 

O/P: 

True Value: 1.349859 

Exponential Value: 1.349838 

Error: 0.000021 

________________________________________________________________

_________________ 

Ex 4.2 

Procedure: 

 

Taylor Series Expansion (First Example): 

1. Initialize the Number of Terms: 

o Set n = 4, which determines the number of terms in the Taylor 

series expansion for exe^xex. 

2. Set the Value of xxx: 

o Define x = 0.3, the value for which the exponential function 𝑒𝑥 

will be evaluated. 
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3. Initialize the Exponential Value: 

o Set expval = 1.0 to begin the approximation, which corresponds to 

the 0th term in the Taylor series (since 𝑒𝑥 starts with 1). 

4. Initialize the Current Term: 

o Set currentterm = 1.0, which will be used to calculate each 

subsequent term in the series. 

5. Loop to Compute Taylor Series Terms: 

o Start a loop to compute n terms of the Taylor series expansion: 

1. Update the Current Term: For each iteration, calculate the 

next term in the series using the previous term, multiplying 

by 𝑥/𝑖, where i is the current index. 

2. Update the Exponential Value: After calculating each 

term, add it to the current sum stored in expval(i+1). 

6. Calculate the True Value: 

o Use MATLAB’s built-in exp function to compute the actual value 

of 𝑒𝑥 at x=0.3x = 0.3x=0.3. 

7. Compute the Error: 

o Calculate the absolute difference between the true value (trueval) 

and the approximated value (expval) to obtain the error for each 

iteration. 

8. Display Results: 

o Print the true value, the approximated value at each iteration, and 

the associated error after each term is added. 

 

Taylor Series Expansion with Multiple Values of 𝒙 (Second Example): 

1. Initialize the Number of Terms: 

o Set n = 4, which determines the number of terms in the Taylor 

series expansion. 

2. Define Multiple Values of xxx: 

o Create a vector xall = [0.1, 0.5, 0.01, 0.02], which contains the 

different values of xxx for which the exponential function exe^xex 

will be computed. 

3. Initialize a Vector of Indices: 

o Define vec = [1:n] to represent the powers of xxx in the Taylor 

series. 

4. Initialize the Error Vector: 

o Set Error = [] to store the computed error for each value of xxx. 
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5. Loop Over All Values of xxx: 

o Start a loop that iterates over all elements of xall: 

1. Select the Current xxx: Pick the current xxx value from 

xall. 

2. Compute Terms of the Series: Use the powers of 𝑥 and the 

cumulative product to compute each term of the Taylor 

series. 

3. Cumulative Sum of the Series: Use cumsum to compute 

the running total for the Taylor series. 

4. Compute the True Value: Use MATLAB’s exp function to 

compute the actual value of 𝑒𝑥 for the current xxx. 

5. Calculate the Error: Compute the absolute error between 

the true value and the Taylor series approximation (using the 

last value from the cumulative sum). 

6. Store the Error: Append the error to the Error array. 

6. Plot the Error: 

o Plot the error as a function of the values in xall to visually compare 

the approximation errors for different xxx values. 

7. Display Results: 

o Print the true value, the approximated value for each value of xxx, 

and the error for each approximation. 

 

Code:  

 

n=4;                   % Number of terms in the Taylor series expansion 

x=0.3;                 % Value at which we want to evaluate the exponential function 

expval=1.0;            % Initialize the Taylor series expansion result to 1.0 

currentterm=1.0;       % Initialize the current term in the Taylor series to 1.0 (0th 

term) 

 

% Loop to compute the Taylor series approximation for exp(0.3) 

for i = 1:n 

    % Calculate the next term in the Taylor series using the previous term 

    currentterm = currentterm * x/i; 

    % Update the result array by adding the new term to the previous sum 

    expval(i+1) = expval(i) + currentterm; 

end 

 

trueval = exp(0.3); 

error = abs(trueval - expval); 
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fprintf('True Value: %f\n', trueval); 

fprintf('Exponential Value: %f\n', expval); 

fprintf('Error: %f\n', error); 

 

O/P: 

True Value: 1.349859 

Exponential Value: 1.000000 

Exponential Value: 1.300000 

Exponential Value: 1.345000 

Exponential Value: 1.349500 

Exponential Value: 1.349838 

Error: 0.349859 

Error: 0.049859 

Error: 0.004859 

Error: 0.000359 

Error: 0.000021 

 

 

Ex 4.3 

Procedure: 

 

Maclaurin Series Vector Approximation 

1. Initialize the Number of Terms: 

o Set n = 4, which represents the number of terms in the Maclaurin 

series expansion for approximating 𝑒𝑥. 

2. Define the Vector of xxx Values: 

o Create a vector xall = [0.1, 0.5, 0.01, 0.02], which contains the 

different values of xxx for which the exponential function 𝑒𝑥 will 

be computed using the series expansion. 

3. Initialize the Vector of Indices for the Series: 

o Set vec = [1:n], which creates a vector from 1 to n. This represents 

the powers of xxx and the factorial denominators in the Maclaurin 

series expansion. 

4. Initialize an Empty Error Array: 

o Set Error = [], which will store the approximation error for each 𝑥 

value in xall. 

5. Loop Through Each Value of xxx: 

o Start a loop that iterates over all elements in the xall vector: 
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1. Select the Current xxx: In each iteration, select the current 

value of 𝑥 from xall. 

2. Calculate the Terms of the Series: Compute the terms of 

the Maclaurin series using the formula: 

 
𝑥𝑘

𝑘!
, where k is the index from 1 to n, and calculate this 

for each value of 𝑥. 

3. Cumulative Sum for the Series: Use cumsum to compute 

the cumulative sum of the terms, which approximates  𝑒𝑥. 

The approximation is stored in expval. 

4. Compute the True Value: Use MATLAB’s built-in exp(x) 

function to calculate the actual value of 𝑒𝑥 for the current 

xxx. 

5. Compute the Error: Calculate the absolute error between 

the true value (trueval) and the final term in the cumulative 

sum (expval(end)). 

6. Store the Error: Append the computed error to the Error 

array for the current value of 𝑥. 

6. Plot the Error: 

o After looping through all xxx values, plot the Error array against 

the values in xall to visualize how the approximation error changes 

with different values of xxx. 

o Set labels for the x-axis (x values) and the y-axis (Error) on the 

plot. 

7. Display the Results: 

o After processing all xxx values, print the true value of exe^xex, the 

final value of the Maclaurin series approximation, and the error for 

the last iteration. 

 

Code: 

 

%maclarin_vector 

n=4; 

xall=[0.1, 0.5, 0.01, 0.02]; 

vec = [1:n]; 

Error=[]; 

 

for i = 1:length(xall)   

    x = xall(i);  % Picking the i-th element of xall 
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    terms = x.^vec ./ cumprod(vec);  % Calculating each term of the Taylor series 

    expval = 1 + cumsum(terms);  % Cumulative sum for the exponential 

approximation 

    trueval = exp(x);  % Actual exponential value 

    error = abs(trueval - expval(end));  % Error 

    Error = [Error; error];  % Storing the error for each x value 

end 

 

plot(xall, Error);  % Plotting the errors 

xlabel('x values');  % Fixing the xlabel and ylabel  

ylabel('Error'); 

 

fprintf('True Value: %f\n', trueval); 

fprintf('Exponential Value: %f\n', expval); 

fprintf('Error: %f\n', error); 

 

O/P: 

True Value: 1.020201340027 

Exponential Value: 1.020000000000 

Exponential Value: 1.020200000000 

Exponential Value: 1.020201333333 

Exponential Value: 1.020201340000 

Error: 0.000000000027 

 

 

 

 

Ex 4.3 

Procedure: 

 

Estimating the Square Root of 2 Using Heron’s Method (Iterative 

Approach) 

1. Initialize the Estimate: 

o Set the initial guess for the square root of 2: 

 𝑥 = 0.5, which is an arbitrary starting point for the iterative 

process. 

2. Start the Iterative Loop: 

o Use a loop to refine the estimate of the square root of 2. In this 

example, the loop runs for 7 iterations. 

3. Update the Estimate Using Heron’s Method: 
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o In each iteration, calculate the next approximation (xnew) for the 

square root of 2 using Heron's method:  

𝑥𝑛𝑒𝑤 =
1

2
(𝑥 +

1

2
) 

o This formula combines the current estimate with the result of 

dividing 2 by the current estimate to get closer to the true value of 

√2 

4. Calculate the Error: 

o After computing the new estimate, calculate the absolute difference 

between the current estimate (x) and the new estimate (xnew):  

𝑒𝑟𝑟 = |𝑥 −  𝑥𝑛𝑒𝑤| 

o This measures how much the estimate is changing with each 

iteration, providing an indication of convergence. 

5. Update the Estimate: 

o Set the current estimate xxx to the newly computed value 𝑥𝑛𝑒𝑤 so 

that the next iteration can further refine the estimate. 

6. Repeat the Process: 

o The loop continues for 7 iterations, progressively refining the 

estimate of √2. 

7. Display Results: 

o After the loop, you can use the fprintf function to print the results, 

such as the final estimate of the square root of 2, the true value, and 

the error. However, the current code has placeholders for printing 

exponential values instead of the square root estimate. 

Notes: 

 The loop will progressively refine the estimate for √2 with each iteration. 

Typically, the more iterations you perform, the closer the estimate will 

get to the true value of √2, which is approximately 1.414213562. 

 The current code uses 7 iterations, which is generally sufficient for a 

good approximation of the square root of 2. 

 

Code: 

% Initialize x with an initial guess for the square root of 2 

x = 0.5;  

 

% Start a loop that will iterate 7 times to refine the estimate 

for i = 1:7 

    % Compute the next estimate for the square root of 2 using Heron's method 
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    xnew = 1/2 * (x + 2/x);  

     

    % Calculate the absolute difference between the current estimate and the new 

estimate 

    % This gives an indication of how much the estimate is changing with each 

iteration 

    err = abs(x - xnew);  

     

    % Update the estimate x for the next iteration 

    x = xnew;  

end 

 

fprintf('True Value: %.12f\n', trueval); 

fprintf('Exponential Value: %.12f\n', expval); 

fprintf('Error: %.12f\n', error); 

 

O/P: 

True Value: 1.020201340027 

Exponential Value: 1.020000000000 

Exponential Value: 1.020200000000 

Exponential Value: 1.020201333333 

Exponential Value: 1.020201340000 

Error: 0.000000000027  

 

 

Ex 4.4 

Procedure: 

 

Approximating the Square Root of 2 Using Heron’s Method (While Loop 

Approach) 

1. Initialize the Estimate: 

o Set the initial guess for the square root of 2: 

 𝑥 = 0.5, which serves as the starting point for the iterative 

process. 

2. Set the Absolute Tolerance: 

o Define the absolute tolerance atol = 1.0e-4, which determines how 

close the approximation needs to be before the loop terminates. 

o This tolerance controls when the algorithm stops refining the 

estimate. Once the error is smaller than this tolerance, the 

approximation is considered sufficiently accurate. 

3. Initialize the Error: 
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o Set the error err = 1 to ensure the loop starts. Initially, the error is 

set to a value larger than the tolerance. 

4. Start the While Loop: 

o The loop will continue running as long as the error (err) is greater 

than the absolute tolerance (atol). 

5. Update the Estimate Using Heron’s Method: 

o Inside the loop, calculate the next approximation (xnew) for the 

square root of 2 using Heron's method: 

𝑥𝑛𝑒𝑤 =
1

2
(𝑥 +

1

2
) 

o This formula combines the current estimate with the result of 

dividing 2 by the current estimate to get closer to the true value of 

√2 

6. Calculate the Error: 

o After computing the new estimate, calculate the absolute difference 

between the current estimate (x) and the new estimate (xnew):  

𝑒𝑟𝑟 = |𝑥 −  𝑥𝑛𝑒𝑤| 

o This measures how much the estimate is changing with each 

iteration, providing an indication of convergence. 

7. Update the Estimate: 

o Set the current estimate xxx to the newly computed value 𝑥𝑛𝑒𝑤 so 

that the next iteration can further refine the estimate. 

8. Repeat the Process: 

o The loop continues for 7 iterations, progressively refining the 

estimate of √2. 

9. Display Results: 

o After the loop, you can use the fprintf function to print the results, 

such as the final estimate of the square root of 2, the true value, and 

the error. However, the current code has placeholders for printing 

exponential values instead of the square root estimate. 

 

Code: 

 

%% Heron's algorithm using a while loop to approximate the square root of 2 

 

x = 0.5; % Initialize x with an initial guess for the square root of 2 

atol = 1.0e-4; % Set the absolute tolerance for convergence 

err = 1; % Initialize the error to a non-zero value to ensure the loop starts 
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% Continue refining the estimate as long as the error is greater than the 

tolerance 

while (err > atol) 

    % Compute the next estimate for the square root of 2 using Heron's method 

    xnew = 1/2 * (x + 2/x); 

     

    % Calculate the absolute difference between the current estimate and the new 

estimate 

    err = abs(x - xnew); 

     

    % Update the estimate x for the next iteration 

    x = xnew;  

end 

 

% Display the final estimate for the square root of 2 and the error 

fprintf('Estimate for the square root of 2: %.12f\n', x); 

fprintf('Final error: %.12f\n', err); 

 

O/P: 

Estimate for the square root of 2: 1.414213562525 

Final error: 0.000020723415 

 

 

Ex 4.5 

Procedure: 

 

Approximating 𝒆𝟎.𝟏 Using the Compound Interest Formula 

1. Set Constants: 

o Define the target exponent: 

 𝑎 = 0.1, which represents the exponent for which you are 

calculating 𝒆𝟎.𝟏. 

o Define the step size for the approximation: 

 ℎ = 0.01, which is the incremental step size used in the 

iterative approximation process. 

o Calculate the number of iterations required: 

 𝑛 = 𝑎/ℎ, which calculates how many iterations are needed 

based on the step size ℎ. 

2. Calculate the True Value: 

o Use MATLAB’s built-in function exp(a) to calculate the true value 

of 𝑒0.1, which is stored in the variable truval. 
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o This true value will be used later to compute the error between the 

actual value and the approximation. 

3. Initialize the Approximation: 

o Set expval = 1, which is the starting value for the iterative 

approximation. This corresponds to the initial value of the 

exponential function when using the compound interest method. 

4. Iterate to Approximate 𝒆𝟎.𝟏: 

o Start a loop that runs n times (where n = a/h). 

o In each iteration, multiply the current approximation expval by   

(1 + ℎ), simulating the compound interest formula: 

 𝑒𝑥𝑝𝑣𝑎𝑙 = 𝑒𝑥𝑝𝑣𝑎𝑙 × (1 + ℎ) 

o This process iteratively builds the approximation of 𝒆𝟎.𝟏. 

5. Calculate the Error: 

o After completing the iterations, calculate the absolute error 

between the true value (truval) and the approximated value 

(expval): 

 𝑒𝑟𝑟 =∣ 𝑡𝑟𝑢𝑣𝑎𝑙 − 𝑒𝑥𝑝𝑣𝑎𝑙 ∣ 

o The error represents how far the approximation deviates from the 

true value. 

6. Display the Results: 

o Use disp and num2str to display the results: 

 The true value of 𝒆𝟎.𝟏 (calculated with MATLAB’s built-in 

function). 

 The approximated value obtained using the iterative method. 

 The absolute error between the true value and the 

approximation. 

 

Code: 

 

% Set constants 

a=0.1;           % Target exponent for e 

h=0.01;          % Step size for approximation 

n=a/h;           % Number of iterations required 

 

% Calculate the true value of e^0.1 for error comparison 

truval=exp(a); 

 

% Initialize the approximation value 

expval=1;        % Start value for iterative approximation 
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% Iterate to approximate e^0.1 using the compound interest formula 

for i =1:n 

    expval = expval*(1+h); 

end 

 

% Calculate the absolute error between true and approximated value 

err = abs(truval - expval); 

 

% Display the variables at the end 

disp('Results:'); 

disp(['True Value (truval) = ', num2str(truval)]); 

disp(['Approximated Value (expval) = ', num2str(expval)]); 

disp(['Absolute Error (err) = ', num2str(err)]); 

 

O/P: 

Results: 

True Value (truval) = 1.1052 

Approximated Value (expval) = 1.1046 

Absolute Error (err) = 0.00054879 

  

 

Ex 4.6 

Procedure: 

Code: 

 

a = 0.1; % Define the value of 'a' 

trueval = exp(a); % Calculate the true value of e^a 

 

expval = 1; % Initialize the expval to 1 (assuming we're trying to calculate 

exp(a) using a simple compound interest approximation) 

 

 

% Preallocate arrays for efficiency 

hall = zeros(1,2); 

errall = zeros(1,2); 

 

% Start a loop for two iterations 

for i = 1:2 

    % Compute the step size 'h' 

    h = 10^(-i); 

     

    % Update the expval using the compound interest approximation 
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    expval = expval * (1 + a/h); 

     

    % Compute the absolute error between true value and approximate value 

    err = abs(trueval - expval); 

     

    % Store the values of 'h' and 'err' in arrays 

    hall(i) = h; 

    errall(i) = err; 

end 

 

% Display the arrays at the end 

disp(['hall = ', num2str(hall)]); 

disp(['errall = ', num2str(errall)]); 

 

% Plot error against h on a log-log scale 

loglog(hall, errall, '--bo'); 

 

% Modify x-axis ticks to include more gridlines 

set(gca, 'XTick', [10^-2, 5*10^-2, 10^-1, 5*10^-1, 1]); 

 

% Enable the grid 

grid on; 

 

% Add labels for clarity 

xlabel('Step size (h)'); 

ylabel('Absolute error'); 

title('Error Analysis for e^a Approximation'); 

 

% Display the absolute errors for each step size 

for i = 1:length(hall) 

    disp(['Absolute error for h = ', num2str(hall(i)), ': ', num2str(errall(i))]); 

end 

 

O/P: 

hall = 0.1        0.01 

errall = 0.894829      20.8948 

Absolute error for h = 0.1: 0.89483 

Absolute error for h = 0.01: 20.8948 

 

 

  

 

 



44 
 

Ex 4.7 

Procedure: 

 

Approximating Sin, Cos, and Tan Using Taylor Series 

1. Set the Target Value: 

o Define 𝑎 = 0.1, which is the value for which the sine, cosine, and 

tangent functions will be approximated. 

2. Calculate the True Values: 

o Use MATLAB’s built-in trigonometric functions to calculate the 

exact values for 𝑠𝑖𝑛(𝑎), 𝑐𝑜𝑠(𝑎), 𝑎𝑛𝑑 𝑡𝑎𝑛(𝑎), storing them in 

truval_sin, truval_cos, and truval_tan, respectively. 

3. Approximate 𝒔𝒊𝒏(𝒂) Using Taylor Series: 

o Use the first three terms of the Taylor series expansion for 

 𝑠𝑖 𝑛(𝑎) ≈ 𝑎 −  
𝑎3

3!
+

𝑎5

5!
 

o This provides a polynomial approximation of 𝑠𝑖𝑛(𝑎), stored in 

approxVal_sin. 

4. Approximate 𝒄𝒐𝒔 (𝒂) Using Taylor Series: 

o Use the first three terms of the Taylor series expansion for 

 cos(𝑎) ≈ 1 −  
𝑎2

2!
+

𝑎4

4!
 

o This provides a polynomial approximation of 𝑐𝑜𝑠(𝑎), stored in 

approxVal_cos. 

5. Approximate 𝒕𝒂𝒏 (𝒂) 

o Use the previously calculated approximations of 

𝑠𝑖𝑛(𝑎), 𝑐𝑜𝑠(𝑎), 𝑎𝑛𝑑 𝑡𝑎𝑛(𝑎) 

tan(𝑎) ≈  
sin(𝑎)

cos(𝑎)
 

o Store this value in approxVal_tan. 

6. Calculate the Absolute Errors: 

o Compute the absolute error between the true values and the 

approximated values for 𝑠𝑖𝑛(𝑎), 𝑐𝑜𝑠(𝑎), 𝑎𝑛𝑑 𝑡𝑎𝑛(𝑎): 

 𝑒𝑟𝑟𝑜𝑟 =∣ 𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒 − 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 ∣ 

o These errors are stored in err_sin, err_cos, and err_tan. 

7. Display the Results: 

o Use the disp function to print: 

 The true values 𝑠𝑖𝑛(𝑎), 𝑐𝑜𝑠(𝑎), 𝑎𝑛𝑑 𝑡𝑎𝑛(𝑎), 

 The approximated values using the Taylor series expansions, 
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 The absolute errors for each function. 

 

Summary: 

This procedure uses the first three terms of the Taylor series to approximate 

𝑠𝑖𝑛(𝑎), 𝑐𝑜𝑠(𝑎), 𝑎𝑛𝑑 𝑡𝑎𝑛(𝑎), for a given 𝑎 = 0.1. The true values are calculated 

using MATLAB's built-in trigonometric functions, and the absolute errors 

between the true and approximated values are computed and displayed. 

 

Code: 

 

% Set constant 

a = 0.1;  % Target value 

 

% Calculate the true values for sin, cos, and tan of a 

truval_sin = sin(a); 

truval_cos = cos(a); 

truval_tan = tan(a); 

 

% Approximate sin(a) using the first 3 terms of its Taylor series 

approxVal_sin = a - (a^3)/factorial(3) + (a^5)/factorial(5); 

 

% Approximate cos(a) using the first 3 terms of its Taylor series 

approxVal_cos = 1 - (a^2)/factorial(2) + (a^4)/factorial(4); 

 

% Approximate tan(a) using the ratio of approximated sin(a) and cos(a) 

approxVal_tan = approxVal_sin / approxVal_cos; 

 

% Calculate the absolute errors 

err_sin = abs(truval_sin - approxVal_sin); 

err_cos = abs(truval_cos - approxVal_cos); 

err_tan = abs(truval_tan - approxVal_tan); 

 

% Display the results 

disp('Results:'); 

disp(['a = ', num2str(a)]); 

 

disp('SIN:'); 

disp(['True Value of sin(a) = ', num2str(truval_sin)]); 

disp(['Approximated Value of sin(a) = ', num2str(approxVal_sin)]); 

disp(['Absolute Error for sin = ', num2str(err_sin)]); 

disp('---'); 

 

disp('COS:'); 
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disp(['True Value of cos(a) = ', num2str(truval_cos)]); 

disp(['Approximated Value of cos(a) = ', num2str(approxVal_cos)]); 

disp(['Absolute Error for cos = ', num2str(err_cos)]); 

disp('---'); 

 

disp('TAN:'); 

disp(['True Value of tan(a) = ', num2str(truval_tan)]); 

disp(['Approximated Value of tan(a) = ', num2str(approxVal_tan)]); 

disp(['Absolute Error for tan = ', num2str(err_tan)]); 

 

O/P: 

Results: 

a = 0.1 

SIN: 

True Value of sin(a) = 0.099833 

Approximated Value of sin(a) = 0.099833 

Absolute Error for sin = 1.9839e-11 

--- 

COS: 

True Value of cos(a) = 0.995 

Approximated Value of cos(a) = 0.995 

Absolute Error for cos = 1.3886e-09 

--- 

TAN: 

True Value of tan(a) = 0.10033 

Approximated Value of tan(a) = 0.10033 

Absolute Error for tan = 1.2009e-10 
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Expt 

No. 

5 

NUMERICAL DIFERENTIATION 
Date of 

Expt: 

 

Ex 5.1 

Procedure: 

 

Numerical Derivative Using Forward Difference 

1. Define the Value of a: 

o Set 𝑎 = 1, which is the point at which the numerical derivative of 

𝑓(𝑥) =  tan−1(𝑥) will be calculated. 

2. Calculate the True Derivative: 

o The derivative of 𝑓(𝑥) =  tan−1(𝑥) is 𝑓′(𝑥) =  
1

1+𝑥2
 

o Compute the true derivative at 𝑥 = 1, using the formula: 

𝑡𝑟𝑢𝑒𝑣𝑎𝑙 =  
1

1+𝑎2
 

o Store the result in trueval for comparison with the numerical 

approximation. 

3. Set the Step Size: 

o Define ℎ =  1.0 × 10−4, which is the step size used in the forward 

difference approximation. 

4. Apply the Forward Difference Formula: 

o Use the forward difference formula to approximate the derivative 

of 𝑓(𝑥) =  tan−1(𝑥) at 𝑥 = 1, 

𝑓′(𝑥)  ≈  
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

o In this case, 𝑓(𝑥) =  tan−1(𝑥) at 𝑥 = 1, so the formula becomes:  

𝑓𝑤𝑑𝑑𝑖𝑓𝑓 ≈  
tan−1(𝑎 + ℎ) − tan−1(𝑎)

ℎ
 

o Store the result in fwddiff. 

5. Calculate the Error: 

o Compute the absolute error between the true derivative (trueval) 

and the forward difference approximation (fwddiff):  

𝑒𝑟𝑟𝑓𝑤𝑑 =  |𝑡𝑟𝑢𝑒𝑣𝑎𝑙 −  𝑓𝑤𝑑𝑑𝑖𝑓𝑓| 

6. Display the Results: 

o Use the fprintf function to print the following: 
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 The true value of the derivative at 𝑥 = 1, 

 The forward difference approximation of the derivative, 

 The absolute error between the true and approximated 

derivative. 

 

Code: 

% Calculate the numerical derivative of f(x) = atan(x) at x=1 using forward 

difference. 

 

a=1;                % Set x=1 

trueval=1/(1+a^2);  % True derivative at x=1 

 

h=1.0e-4;           % Step size for approximation 

 

% Forward difference formula for derivative 

fwddiff = (atan(a+h)-atan(a))/h; 

 

% Absolute error between true and approximated derivative 

errfwd = abs(trueval-fwddiff); 

 

% Display results 

fprintf('True value of the derivative at x=1: %.12f\n', trueval); 

fprintf('Forward difference approximation: %.12f\n', fwddiff); 

fprintf('Absolute error: %.12f\n',errfwd ); 

 

O/P: 

True value of the derivative at x=1: 0.500000000000 

Forward difference approximation: 0.499975000834 

Absolute error: 0.000024999166 

  

Ex 5.2 

Procedure: 

 

Numerical Derivative Using Different Difference Methods 

1. Set the Value of 𝒂: 

o Define 𝑎 = 1, which is the point at which the numerical derivative 

of 𝑓(𝑥) =  tan−1(𝑥) will be calculated. 

2. Calculate the True Derivative: 

o The derivative of 𝑓(𝑥) =  tan−1(𝑥) is 𝑓′(𝑥) =  
1

1+𝑥2
 

o Compute the true derivative at 𝑥 = 1 using the formula:  
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𝑡𝑟𝑢𝑒𝑣𝑎𝑙 =  
1

1 + 𝑎2 

o Store the result in trueval for comparison with the numerical 

approximations. 

3. Set the Step Size: 

o Define ℎ =  1.0 × 10−4, which is the small increment used in the 

difference methods to approximate the derivative. 

4. Apply the Forward Difference Method: 

o Use the forward difference formula to approximate the derivative:  

𝑓′(𝑥)  ≈  
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

o In this case, 𝑓(𝑥) =  tan−1(𝑥), so the forward difference becomes:  

𝑓𝑤𝑑𝑑𝑖𝑓𝑓 ≈  
tan−1(𝑎 + ℎ) − tan−1(𝑎)

ℎ
 

o Store the result in fwddiff, and compute the error:  

𝑒𝑟𝑟𝑓𝑤𝑑 =  |𝑡𝑟𝑢𝑒𝑣𝑎𝑙 −  𝑓𝑤𝑑𝑑𝑖𝑓𝑓| 

5. Apply the Central Difference Method: 

o Use the Central difference formula to approximate the derivative:  

𝑓′(𝑥)  ≈  
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ
 

o In this case, 𝑓(𝑥) =  tan−1(𝑥), so the central difference becomes:  

𝑐𝑒𝑛𝑡𝑑𝑖𝑓𝑓 ≈  
tan−1(𝑎 + ℎ) − tan−1(𝑎 − ℎ)

2ℎ
 

o Store the result in centdiff, and compute the error:  

𝑒𝑟𝑟𝑐𝑒𝑛𝑡 =  |𝑡𝑟𝑢𝑒𝑣𝑎𝑙 −  𝑐𝑒𝑛𝑡𝑑𝑖𝑓𝑓| 

6. Apply the Backward Difference Method: 

o Use the backward difference formula to approximate the 

derivative:  

𝑓′(𝑥)  ≈  
𝑓(𝑥) − 𝑓(𝑥 − ℎ)

ℎ
 

o In this case, 𝑓(𝑥) =  tan−1(𝑥), so the backward difference 

becomes:  
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𝑏𝑎𝑐𝑘𝑑𝑖𝑓𝑓 ≈  
tan−1(𝑎) − tan−1(𝑎 − ℎ)

ℎ
 

o Store the result in backdiff, and compute the error:  

𝑒𝑟𝑟𝑓𝑤𝑑 =  |𝑡𝑟𝑢𝑒𝑣𝑎𝑙 −  𝑏𝑎𝑐𝑘𝑑𝑖𝑓𝑓| 

7. Display the Results: 

o Use disp to print: 

 The true value of the derivative at 𝑥 = 1, 

 The forward difference approximation and its error, 

 The central difference approximation and its error, 

 The backward difference approximation and its error. 

 

Code: 

% Calculate the numerical derivative of f(x) = atan(x) at x=1 using different 

difference methods. 

a = 1;               % Set x=1 

trueval = 1/(1+a^2); % True derivative at x=1 

h = 1.0e-4;          % Step size for approximation 

 

% Forward difference formula for derivative 

fwddiff = (atan(a+h) - atan(a))/h; 

errfwd = abs(trueval - fwddiff);  % Error for forward difference 

 

% Central difference formula for derivative 

centdiff = (atan(a+h) - atan(a-h))/(2*h); 

errcent = abs(trueval - centdiff);  % Error for central difference 

 

% Backward difference formula for derivative 

backdiff = (atan(a) - atan(a-h))/h; 

errback = abs(trueval - backdiff);  % Error for backward difference 

 

% Display results 

disp(['True value of the derivative at x=1: ', num2str(trueval)]); 

disp('---'); 

disp(['Forward difference approximation: ', num2str(fwddiff)]); 

disp(['Error (Forward): ', num2str(errfwd)]); 

disp('---'); 

disp(['Central difference approximation: ', num2str(centdiff)]); 

disp(['Error (Central): ', num2str(errcent)]); 

disp('---'); 

disp(['Backward difference approximation: ', num2str(backdiff)]); 
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disp(['Error (Backward): ', num2str(errback)]); 

 

O/P: 

True value of the derivative at x=1: 0.5 

--- 

Forward difference approximation: 0.49998 

Error (Forward): 2.4999e-05 

--- 

Central difference approximation: 0.5 

Error (Central): 8.3317e-10 

--- 

Backward difference approximation: 0.50003 

Error (Backward): 2.5001e-05 

  

Ex 5.3 

Procedure: 

 

Numerical Differentiation with Various Methods 

1. Define Step Sizes: 

o Create a vector h that holds step sizes from 10−1 𝑡𝑜 10−8 , using 

powers of 10:  

ℎ =  10. ^[−1: −2: −8]; 
o These step sizes will be used for the numerical differentiation 

methods. 

2. Define the Point for Derivative Calculation: 

o Set 𝑎 = 2, which is the point where the derivative of the function 

𝑓(𝑥)  =  𝑥𝑥 will be calculated. 

3. Symbolic Differentiation: 

o Use symbolic differentiation to compute the true derivative of the 

function 𝑓(𝑥)  =  𝑥𝑥: 

1. Declare x as a symbolic variable using syms 𝑥. 

2. Differentiate AssignmentDiffFun1(x) symbolically with 

respect to 𝑥. 

3. Substitute the value 𝑎 = 2 into the symbolic derivative and 

convert the result to a double precision number for 

comparison: 

𝑡𝑟𝑢𝑒𝑣𝑎𝑙1_𝑎𝑡_𝑎 =  𝑑𝑜𝑢𝑏𝑙𝑒(𝑠𝑢𝑏𝑠(𝑡𝑟𝑢𝑒𝑣𝑎𝑙1, 𝑥, 𝑎))   
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4. Manual Calculation of the Derivative: 

o Manually calculate the true derivative of the function 𝑓(𝑥)  =

 𝑥𝑥  𝑎𝑡 𝑥 = 2 using the formula:  

𝑓′(𝑥) =  𝑥𝑥 × (1 + 𝑙𝑜𝑔 (𝑥)) 

o Store the manually calculated result in trueval2. 

5. Forward Difference Approximation: 

o Use the forward difference method to approximate the derivative:  

o Compute the forward difference for each step size in h and 

calculate the error 

6. Central Difference Approximation: 

o Use the central difference method to approximate the derivative:  

o Compute the central difference for each step size in h and calculate 

the error 

7. Backward Difference Approximation: 

o Use the backward difference method to approximate the derivative:  

o Compute the backward difference for each step size in h and 

calculate the error 

8. Display the Results: 

o Print the true derivative values: 

 The symbolic derivative calculated using MATLAB’s built-

in functions (trueval1_at_a). 

 The manually calculated derivative (trueval2). 

o Print the derivatives obtained from the forward, central, and 

backward difference methods. 

9. Plot the Errors: 

o Create a log-log plot to visualize the errors for each method: 

 Plot the forward difference errors in red. 

 Plot the central difference errors in green. 

 Plot the backward difference errors in blue. 

o Add labels, title, and a legend to the plot for clarity: 

 x-axis: Step Size (h), 

 y-axis: Error, 

 Title: Error in Differentiation Methods. 

o Enable grid for better visualization and turn off hold to release the 

plot. 

 



53 
 

Function Definition: 

 AssignmentDiffFun1: 

o This function defines the function 𝑓(𝑥)  =  𝑥𝑥, which is being 

differentiated: 

 

function fval = AssignmentDiffFun1(x) 

    fval = (x.^x); 

end 

 

Code: 

% Define a vector of step sizes (h) using powers of 10 from -1 to -8 

h = 10.^[-1:-2:-8]; 

% Define the x value at which the derivative is to be estimated 

a = 2; 

 

syms x;  % Declare x as a symbolic variable 

 

trueval1 = diff(AssignmentDiffFun1(x), x);  % Differentiate symbolically 

trueval1_at_a = double(subs(trueval1, x, a))  % Substitute 'a' for 'x' and convert 

to double 

trueval2 = (a^a)*(1+log(a)) 

 

% Calculate forward difference approximation of derivative and associated error 

fwddiff = (AssignmentDiffFun1(a+h) - AssignmentDiffFun1(a))./h; 

errfwd = abs(trueval2 - fwddiff); 

 

% Calculate central difference approximation of derivative and associated error 

centdiff = (AssignmentDiffFun1(a+h) - AssignmentDiffFun1(a-h))./(2*h); 

errcent = abs(trueval2 - centdiff); 

 

% Calculate backward difference approximation of derivative and associated 

error 

backdiff = (AssignmentDiffFun1(a) - AssignmentDiffFun1(a-h))./h; 

errback = abs(trueval2 - backdiff); 

 

% Display actual derivative values calculated through symbolic differentiation 

and manual calculation 

fprintf('Actual Integral (By In-built Integral Formula in MATLAB: %.12f\n', 

trueval1_at_a); 

fprintf('Actual Derivative (By manually solving): %.12f\n', trueval2); 

fprintf('\n'); 

fprintf('Derivative obtained by Forward Difference Method: %.12f\n:', fwddiff); 

fprintf('\n'); 
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fprintf('Derivative obtained by Central Difference Method: %.12f\n:', centdiff); 

fprintf('\n'); 

fprintf('Derivative obtained by Backward Difference Method: %.12f\n:', 

backdiff); 

 

% Plot errors for each differentiation method on a log-log scale 

loglog(h,errfwd,'r'); % Forward difference errors in red 

hold on; % Retain current plot when adding more lines 

loglog(h,errcent,'g'); % Central difference errors in green 

loglog(h,errback,'b'); % Backward difference errors in blue 

 

% Add labels, title, and legend to the plot 

xlabel('Step Size (h)'); 

ylabel('Error'); 

title('Error in Differentiation Methods'); 

legend('Forward Difference', 'Central Difference', 'Backward Difference'); 

 

% Enable grid on plot for better visibility of data points 

grid on; 

% Release the current plot 

hold off; 

 

Function File: 

function fval = AssignmentDiffFun1(x) 

    fval = (x.^x); 

end 

 

O/P: 

Actual Derivative (By In-built Differentiation Formula in MATLAB: 

6.772588722240 

Actual Derivative (By manually solving): 6.772588722240 

 

:Derivative obtained by Forward Difference Method: 7.496380917422 

:Derivative obtained by Forward Difference Method: 6.779326982042 

:Derivative obtained by Forward Difference Method: 6.772656057752 

:Derivative obtained by Forward Difference Method: 6.772589387083 

 

:Derivative obtained by Central Difference Method: 6.820338739119 

:Derivative obtained by Central Difference Method: 6.772593484604 

:Derivative obtained by Central Difference Method: 6.772588722792 

:Derivative obtained by Central Difference Method: 6.772588720949 

 

:Derivative obtained by Backward Difference Method: 6.144296560815 
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:Derivative obtained by Backward Difference Method: 6.765859987167 

:Derivative obtained by Backward Difference Method: 6.772521387832 

:Derivative obtained by Backward Difference Method: 6.772588054815 

 

 
Ex 5.4 

Code: 

 

% Define a vector of step sizes (h) using powers of 10 from -1 to -8 

h = 10.^[-6:-1:-10]; 

% Define the x value at which the derivative is to be estimated 

a = 2; 

 

syms x;  % Declare x as a symbolic variable 

 

trueval1 = diff(AssignmentDiffFun2(x), x);  % Differentiate symbolically 

trueval1_at_a = double(subs(trueval1, x, a));  % Substitute 'a' for 'x' and convert 

to double 

trueval2 = (a^sin(a))*((sin(a)/a) + log(a)*cos(a))  + ((sin(a))^a)*(a*cot(a) + 

log(sin(a))); 

 

% Calculate forward difference approximation of derivative and associated error 

fwddiff = (AssignmentDiffFun2(a+h) - AssignmentDiffFun2(a))./h; 

errfwd = abs(trueval2 - fwddiff); 

 

% Calculate central difference approximation of derivative and associated error 

centdiff = (AssignmentDiffFun2(a+h) - AssignmentDiffFun2(a-h))./(2*h); 

errcent = abs(trueval2 - centdiff); 
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% Calculate backward difference approximation of derivative and associated 

error 

backdiff = (AssignmentDiffFun2(a) - AssignmentDiffFun2(a-h))./h; 

errback = abs(trueval2 - backdiff); 

 

% Display actual derivative values calculated through symbolic differentiation 

and manual calculation 

fprintf('Actual Derivative (By In-built Integral Formula in MATLAB: %.12f\n', 

trueval1_at_a); 

fprintf('Actual Derivative (By manually solving): %.12f\n', trueval2); 

fprintf('\n'); 

fprintf('Derivative obtained by Forward Difference Method: %.12f\n:', fwddiff); 

fprintf('\n'); 

fprintf('Derivative obtained by Central Difference Method: %.12f\n:', centdiff); 

fprintf('\n'); 

fprintf('Derivative obtained by Backward Difference Method: %.12f\n:', 

backdiff); 

 

% Plot errors for each differentiation method on a log-log scale 

loglog(h,errfwd,'r'); % Forward difference errors in red 

hold on; % Retain current plot when adding more lines 

loglog(h,errcent,'g'); % Central difference errors in green 

loglog(h,errback,'b'); % Backward difference errors in blue 

 

% Add labels, title, and legend to the plot 

xlabel('Step Size (h)'); 

ylabel('Error'); 

title('Error in Differentiation Methods'); 

legend('Forward Difference', 'Central Difference', 'Backward Difference'); 

 

% Enable grid on plot for better visibility of data points 

grid on; 

% Release the current plot 

hold off; 

 

Function File: 

function fval = AssignmentDiffFun2(x) 

    fval = (x.^sin(x)) + ((sin(x)).^x); 

end 

 

O/P: 

Actual Derivative (By In-built Differentiation Formula in MATLAB: -

0.523278215751 
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Actual Derivative (By manually solving): -0.523278215751 

 

:Derivative obtained by Forward Difference Method: -0.523280342613 

:Derivative obtained by Forward Difference Method: -0.523278429476 

:Derivative obtained by Forward Difference Method: -0.523278220754 

:Derivative obtained by Forward Difference Method: -0.523278309572 

:Derivative obtained by Forward Difference Method: -0.523279197751 

: 

:Derivative obtained by Central Difference Method: -0.523278215869 

:Derivative obtained by Central Difference Method: -0.523278216313 

:Derivative obtained by Central Difference Method: -0.523278198550 

:Derivative obtained by Central Difference Method: -0.523278309572 

:Derivative obtained by Central Difference Method: -0.523279197751 

: 

:Derivative obtained by Backward Difference Method: -0.523276089126 

:Derivative obtained by Backward Difference Method: -0.523278003151 

:Derivative obtained by Backward Difference Method: -0.523278176345 

:Derivative obtained by Backward Difference Method: -0.523278309572 

:Derivative obtained by Backward Difference Method: -0.523279197751 

 

 
 

Ex 5.5 

Code: 

 

% Define a vector of step sizes (h) using powers of 10 from -1 to -8 

h = 10.^[-4:-1:-9]; 

% Define the x value at which the derivative is to be estimated 
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a = 2; 

 

syms x;  % Declare x as a symbolic variable 

 

trueval1 = diff(AssignmentDiffFun3(x), x);  % Differentiate symbolically 

trueval1_at_a = double(subs(trueval1, x, a));  % Substitute 'a' for 'x' and convert 

to double 

trueval2 = (a+1/a)^a*(((a^2 - 1)/(a^2 + 1)) + log(a+1/a)) + 

a^(1+1/a)*(((1/a)+(1/(a^2)) - (log(a)/(a^2)))); 

 

% Calculate forward difference approximation of derivative and associated error 

fwddiff = (AssignmentDiffFun3(a+h) - AssignmentDiffFun3(a))./h; 

errfwd = abs(trueval2 - fwddiff); 

 

% Calculate central difference approximation of derivative and associated error 

centdiff = (AssignmentDiffFun3(a+h) - AssignmentDiffFun3(a-h))./(2*h); 

errcent = abs(trueval2 - centdiff); 

 

% Calculate backward difference approximation of derivative and associated 

error 

backdiff = (AssignmentDiffFun3(a) - AssignmentDiffFun3(a-h))./h; 

errback = abs(trueval2 - backdiff); 

 

% Display actual derivative values calculated through symbolic differentiation 

and manual calculation 

fprintf('Actual Derivative (By In-built Differentiation Formula in MATLAB: 

%.12f\n', trueval1_at_a); 

fprintf('Actual Derivative (By manually solving): %.12f\n', trueval2); 

fprintf('\n'); 

fprintf('Derivative obtained by Forward Difference Method: %.12f\n:', fwddiff); 

fprintf('\n'); 

fprintf('Derivative obtained by Central Difference Method: %.12f\n:', centdiff); 

fprintf('\n'); 

fprintf('Derivative obtained by Backward Difference Method: %.12f\n:', 

backdiff); 

 

% Plot errors for each differentiation method on a log-log scale 

loglog(h,errfwd,'r'); % Forward difference errors in red 

hold on; % Retain current plot when adding more lines 

loglog(h,errcent,'g'); % Central difference errors in green 

loglog(h,errback,'b'); % Backward difference errors in blue 

 

% Add labels, title, and legend to the plot 
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xlabel('Step Size (h)'); 

ylabel('Error'); 

title('Error in Differentiation Methods'); 

legend('Forward Difference', 'Central Difference', 'Backward Difference'); 

 

% Enable grid on plot for better visibility of data points 

grid on; 

% Release the current plot 

hold off; 

 

Function File: 

function fval = AssignmentDiffFun3(x) 

    fval = ((x + 1./x).^x) + x.^(1+1./x); 

end 

 

O/P: 

Actual Derivative (By In-built Differentiation Formula in MATLAB: 

11.108008346039 

Actual Derivative (By manually solving): 11.108008346039 

 

:Derivative obtained by Forward Difference Method: 11.108903793708 

:Derivative obtained by Forward Difference Method: 11.108097885248 

:Derivative obtained by Forward Difference Method: 11.108017302419 

:Derivative obtained by Forward Difference Method: 11.108009232430 

:Derivative obtained by Forward Difference Method: 11.108008202143 

:Derivative obtained by Forward Difference Method: 11.108008735050 

: 

:Derivative obtained by Central Difference Method: 11.108008408600 

:Derivative obtained by Central Difference Method: 11.108008346739 

:Derivative obtained by Central Difference Method: 11.108008346916 

:Derivative obtained by Central Difference Method: 11.108008335370 

:Derivative obtained by Central Difference Method: 11.108008113325 

:Derivative obtained by Central Difference Method: 11.108008735050 

: 

:Derivative obtained by Backward Difference Method: 11.107113023492 

:Derivative obtained by Backward Difference Method: 11.107918808229 

:Derivative obtained by Backward Difference Method: 11.107999391413 

:Derivative obtained by Backward Difference Method: 11.108007438310 

:Derivative obtained by Backward Difference Method: 11.108008024507 

:Derivative obtained by Backward Difference Method: 11.108008735050 
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Expt 

No. 

6 

NUMERICAL INTEGRATION 
Date of 

Expt: 

 

Ex 6.1 

Procedure: 

 

Numerical Integration Using the Trapezoidal Rule 

1. Define the Limits of Integration: 

o Set a = π/4 and b = π/2, which represent the lower and upper limits 

for the integral. 

2. Calculate the True Value of the Integral (Method 1): 

o Use MATLAB’s built-in integral function to calculate the true 

value of the integral numerically: 

o      trueval1 = integral(@AssignmentIntFun1, a, b) 

3. Calculate the True Value of the Integral (Method 2): 

o Manually solve the integral using the given formula: 

trueval2 = (2 * log|sin²(b) - 4sin(b) + 5| + 7atan(sin(b) - 2)) - (2 * 

log|sin²(a) - 4sin(a) + 5| + 7atan(sin(a) - 2)) 

4. Define an Array of n Values: 

o Set up an array of values for n (the number of sub intervals for the 

trapezoidal rule): n_values = [2, 5, 20, 40, 80, 160] 

o This array will be used to compute the integral with different 

resolutions (i.e., with increasing numbers of sub intervals). 

5. Initialize an Array to Store Errors: 

o Create an array errors initialized to zero, which will store the error 

values for each n: 

     errors = zeros(size(n_values)) 

6. Loop Over Different nnn Values: 

o Start a loop that iterates over each value in n_values: 

1. Set n: For each iteration, set n to the current number of sub 

intervals from n_values. 

2. Calculate Step Size: Compute the step size h for the 

trapezoidal rule: h = (b - a) / n 

3. Create xxx Vector: Create a vector xvec of n+1n+1n+1 

points from a to b spaced by h. 
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4. Evaluate Function: Compute the function values at each 

point in xvec using AssignmentIntFun1(xvec) and store 

them in fvec. 

5. Apply the Trapezoidal Rule: 

 Initialize an array interval to store the contribution of 

each interval. 

 Use the trapezoidal rule formula to compute the 

integral for each sub interval:  

linterval(i) = (h/2) * (fvec(i) + fvec(i+1)) 

 Sum up the contributions of all intervals to get the 

total integral approximation ItrapI_{\text{trap}}Itrap. 

6. Compute the Error: 

 Calculate the absolute error for the current n by 

comparing the numerical integral  

errors(idx) = |trueval1 - I_trap| 

7. Plot the Error vs. n in a Log-Log Plot: 

o Create a log-log plot to visualize how the error decreases as n 

increases: 

 x-axis: Number of sub-intervals n, 

 y-axis: Absolute error. 

o Plot the error for each value of n and add labels, title, and grid to 

the plot for clarity. 

8. Display Results: 

o Use the fprintf function to display: 

 The true value of the integral calculated using MATLAB’s 

built-in integral function (trueval1). 

 The manually calculated integral value (trueval2). 

 The computed integral using the trapezoidal rule (I_trap). 

 The array of errors for each n. 

Code: 

a = pi/4; 

b = pi/2; 

 

trueval1 = integral(@AssignmentIntFun1, a, b); 

 

trueval2 = (2*log(abs(sin(b).^2 - 4*sin(b) + 5)) + 7*atan(sin(b) - 2)) - 

(2*log(abs(sin(a).^2 - 4*sin(a) + 5)) + 7*atan(sin(a) - 2)); 

 

n_values = [2, 5, 20, 40, 80, 160]; % Array of n values 



63 
 

errors = zeros(size(n_values)); % Array to store error for each n value 

 

% Loop over different n values 

for idx = 1:length(n_values) 

    n = n_values(idx); 

     

    % Trapezoidal rule calculation 

    h = (b-a)/n; 

    xvec = a:h:b; 

    fvec = AssignmentIntFun1(xvec); 

    linterval = zeros(n,1); 

     

    for i = 1:n 

        linterval(i) = h/2 * (fvec(i) + fvec(i+1)); 

        disp(linterval(i))   

    end 

     

    I_trap = sum(linterval); 

     

    % Compute and store error for current n 

value 

    errors(idx) = abs(trueval1 - I_trap);  

end 

 

% Plot error versus n in log-log plot 

loglog(n_values, errors, 'o-', 'LineWidth', 2) 

xlabel('Number of Sub intervals') 

ylabel('Absolute Error') 

title('Error Analysis of Trapezoidal Rule') 

grid on 

 

fprintf('Actual Integral (By In-built Integral Formula in MATLAB): %.12f\n', 

trueval1) 

fprintf('Actual Integral (By manually solving): %.12f\n', trueval2) 

fprintf('Computed Integral: %.12f\n', I_trap) 

disp('Absolute Error:') 

disp(errors) 

 

Function File: 

function fval = AssignmentIntFun1(x) 

    fval = (2.*sin(2*x) - cos(x))./(6 - cos(x).^2 - 4.*sin(x)); 

end 
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O/P: 

 

Actual Integral (By In-built Integral Formula in MATLAB): 0.310320165564 

Actual Integral (By manually solving): 0.310320165564 

Computed Integral: 0.310315957052 

Absolute Error: 

    0.0276    0.0043    0.0003    0.0001    0.0000    0.0000 

 

 

Ex 6.2 

Procedure: 

 

Numerical Integration Using Simpson's 1/3 Rule 

1. Define the Limits of Integration: 

o Set the limits of integration a=15a = 15a=15 and b=28b = 28b=28. 

2. Calculate the True Value of the Integral (Method 1): 

o Use MATLAB’s built-in integral function to compute the exact 

value of the integral: 

trueval1 = integral(@AssignmentIntFun3, a, b); 

3. Calculate the True Value of the Integral (Method 2): 

o Manually solve the integral using the provided formula: 

trueval2 = 1/4*(sin(12*b)/12 + sin(8*b)/8 + b + sin(4*b)/4) - 

1/4*(sin(12*a)/12 + sin(8*a)/8 + a + sin(4*a)/4) 

4. Set the Number of Sub intervals n: 

o Choose n=50n = 50n=50 for the Simpson's 1/3 rule. 

o Calculate the step size h: 

h = (b-a)/n; 

5. Create x Vector and Evaluate Function: 
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o Create a vector xvec that holds the points from a to b spaced by h, 

and evaluate the function AssignmentIntFun3(x) at those points to 

get fvec: 

xvec = a:h:b; 

fvec = AssignmentIntFun3(xvec); 

6. Simpson’s 1/3 Rule Calculation: 

o Use a for-loop to apply Simpson’s 1/3 rule over every pair of 

intervals: 

 For Simpson’s rule, the formula for the composite 

Simpson’s rule is:  

𝐼𝑠𝑖𝑚𝑝 =  
ℎ

3
(𝑓(𝑥0) + 4𝑓(𝑥1) + 2𝑓(𝑥2) + 4𝑓(𝑥3) + ⋯ . +𝑓(𝑏)) 

 This is implemented by iterating over the odd-indexed points 

and applying Simpson’s 1/3 rule: 

 

linterval = zeros(n,1); 

for i = 1:2:n-1 

    linterval(i) = h/3 * (fvec(i) + 4*fvec(i+1) + fvec(i+2)); 

end 

I_simp3 = sum(linterval); 

7. Calculate the Error: 

o Compute the absolute error between the true value (trueval1) and 

the computed integral (I_simp3): 

err1 = abs(trueval1 - I_simp3); 

8. Display Results: 

o Use fprintf to print the results: 

 The true value of the integral (computed using MATLAB's 

integral function). 

 The manually calculated value using the given formula. 

 The computed integral using Simpson’s 1/3 rule. 

 The absolute error between the true and computed values. 

 

Code: 

 

a = 15; 

b = 28; 

trueval1 = integral(@AssignmentIntFun3, a, b); 
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trueval2 = 1/4*(sin(12*b)/12 + sin(8*b)/8 + b + sin(4*b)/4) - 1/4*(sin(12*a)/12 

+ sin(8*a)/8 + a + sin(4*a)/4); 

n = 50; 

 

%% Simpson's 1/3rd rule 

h = (b-a)/n; 

xvec = a:h:b; 

fvec = AssignmentIntFun3(xvec); 

linterval = zeros(n,1); 

 

%% Simpson's 1/3rd rule 

for i = 1:2:n-1 

    linterval(i) = h/3 * (fvec(i) + 4*fvec(i+1) + fvec(i+2)); 

end 

 

I_simp3 = sum(linterval); 

err1 = abs(trueval1 - I_simp3); % Error between true value and computed 

integral 

 

% Displaying results 

fprintf('Actual Integral (By In-built Integral Formula in MATLAB): %.12f\n', 

trueval1) 

fprintf('Actual Integral (By manually solving): %.12f\n', trueval2) 

fprintf('Computed Integral: %.12f\n', I_simp3) 

disp('Absolute Error:') 

disp(err1) 

 

Function File: 

function fval = AssignmentIntFun3(x) 

   fval = cos(2.*x).*cos(4.*x).*cos(6.*x); 

end 

 

O/P: 

Actual Integral (By In-built Integral Formula in MATLAB): 3.189731183736 

Actual Integral (By manually solving): 3.189731183736 

Computed Integral: 4.115455602037 

Absolute Error: 0.9257 

 

 

 

Ex 6.3: 
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Code: 

 

% Error Analyis of Integration by Simpsons 1/3rd Rule 

a = 15; 

b = 16; 

truval1 = integral(@AssignmentIntFun3, a, b); 

truval2 = 1/4*(sin(12*b)/12 + sin(8*b)/8 + b + sin(4*b)/4) - 1/4*(sin(12*a)/12 + 

sin(8*a)/8 + a + sin(4*a)/4); 

n_values = [1:1000]; 

errors = zeros(size(n_values)); 

 

for idx = 1:length(n_values) 

    n = n_values(idx); 

    h = (b-a)/n; 

    xvec = a:h:b; 

    fvec = AssignmentIntFun3(xvec); 

    linterval = zeros(n,1); 

 

% Simpsons 1/3rd Rule 

% Thats why in for loop we divide by 2 steps at each iterations  

    for i = 1:2:n-1 

       linterval(i) = h/3*(fvec(i) + 4*fvec(i+1) + fvec(i+2)); 

    end 

 

I_simp3 = sum(linterval); 

err1(idx) = abs(truval1 - I_simp3); 

end 

 

% Plot error versus n in lo-log plot 

loglog(n_values, err1, 'o-') 

xlabel('Number of Sub intervals') 

ylabel('Absolute Error') 

title('Error Analysis of Simpsons 1/3rd Rule') 

grid on 

 

fprintf('Actual Integral (By In-built Integral Formula in MATLAB): %.12f\n', 

truval1); 

fprintf('Actual Integral (By Manual solving): %.12f\n', truval2); 

fprintf('Computed Integral: %.12f\n', I_simp3) 

disp('Absolute Error:') 

disp(err1) 

 

Function File: 
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function fval = AssignmentIntFun3(x) 

   fval = cos(2.*x).*cos(4.*x).*cos(6.*x); 

end 

 

O/P: 

Actual Integral (By In-built Integral Formula in MATLAB): 0.340236750946 

Actual Integral (By Manual solving): 0.340236750946 

Computed Integral: 0.340236750947 

Absolute Error - Maximum: 0.3402 

 
 

Ex 6.4: 

Procedure: 

Here we have used Simpson’s 3/8th Rule: 

𝐼3/8 =  
3ℎ

8
(𝑓(𝑎) + 3𝑓(𝑥1) + 3𝑓(𝑥2). +𝑓(𝑏)) 

 

Code: 

 

a = 15; 

b = 20; 

trueval1 = integral(@AssignmentIntFun5, a, b); 

trueval2 = (b^2/2*asin(b) + 1/2*(b/2*sqrt(1-b^2) + 1/2*asin(b) - asin(b))) - 

(a^2/2*asin(a) + 1/2*(b/2*sqrt(1-a^2) + 1/2*asin(a) - asin(a))); 

n = 150; 

 

%% Simpson's 3/8th rule 

h = (b-a)/n; 

xvec = a:h:b; 

fvec = AssignmentIntFun5(xvec); 
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linterval = zeros(n,1); 

 

%% Simpson's 3/8th rule 

for i = 1:3:n-2 

    if i+3 <= length(fvec) 

        linterval(i) = 3*h/8 * (fvec(i) + 3*fvec(i+1) + 3*fvec(i+2) + fvec(i+3)); 

    end 

end 

 

 

I_simp8 = sum(linterval); 

err1 = abs(trueval1 - I_simp8); % Error between true value and computed 

integral 

 

% Displaying results 

fprintf('Actual Integral (By In-built Integral Formula in MATLAB): %.12f\n', 

trueval1) 

fprintf('Actual Integral (By manually solving): %.12f\n', trueval2) 

fprintf('Computed Integral: %.12f\n', I_simp8) 

disp('Absolute Error:') 

disp(err1) 

 

Function File: 

function fval = AssignmentIntFun5(x) 

   fval = x.*asin(x); 

end 

 

O/P: 

Actual Integral (By In-built Integral Formula in MATLAB): 137.444678594553 

Actual Integral (By manually solving): 137.444678594553 

Computed Integral: 137.444678594553 

Absolute Error: 

   2.9729e-11 

 

Ex 6.5: 

Procedure: 

% Error Analysis of Integration by Simpsons 3/8th Rule 

a = 15; 

b = 16; 

truval1 = integral(@AssignmentIntFun3, a, b); 
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truval2 = 1/4*(sin(12*b)/12 + sin(8*b)/8 + b + sin(4*b)/4) - 1/4*(sin(12*a)/12 + 

sin(8*a)/8 + a + sin(4*a)/4); 

n_values = [1:1000]; 

errors = zeros(size(n_values)); 

 

for idx = 1:length(n_values) 

    n = n_values(idx); 

    h = (b-a)/n; 

    xvec = a:h:b; 

    fvec = AssignmentIntFun3(xvec); 

    linterval = zeros(n,1); 

 

% Simpsons 3/8th Rule 

% That’s why, in ‘for’ loop we divide by 3 steps at each iterations  

for i = 1:3:n-2 

    if i+3 <= length(fvec) 

        linterval(i) = 3*h/8 * (fvec(i) + 3*fvec(i+1) + 3*fvec(i+2) + fvec(i+3)); 

    end 

end 

 

I_simp3 = sum(linterval); 

err1(idx) = abs(truval1 - I_simp3); 

end 

 

% Plot error versus n in lo-log plot 

loglog(n_values, err1, 'o-r') 

xlabel('Number of Sub intervals') 

ylabel('Absolute Error') 

title('Error Analysis of Simpsons 1/3rd Rule') 

grid on 

 

fprintf('Actual Integral (By In-built Integral Formula in MATLAB): %.12f\n', 

truval1); 

fprintf('Actual Integral (By Manual solving): %.12f\n', truval2); 

fprintf('Computed Integral: %.12f\n', I_simp3) 

disp('Absolute Error - Maximum:') 

disp(max(err1)) 

 

Function File: 

function fval = AssignmentIntFun3(x) 

   fval = cos(2.*x).*cos(4.*x).*cos(6.*x); 

end 
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O/P: 

Actual Integral (By In-built Integral Formula in MATLAB): 0.340236750946 

Actual Integral (By Manual solving): 0.340236750946 

Computed Integral: 0.340242642660 

Absolute Error - Maximum: 0.3402 
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Expt 

No. 

7 

ORDINARY DIFFERENTIAL EQUATIONS 
Date of 

Expt: 

 

Ex 7.1: 

Procedure: 

Using Euler's Explicit Method 

We are solving the following ODE using Euler's Explicit Method: 

𝑑𝑦

𝑑𝑥
=  −5𝑡2𝑦3 

with the initial condition 𝑦(0) = 1, over the interval [0,10] with step size h=0.1 

1. Define the Problem 

 Initial condition: 𝑦(0) = 1 

 Time interval: t∈[0,10] 

 Differential equation: 𝑦′ − 5𝑡2𝑦3 

2. Set Parameters 

 𝑡0 = 0: initial time 

 𝑦𝑜 = 1: initial value of y 

 𝑡𝑒𝑛𝑑 = 10: end time 

 Step size h=0.1 

 Number of time steps 𝑁 =  (
𝑡𝑒𝑛𝑑− 𝑡0

ℎ
) 

3. Initialize Variables 

 Define the time vector T from 𝑡0 to 𝑡𝑒𝑛𝑑 with step size h. 

 Create an array Y to store the solution of 𝑦(𝑡). Initialize 𝑌(0) = 𝑦0 

4. Euler's Explicit Method Formula 

For each time step i, compute the next value of 𝑌(𝑖 + 1) using the 

formula: 

𝑌(𝑖 + 1) =  𝑌(𝑖) + ℎ. 𝑓(𝑇(𝑖), 𝑌(𝑖)) 

where 𝑓(𝑡, 𝑦) =  −5𝑡2𝑦3 is the right-hand side of the ODE. 

5. Implementing the Method 

Loop through all time steps from i= 1 to N, calculating 𝑌(𝑖 + 1) using the 

explicit Euler formula. 

6. Plot the Results 

Once the solution is obtained, plot the values of 𝑦(𝑡) over the interval 

[0,10]. 
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7. Calculate the True Solution and Error 

Use ode45, MATLAB's built-in ODE solver, to compute the true solution 

for comparison. Calculate the error as the absolute difference between the 

Euler solution and the true solution. 

 

Code: 

EULER’S EXPLICIT METHOD 

% Solve ODE - IVP using Euler's Explicit method 

% y' = -5*t^2*y^3 

% y(0) = 1 

 

t0 = 0; 

y0 = 1; 

tEnd = 10; 

h = 0.1 ; 

N = (tEnd - t0)/h; 

 

%% Initializing Solutions 

T = [t0:h:tEnd]'; 

Y = zeros(N+1, 1); 

Y(1) = y0; 

 

%% Solving using Euler's Explicit Method 

for i = 1:N 

    fi = myFunEx1(T(i),Y(i)); 

    Y(i+1) = Y(i) + h*fi;  

end 

 

%% Plot Results 

plot(T, Y); 

title('Solution of y'' = -5*t^2*y^3'); 

xlabel('t'); 

ylabel('y(t)'); 

 

%% Obtain errors 

[t, Ytrue] = ode45(@myFunEx1, T, y0); % element by element squaring 

ERR = abs(Ytrue - Y); 

maxError = max(ERR) 

 

Function File: 

function dy = myFunEx1(x,y) 

  dy = -5*x^2*y^3; 
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end 

 

O/P: 

maxError1 =    0.0282 

 

 

Ex 7.2: 

Code: 

% Solve ODE - IVP using Euler's Explicit method 

% y' = -14ty 

% y(0) = 1 

 

t0 = 0; 

y0 = 1; 

tEnd = 2; 

h = 0.1 ; 

N = (tEnd - t0)/h; 

 

%% Initializing Solutions 

T = [t0:h:tEnd]'; 

Y = zeros(N+1, 1); 

Y(1) = y0; 

 

%% Solving using Euler's Explicit 

Method 

for i = 1:N 

    fi = -14*T(i)*Y(i); 

    Y(i+1) = Y(i) + h*fi;  

end 

 

%% Plot Results and obtain errors 

plot(T,Y); 

title('Solution of y'' = -14*t*y'); 

xlabel('t'); 

ylabel('y(t)'); 

 

Ytrue = exp(-7.*(T.^2)); 

ERR = abs(Ytrue - Y) 

maxError = max(ERR) 

 

O/P: 

maxError = 0.1042 
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Ex 7.3: 

Code: 

 

% Solve ODE - IVP using Euler's Explicit method 

% y' = (2-(2*x)+(3*x^2))*y 

% y(0) = 1 

 

t0 = 0; 

y0 = 1; 

tEnd = 1; 

h = 0.1 ; 

N = (tEnd - t0)/h; 

 

%% Initializing Solutions 

T = [t0:h:tEnd]'; 

Y = zeros(N+1, 1); 

Y(1) = y0; 

 

%% Solving using Euler's Explicit Method 

for i = 1:N 

    fi = myFunEx2(T(i),Y(i)); 

    Y(i+1) = Y(i) + h*fi;  

end 

 

%% Plot Results and obtain errors 

plot(T,Y); 

title('Solution of y'' = (2-(2*x)+(3*x^2))*y'); 

xlabel('t'); 

ylabel('y(t)'); 

 

Ytrue = exp(T-(T.^2)+(T.^3)); 

ERR = abs(Ytrue - Y) 

maxError = max(ERR) 

 

O/P: 

maxError = 3.2271 

 

 

Ex 7.4: 

Procedure: 

 

Using Euler's Implicit Method 

We are solving the following ODE using Euler's Implicit Method: 
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𝑑𝑦

𝑑𝑥
=  −14𝑡𝑦 

with the initial condition 𝑦(0) = 1, over the interval [0,2] with step size h=0.1 

1. Define the Problem 

 Initial condition: 𝑦(0) = 1 

 Time interval: t∈[0,2] 

 Differential equation: 𝑦′ − 14𝑡𝑦 

2. Set Parameters 

 𝑡0 = 0: initial time 

 𝑦𝑜 = 1: initial value of y 

 𝑡𝑒𝑛𝑑 = 2: end time 

 Step size h=0.1 

 Number of time steps 𝑁 =  (
𝑡𝑒𝑛𝑑− 𝑡0

ℎ
) 

3. Initialize Variables 

 Define the time vector T from 𝑡0 to 𝑡𝑒𝑛𝑑 with step size h. 

 Create an array Y to store the solution of 𝑦(𝑡). Initialize 𝑌(0) = 𝑦0 

4. Euler's Implicit Method Formula 

Implicit Euler's method involves solving for Y(i+1)Y(i+1)Y(i+1) from the 

following equation: 

𝑌(𝑖 + 1) =  𝑌(𝑖) + ℎ. 𝑓(𝑇(𝑖 + 1), 𝑌(𝑖 + 1)) 

where 𝑓(𝑡, 𝑦) =  −14𝑡𝑦 is the right-hand side of the ODE. 

Since 𝑌(𝑖 + 1) appears on both sides, we need to solve this non-linear equation 

for 𝑌(𝑖 + 1). This is typically done using a numerical solver like fsolve in 

MATLAB. 

5. Implementing the Method 

 For each time step, use fsolve to solve for 𝑌(𝑖 + 1) implicitly. 

 Update the time and solution vectors after each iteration. 

6. Plot the Results 

Once the solution is obtained, plot the values of 𝑦(𝑡) over the interval [0,2]. 

7. Calculate the True Solution and Error 

The true solution is 𝑌(𝑡) =  𝑒−7𝑡2
. Compare the implicit Euler solution to the 

true solution and calculate the error. 
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Code: 

2. EULER’S IMPLICIT METHOD 

% ODE-IVP using Euler's Implicit 

method 

% y' = -14ty 

% y(0) = 1 

 

t0 = 0; 

y0 = 1; 

tEnd = 2; 

h = 0.1 ; 

N = (tEnd - t0)/h; 

 

%% Initializing Solutions 

T = [t0:h:tEnd]'; 

Y = zeros(N+1, 1); 

Y(1) = y0; 

 

%% Solving using Euler's Implicit Method 

for i = 1:N 

    t = T(i) + h; 

    y = fsolve(@(y) y - Y(i) + h*(14*t*y), Y(i)); 

    T(i+1) = t; 

    Y(i+1) = y; 

end 

 

%% Plot Results and obtain errors 

plot(T,Y); 

title('Solution of y'' = -14*t*y'); 

xlabel('t'); 

ylabel('y(t)'); 

 

Ytrue = exp(-7.*(T.^2)); 

ERR = abs(Ytrue - Y) 

maxError = max(ERR) 

 

O/P: 

maxError = 0.0705 

 

Ex 7.5: 

Code: 

 

% Solve ODE - IVP using Euler's Implicit method 
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% y' = (2-(2*t)+(3*t^2))*y 

% y(0) = 1 

 

t0 = 0; 

y0 = 1; 

tEnd = 1; 

h = 0.1 ; 

N = (tEnd - t0)/h; 

 

%% Initializing Solutions 

T = [t0:h:tEnd]'; 

Y = zeros(N+1, 1); 

Y(1) = y0; 

 

%% Solving using Euler's Implicit Method 

for i = 1:N 

    t = T(i) + h; 

    y = fsolve(@(y) y - Y(i) + h*((2-(2*t)+(3*t^2))*y), Y(i)); 

    T(i+1) = t; 

    Y(i+1) = y; 

end 

 

%% Plot Results and obtain errors 

plot(T,Y); 

title('Solution of y'' = (2-(2*t)+(3*t^2))*y'); 

xlabel('t'); 

ylabel('y(t)'); 

 

Ytrue = exp(T-(T.^2)+(T.^3)); 

ERR = abs(Ytrue - Y) 

maxError = max(ERR) 

 

O/P: 

maxError = 7.4154 

 

 

Ex 7.6: 

Procedure: 

Using RK-2 -Huen’s Method 

We are solving the following ODE using RK-2 -Huen’s Method: 

𝑑𝑦

𝑑𝑥
=  −14𝑡𝑦 
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with the initial condition 𝑦(0) = 1, over the interval [0,5] with step size h=0.1 

1. Define the Problem 

 Initial condition: 𝑦(0) = 1 

 Time interval: t∈[0,5] 

 Differential equation: 𝑦′ − 14𝑡𝑦 

2. Set Parameters 

 𝑡0 = 0: initial time 

 𝑦𝑜 = 1: initial value of y 

 𝑡𝑒𝑛𝑑 = 5: end time 

 Step size h=0.1 

 Number of time steps 𝑁 =  (
𝑡𝑒𝑛𝑑− 𝑡0

ℎ
) 

3. Initialize Variables 

 Define the time vector T from 𝑡0 to 𝑡𝑒𝑛𝑑 with step size h. 

 Create an array Y to store the solution of 𝑦(𝑡). Initialize 𝑌(0) = 𝑦0 

4. Huen’s Method Formula 

Huen’s method is a two-stage Runge-Kutta method: 

1. Predictor step (Euler method):  

𝑘1 = 𝑓(𝑡𝑖 , 𝑦𝑖) =  −14𝑡𝑖𝑦𝑖 

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑦𝑖 + ℎ ∙ 𝑘1 

𝑡𝑛𝑒𝑤 = 𝑡𝑖 + ℎ 

2. Corrector step:  

𝑘2 = 𝑓(𝑡𝑛𝑒𝑤 , 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡) =  −14𝑡𝑛𝑒𝑤𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

2
(𝑘1 + 𝑘2) 

 

5. Implementing the Method 

 For each time step, compute the values of 𝑘1 and 𝑘2. 

Update the solution using the corrector formula  

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

2
(𝑘1 + 𝑘2) 

 6. Plot the Results 

Once the solution is obtained, plot the values of 𝑦(𝑡) over the interval [0,5]. 

7. Calculate the True Solution and Error 

The true solution is 𝑌(𝑡) =  𝑒−7𝑡2
. Compare the implicit Euler solution to the 

true solution and calculate the error. 
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Code: 

 

RUNGE KUTTA (RK-2) - HUEN’S 

METHOD 

% Solve ODE - IVP using RK2 - Huen's 

Method 

% y' = -14ty 

% y(0) = 1 

 

t0 = 0; 

y0 = 1; 

tEnd = 5; 

h = 0.1 ; 

N = (tEnd - t0)/h; 

 

%% Initializing Solutions 

T = [t0:h:tEnd]'; 

Y = zeros(N+1, 1); 

Y(1) = y0; 

 

%% Solving using Huen's Method 

for i = 1:N 

    k1 = myFunEx3(T(i),Y(i)); 

    tNew = T(i) + h; 

    yNew = Y(i) + h*k1; 

    k2 = -2*tNew*yNew;     

    Y(i+1) = Y(i) + h/2*(k1+k2); 

end 

 

%% Plot Results and obtain errors 

plot(T,Y); 

xlabel('t'); 

ylabel('y(t)'); 

Ytrue = exp(-7*(T.^2)) % element by element squaring 

ERR = abs(Ytrue - Y) 

maxError = max(ERR) 

 

Function File: 

function dy = myFunEx3(x,y) 

  dy = -14*x*y; 

end 
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O/P: 

maxError =    0.2547 

 

Ex 7.7: 

Procedure: 

RK-2 Mid-point Method  

The second-order Runge-Kutta method (midpoint method) can be described as: 

Predictor (k1) step:  

𝑘1 = 𝑓(𝑡𝑖 , 𝑦𝑖) =  −14𝑡𝑖𝑦𝑖 

𝑦𝑚𝑖𝑑 = 𝑦𝑖 +
ℎ

2
𝑘1 

𝑡𝑚𝑖𝑑 = 𝑡𝑖 +
ℎ

2
 

3. Corrector step:  

𝑘2 = 𝑓(𝑡𝑚𝑖𝑑, 𝑦𝑚𝑖𝑑) =  −14𝑡𝑚𝑖𝑑𝑦𝑚𝑖𝑑 

𝑦𝑖+1 = 𝑦𝑖 + ℎ. 𝑘2 

Code: 

RUNGE KUTTA (RK-2) – MID POINT METHOD 

% Solve ODE - IVP using RK2 - Huen's Method 

% y' = -14ty 

% y(0) = 1 

 

t0 = 0; 

y0 = 1; 

tEnd = 1; 

h = 0.1 ; 

N = (tEnd - t0)/h; 

 

%% Initializing Solutions 

T = [t0:h:tEnd]'; 

Y = zeros(N+1, 1); 

Y(1) = y0; 

 

%% Solving using Huen's Method 

for i = 1:N 

    k1 = myFunEx3(T(i),Y(i)); 

    tNew = T(i) + h/2; 

    yNew = Y(i) + h*k1/2; 

    k2 = myFunEx3(tNew,yNew);    

    Y(i+1) = Y(i) + h*(k2); 

end 
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%% Plot Results and obtain errors 

plot(T,Y); 

xlabel('t'); 

ylabel('y(t)'); 

Ytrue = exp(-7*(T.^2)) % element by element squaring 

ERR = abs(Ytrue - Y) 

maxError = max(ERR) 

 

Function File: 

function dy = myFunEx3(x,y) 

  dy = -14*x*y; 

end 

 

O/P: 

maxError =    0.0095 

 

 

Ex 7.8: 

Procedure: 

RK-4 Method Formula 

The fourth-order Runge-Kutta method can be described by the following steps: 

1. k1 (at 𝒕𝒊):  

𝑘1 = 𝑓(𝑡𝑖 , 𝑦𝑖) =  −14𝑡𝑖𝑦𝑖  

2. k2 (at 𝑡𝑖 +
ℎ

2
):  

𝑘2 = 𝑓 (𝑡𝑖 +
ℎ

2
, 𝑦𝑖 +

ℎ

2
𝑘1) 

3. k3 (at 𝑡𝑖 +
ℎ

2
):  

𝑘3 = 𝑓 (𝑡𝑖 +
ℎ

2
, 𝑦𝑖 +

ℎ

2
𝑘1) 

4. k4 (𝑡𝑖 + ℎ):  

𝑘1 = 𝑓(𝑡𝑖 + ℎ, 𝑦𝑖 + ℎ𝑘3) 

Update the solution using the formula: 

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

 

Code: 

STANDARD RUNGE KUTTA (RK-4) METHOD 

% Solve ODE - IVP using RK2 - Huen's Method 

% y' = -14ty 

% y(0) = 1 
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t0 = 0; 

y0 = 1; 

tEnd = 1; 

h = 0.1 ; 

N = (tEnd - t0)/h; 

 

%% Initializing Solutions 

T = [t0:h:tEnd]'; 

Y = zeros(N+1, 1); 

Y(1) = y0; 

 

%% Solving using Standard RK-4 Method 

for i = 1:N 

    k1 = myFunEx3(T(i),Y(i)); 

    k2 = myFunEx3(T(i)+h/2,Y(i)+h*k1/2); 

    k3 = myFunEx3(T(i)+h/2,Y(i)+h*k2/2); 

    k4 = myFunEx3(T(i)+h,Y(i)+h*k3);     

    Y(i+1) = Y(i) + 

h/6*(k1+2*k2+2*k3+k4); 

end 

 

%% Plot Results and obtain errors 

plot(T,Y); 

xlabel('t'); 

ylabel('y(t)'); 

Ytrue = exp(-7*(T.^2)) % element by element squaring 

ERR = abs(Ytrue - Y) 

maxError = max(ERR) 

 

Function File: 

function dy = myFunEx3(x,y) 

  dy = -14*x*y; 

end 

 

O/P: 

maxError =    5.3192e-04 

 

 

% Solve ODE - IVP using Standard RK-4 

Method 

% y' = -(10*x^2 - 2*y)/(exp(x+y)) 

% y(0) = 1 
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x0 = 0; 

y0 = 1; 

%xspan = [x0, y0]; 

xEnd = 1; 

h = 0.1 ; 

N = (xEnd - x0)/h; 

 

%% Initializing Solutions 

X = [x0:h:xEnd]'; 

Y = zeros(N+1, 1); 

Y(1) = y0; 

 

%% Solving using Standard RK-4 Method 

for i = 1:N 

    k1 = myFunEx4(X(i),Y(i)); 

    k2 = myFunEx4(X(i)+h/2,Y(i)+h*k1/2); 

    k3 = myFunEx4(X(i)+h/2,Y(i)+h*k2/2); 

    k4 = myFunEx4(X(i)+h,Y(i)+h*k3);     

    Y(i+1) = Y(i) + h/6*(k1+2*k2+2*k3+k4); 

end 

 

%% Plot Results and obtain errors 

plot(X,Y); 

[x, Ytrue] = ode45(@myFunEx4, X, y0) % element by element squaring 

ERR = abs(Ytrue - Y) 

maxError = max(ERR) 

 

Function File: 

function dy = myFunEx4(x,y) 

  dy = (10.*x^2 - 2*y)./(exp(x+y)); 

end 

 

O/P: 

maxError =    2.3717e-06 

 

 

Ex 7.9: 

Procedure: 

RK-5 Method Formula 

The fifth-order Runge-Kutta (RK-5) method uses six intermediate slopes 

𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6to update the solution. 

 

1. k1:  
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𝑘1 = ℎ ∙ 𝑓(𝑡𝑖 , 𝑦𝑖) 

2. k2:  

𝑘2 = ℎ ∙ 𝑓 (𝑡𝑖 +
ℎ

2
, 𝑦𝑖 +

𝑘1

2
) 

3. k3:  

𝑘3 = ℎ ∙ 𝑓 (𝑡𝑖 +
ℎ

4
, 𝑦𝑖 +

3

16
𝑘1 +

1

16
𝑘2) 

4. k4:  

𝑘4 = ℎ ∙ 𝑓 (𝑡𝑖 +
ℎ

2
, 𝑦𝑖 +

𝑘3

2
) 

5. k5:  

𝑘5 = ℎ ∙ 𝑓 (𝑡𝑖 +
3ℎ

4
, 𝑦𝑖 −

3

16
𝑘2 +

6

16
𝑘3 +

9

16
𝑘4) 

6. k6:  

𝑘6 = ℎ ∙ 𝑓 (𝑡𝑖 + ℎ, 𝑦𝑖 +
1

7
𝑘1 +

4

7
𝑘2 +

6

7
𝑘3 −

12

7
𝑘4 +

8

7
𝑘5) 

Update the solution: 

𝑦𝑖+1 = 𝑦𝑖 +
1

90
(7𝑘1 + 32𝑘3 + 12𝑘4 + 32𝑘5 + 7𝑘6) 

 

RUNGE KUTTA (RK-5) METHOD 

% Solve ODE - IVP using Standard RK-4 

Method 

% y' = -(10*x^2 - 2*y)/(exp(x+y)) 

% y(0) = 1 

 

t0 = 0; 

y0 = 1; 

tEnd = 1; 

h = 0.1 ; 

N = (tEnd - t0)/h; 

 

%% Initializing Solutions 

T = [t0:h:tEnd]'; 

Y = zeros(N+1, 1); 

Y(1) = y0; 

 

%% Solving using Standard RK-5 Method 

for i = 1:N 

    k1 = h*myFunEx4(T(i),Y(i)); 

    k2 = h*myFunEx4(T(i)+h/2,Y(i)+k1/2); 

    k3 = h*myFunEx4(T(i)+h/4,Y(i)+3*k1/16+k2/16); 

    k4 = h*myFunEx4(T(i)+h/2,Y(i)+k3/2); 
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    k5 = h*myFunEx4(T(i)+3*h/4,Y(i)-3*k2/16+6*k3/16+9*k4/16); 

    k6 = h*myFunEx4(T(i)+h,Y(i)+k1/7+4*k2/7+6*k3/7-12*k4/7+8*k5/7); 

    Y(i+1) = Y(i) + 1/90*(7*k1+32*k3+12*k4+32*k5+7*k6); 

end 

 

%% Plot Results and obtain errors 

plot(X,Y); 

[x, Ytrue] = ode45(@myFunEx4, X, y0) % element by element squaring 

ERR = abs(Ytrue - Y) 

maxError = max(ERR) 

 

Function File: 

function dy = myFunEx4(x,y) 

  dy = (10.*x^2 - 2*y)./(exp(x+y)); 

end 

 

O/P: 

maxError =    1.4692e-08 
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Expt 

No. 

8 

LINEAR EQUATIONS 
Date of 

Expt: 

 

Ex 8.1: 

Procedure: 

Naive Gauss Elimination 

1. Form the Augmented Matrix: 

Combine the coefficient matrix 𝐴 and the right-hand side vector 𝑏 into an 

augmented matrix 𝐴𝑏. 

2. Forward Elimination: 

Perform the following steps to eliminate the elements below the diagonal, 

converting the system into an upper triangular form: 

o For each row iii from 2 to n, where n is the number of rows in the 

matrix: 

 Divide the first element of the i-th row by the pivot element 

(the leading element of the current row). 

 Subtract the scaled row from the current row to eliminate the 

i-th element in the column. 

o Continue this process for each column, choosing the diagonal 

element of the current row as the pivot. 

3. Back Substitution: 

After forward elimination, you will have an upper triangular matrix. 

Solve for the unknowns starting from the last row and working upward: 

o Start by solving for 𝑥𝑛 in the last equation. 

o Substitute 𝑥𝑛 into the second-last equation to solve for 𝑥𝑛−1. 

o Continue substituting and solving for each unknown, moving 

upwards through the system. 

4. Solution: 

Once back substitution is complete, you will have the values of all the 

unknowns 𝑥1, 𝑥2, 𝑥3  𝑥𝑛 . 

 

Code: 

GAUSS ELIMINATION METHOD 

% Solve Ax = b using Naive Gauss Elimination  

A = [2 8 10; 12 17 23; 34 47 -28]; 

b = [41; 7; 9]; 
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%% Gauss Elimination 

% Get Augmented Matrix 

Ab = [A, b]; 

n = length(A); 

 

% With A(1,1) as Pivot Element 

for i = 2:3 

    alpha = A(i,1)/A(1,1);                

    Ab(i,:) = Ab(i,:) - alpha*Ab(1,:);    

end 

 

% With A(2,2) as Pivot Element 

i = 3; 

alpha = Ab(i,2)/Ab(2,2);              

Ab(i,:) = Ab(i,:) - alpha*Ab(2,:);    

 

%% Back Substitution 

x = zeros(n,1); 

x(3) = Ab(3,end)/Ab(3,3); 

for i = n-1:-1:1 

    x(i) = (Ab(i,end) - Ab(i,i+1:n)*x(i+1:n))/Ab(i,i); 

end 

 

O/P: 

x = 

  -10.3432 

    7.6858 

    0.0200  

 

 

A = [1 1 1 1; 2 1 3 6; 3 4 -2 9; 1 5 7 9]; 

b = [4; 7; 9; 5]; 

x = naiveGaussElimination(A, b) 

 

Function File:  

function x = naiveGaussElimination(A, b) 

    n = size(A, 1); % Determine the order of the matrix 

    Ab = [A, b]; % Create the augmented matrix 

     

    % Forward elimination 

    for i = 1:n-1 
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        for j = i+1:n 

            alpha = Ab(j,i) / Ab(i,i); 

            Ab(j,:) = Ab(j,:) - alpha * Ab(i,:); 

        end 

    end 

 

    % Back substitution 

    x = zeros(n, 1); % Preallocate the solution vector x 

    x(n) = Ab(n,end) / Ab(n,n); % Compute the last variable 

    for i = n-1:-1:1 % Loop from the second-to-last row up to the first row 

        x(i) = (Ab(i,end) - Ab(i,i+1:n) * x(i+1:n)) / Ab(i,i); 

    end 

end 

 

 

O/P: 

x = 

 

    3.6531 

    0.2755 

    0.3367 

   -0.2653 

 

 

Ex 8.2: 

Procedure: 

LU Decomposition 

 

1. Initialize Matrices: 

o Define the matrix 𝐴 and the vector 𝑏. 

o Create the augmented matrix 𝐴𝑏 by appending 𝑏 to 𝐴. 

o Initialize the identity matrix 𝐿 of the same size as 𝐴. 

2. Gauss Elimination: 

o For each column j: 

 For each row i below the diagonal: 

 Compute the multiplier 𝛼 using the element in the 

pivot column. 

 Update the 𝐿 matrix with 𝛼. 

 Eliminate the elements below the pivot by subtracting 

α times the pivot row from the current row. 
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3. Extract Matrices: 

o Extract the upper triangular matrix 𝑈 from the augmented matrix 

𝐴𝑏. 

Summary of Steps 

1. Define 𝐴 and 𝑏. 

2. Create 𝐴𝑏 = [𝐴, 𝑏] and initialize 𝐿. 

3. Perform Gauss elimination to make 𝐴 upper triangular: 

o Eliminate below each pivot element. 

4. Extract 𝑈 from 𝐴𝑏. 

This procedure will decompose matrix 𝐴 into lower triangular matrix 𝐿 and 

upper triangular matrix 𝑈, such that 𝐴 = 𝐿𝑈. 

 

Code: 

 

LU DECOMPOSITION 

% LU Decomposition using Naive Gauss Elimination Method 

A = [11 12 13;27 14 3; 13 14 -24]; 

b= [14;17;9]; 

 

%% Gauss elimination  

% creating augmented matrix 

Ab = [A,b]; 

n = length(A);  

L = eye(n); 

 

%% with A(1,1) as pivot element 

for i = 2:3 

alpha = Ab(i,1)/Ab(1,1); 

L(i,1) = alpha; 

Ab(i,:) = Ab(i,:)-alpha*Ab(1,:); 

end  

 

%% with A(2,2) as pivot element 

for i=3; 

alpha = Ab(i,2)/Ab(2,2); 

L(i,2) = alpha; 

Ab(i,:) = Ab(i,:)-alpha*Ab(2,:); 

End 

 

U = Ab(1:n,1:n); 
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O/P: 

L = 

 

    1.0000         0         0 

    2.4545    1.0000         0 

    1.1818    0.0118    1.0000 

 

U = 

 

   11.0000   12.0000   13.0000 

         0  -15.4545  -28.9091 

         0         0  -39.0235 

 

Ex 8.3: 

Procedure: 

LU Decomposition with Partial Pivoting 

1. Initialize Matrices: 

o Define matrix 𝐴 and vector 𝑏. 

o Create augmented matrix 𝐴𝑏 by appending 𝑏 to 𝐴. 

2. Gauss Elimination with Partial Pivoting: 

Step 1: Pivoting for the First Column 

o Find the largest element in the first column of 𝐴𝑏. 

o Swap the current row with the row containing the largest element. 

o Perform elimination to zero out elements below the pivot in the 

first column. 

Step 2: Pivoting for the Second Column 

o Find the largest element in the remaining rows of the second 

column. 

o Swap the current row with the row containing the largest element 

(adjust row index if needed). 

o Perform elimination to zero out elements below the pivot in the 

second column. 

3. Back Substitution: 

o Initialize solution vector 𝑥 with zeros. 

o Compute values for 𝑥 starting from the last equation and working 

backward. 

This procedure decomposes matrix A into a lower triangular matrix 𝐿 and an 

upper triangular matrix 𝑈, while solving 𝐴𝑋 = 𝑏 using partial pivoting to 

enhance numerical stability. 
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Code: 

 

LU DECOMPOSITION AND PARTIAL PIVOTING 

% solving AX = b using Gauss Elimination with Partial Pivoting  

A = [11 12 13;27 14 3; 13 14 -24]; 

b= [14;17;9]; 

 

%% Gauss elimination  

% creating augmented matrix 

Ab = [A, b]; 

n= length(A); 

 

%% with A(1,1) as pivot element 

% Row exchange to ensure A(1,1) is the largest in column 1 

col1=Ab(:,1); 

[dummy,idx] = max(col1); 

dummy = Ab(1,:); 

Ab(1,:) = Ab(idx,:); 

Ab(idx,:) = dummy; 

for i = 2:3 

alpha = Ab(i,1)/Ab(1,1); 

Ab(i,:) = Ab(i,:)-alpha*Ab(1,:); 

end  

 

%% with A(2,2) as pivot element 

% Row exchange to ensure A(2,2) is the largest in column 2 

col2=Ab(2:end,2); 

[dummy,idx] = max(col2); 

dummy = Ab(2,:); 

Ab(2,:) = Ab(idx,:); 

Ab(idx,:) = dummy; 

for i=3; 

alpha = Ab(i,2)/Ab(2,2); 

Ab(i,:) = Ab(i,:)-alpha*Ab(2,:); 

end 

 

%% Back substitution 

x = zeros(3,1); 

x(3) = Ab(3,end)/Ab(3,3); 

x(2) = (Ab(2,end) - Ab(2,3)*x(3))/Ab(2,2); 

x(1) = (Ab(1,end) - (Ab(1,3)*x(3)+Ab(1,2)*x(2)))/Ab(1,1); 
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O/P: 

 

Ab = 

 

   27.0000   14.0000    3.0000   17.0000 

         0    6.2963   11.7778    7.0741 

         0         0  -39.0235   -7.3412 

x = 

 

    0.2086 

    0.7716 

    0.1881 

 

Ex 8.4: 

Procedure: 

Gauss-Seidel Method (Iterative Method) 

1. Initialize: 

o Define matrix 𝐴 and vector 𝑏. 

o Create the initial guess for vector 𝑥 (e.g., zeros). 

o Set max_iter for maximum iterations and tolerance for 

convergence criteria. 

2. Gauss-Seidel Iterations: 

o For each iteration up to max_iter: 

 Store the current 𝑥 values as x_old. 

 For each variable 𝑘: 

𝑆𝑢𝑚 =  ∑ 𝐴(𝑘, 𝑗) ∙ 𝑥(𝑗)

𝑗≠𝑘

 

 Compute the sum of the known variables:  

 Update 𝑥(𝑘):  

𝑥(𝑘) =  
𝑏(𝑘) − 𝑠𝑢𝑚

𝐴(𝑘, 𝑘)
 

 Compute the error:  

𝑒𝑟𝑟𝑜𝑟 =  ||𝑥 − 𝑥𝑜𝑙𝑑|| 

 Check if the error is less than tolerance for convergence: 

 If converged, exit the loop. 

3. Display Solution: 

o Output the final values of 𝑥. 
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Code: 

GAUSS SEIDAL METHOD (ITERATIVE METHOD) 

% Solving AX = b using Gauss-Seidel iteration method 

A = [4 -1 0; -1 4 -1; 0 -1 3]; 

b = [8; 7; 3]; 

Ab = [A, b]; 

 

% Initialising 

n = 3;  

x = zeros(n, 1);  

max_iter = 25; 

tolerance = 1e-5; 

 

%% Gauss-Seidel iterations 

for iter = 1:max_iter 

    x_old = x; 

    for k = 1:n 

        sum = 0; 

        for j = 1:n 

            if j ~= k 

                sum = sum + A(k, j) * x(j); 

            end 

        end 

        x(k) = (b(k) - sum) / A(k, k); 

    end 

 

    % Error calculation 

    err = norm(x - x_old); 

    disp(['Iteration ', num2str(iter), ': Error ', num2str(err)]) 

 

    % Convergence check 

    if err < tolerance 

        disp('Convergence achieved.'); 

        break; 

    end 

end 

 

% Display the solution 

disp('Solution X:'); 

disp(x); 

 

O/P: 

Iteration 1: Error 3.4821 
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Iteration 2: Error 0.82932 

Iteration 3: Error 0.16967 

Iteration 4: Error 0.024743 

Iteration 5: Error 0.0036084 

Iteration 6: Error 0.00052622 

Iteration 7: Error 7.6741e-05 

Iteration 8: Error 1.1191e-05 

Iteration 9: Error 1.6321e-06 

Convergence achieved. 

Solution X: 

    2.7317 

    2.9268 

    1.9756 

 

Ex 8.5: 

Procedure: 

Jacobi Method (Iterative Method) 

1. Initialize: 

o Define matrix 𝐴 and vector 𝑏. 

o Create the initial guess for vector 𝑥 (e.g., zeros). 

o Set max_iter for maximum iterations and tolerance for 

convergence criteria. 

2. Jacobi Iterations: 

o For each iteration up to max_iter: 

 Initialize a new vector 𝑥𝑛𝑒𝑤  as a copy of 𝑥. 

 For each variable 𝑘: 

 Compute the sum of the off-diagonal elements:  

𝑆𝑢𝑚 =  ∑ 𝐴(𝑘, 𝑗) ∙ 𝑥(𝑗)

𝑗≠𝑘

 

 Update 𝑥𝑛𝑒𝑤(𝑘): 

𝑥𝑛𝑒𝑤(𝑘) =  
𝑏(𝑘) − 𝑠𝑢𝑚

𝐴(𝑘. 𝑘)
 

Compute the error: 𝑒𝑟𝑟𝑜𝑟 =∥ 𝑥𝑛𝑒𝑤 − 𝑥 ∥ 

 Update 𝑥 to 𝑥𝑛𝑒𝑤 . 

 Display the current iteration number and error. 

 Check if the error is less than tolerance for convergence: 

 If converged, exit the loop. 

3. Display Solution: 

o Output the final values of 𝑥. 
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o Optionally, compute and display the residual to check if the 

solution satisfies the original equations:  

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =∥ 𝐴 ⋅ 𝑥 − 𝑏 ∥ 

 

Code: 

JACOBI METHOD (ITERATIVE METHOD) 

% Solving AX = b using Jacobi iteration method 

A = [10 -1 2;  

     -1 10 -2;  

     1  1  5]; 

b  = [7; 6; 5]; 

Ab = [A, b]; 

 

% Initialising 

n = size(A,1); 

x = zeros(n, 1); 

x_new = x; 

max_iter = 100; % Increase the number of iterations if needed 

tolerance = 1e-5; 

 

% Jacobi iterations 

for iter = 1:max_iter 

    for k = 1:n 

        % Calculate the sum for off-diagonal elements 

        sum = 0; 

        for j = 1:n 

            if j ~= k 

                sum = sum + A(k,j) * x(j); 

            end 

        end 

 

        % Update x_new 

        x_new(k) = (b(k) - sum) / A(k, k); 

    end 

 

    % Calculate error and update x 

    err = norm(x_new - x); 

    x = x_new; 

 

    % Display current iteration and error 

    disp(['Iteration ', num2str(iter), ': Error ', num2str(err)]) 
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    % Convergence check 

    if err < tolerance 

        disp('Convergence achieved.'); 

        break; 

    end 

end 

 

% Display the solution 

disp('Solution X:'); 

disp(x); 

 

% Optional: Check if solution satisfies original equations 

residual = norm(A*x - b); 

disp('Residual (A*x - b):'); 

disp(residual); 

 

O/P: 

Iteration 1: Error 1.3601 

Iteration 2: Error 0.40012 

Iteration 3: Error 0.10617 

Iteration 4: Error 0.0040012 

Iteration 5: Error 0.0010617 

Iteration 6: Error 4.0012e-05 

Iteration 7: Error 1.0617e-05 

Iteration 8: Error 4.0012e-07 

Convergence achieved. 

Solution X: 

    0.6384 

    0.8061 

    0.7111 

 

Residual (A*x - b): 

   1.0376e-06 

 

Ex 8.6: 

Procedure: 

 

Tri-Diagonal Matrix Algorithm (TDMA) 

1. Initialize: 

o Define the subdiagonal vector 𝑒, diagonal vector 𝑓, superdiagonal 

vector 𝑔, and the right-hand side vector 𝑟. 

o Ensure the vectors are correctly sized for the problem (i.e., 𝑒 and 𝑔 

should be of size 𝑛 − 1, and 𝑓 and 𝑟 should be of size 𝑛). 
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2. Forward Elimination: 

o For each 𝑘 from 2 to 𝑛: 

 Compute the factor to eliminate the subdiagonal element: 

𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑒(𝑘)

𝑓(𝑘 − 1)
 

 Update the diagonal element:  

𝑓(𝑘) = 𝑓(𝑘) − 𝑓𝑎𝑐𝑡𝑜𝑟 ⋅ 𝑔(𝑘 − 1) 

 Update the right-hand side element:  

𝑟(𝑘) = 𝑟(𝑘) − 𝑓𝑎𝑐𝑡𝑜𝑟 ⋅ 𝑟(𝑘 − 1) 

3. Back Substitution: 

o Solve for the last unknown:  

𝑥(𝑛) =
𝑟(𝑛)

𝑓(𝑛)
 

o For each 𝑘 from 𝑛 − 1: 

 Compute the unknown x(k)x(k)x(k) using: 

𝑥(𝑘) =
𝑟(𝑘) − 𝑔(𝑘) ⋅ 𝑥(𝑘 + 1)

𝑓(𝑘)
 

4. Output Solution: 

o Display the computed values of 𝑥. 

 

Code: 

 

TRI-DIAGONAL MATRIX ALGORITHM 

% Solving linear equation using TDMA algorithm 

% Input 

% e = Subdiagonal vector 

% f = Diagonal vector 

% g = Superdiagonal vector 

% r = Right hand side vector 

 

%% Problem Setting 

n = 4; 

e = [2;-1;10;0]; 

f = [2;4;6;5]; 

g = [0;1;5;3]; 

r = [1;2;3;5]; 

 

%% Forward Elimination 

for k = 2:n 

factor = e(k)/f(k-1); 

f(k) = f(k) - factor *g(k-1); 

r(k) = r(k) - factor* r(k-1); 
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end 

 

%% Back Substitution 

x(n) = r(n)/f(n); 

for k = n-1:-1:1 

x(k) = (r(k) - g(k)*x(k+1))/f(k); 

end 

 

O/P: 

x = 

 

    0.5000 

    0.7391 

   -2.3571 

    1.0000 

 

x = 

 

    0.5000 

    1.2143 

   -2.3571 

    1.0000 

 

x = 

 

    0.5000 

    1.2143 

   -2.3571 

    1.0000 
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Expt 

No. 

9 

NON-LINEAR EQUATIONS 
Date of 

Expt: 

 

Ex 9.1: 

Procedure: 

Bisection Method (Bracketing Method) 

1. Define the Function: 

o Specify 𝑓(𝑥). 

2. Set Initial Guesses: 

o Choose 𝑥𝑙 and 𝑥𝑢 such that 𝑓(𝑥𝑙) and 𝑓(𝑥𝑢) have opposite signs. 

3. Evaluate Function at Initial Guesses: 

o Compute 𝑓𝑙 = 𝑓(𝑥𝑙) and 𝑓𝑢 = 𝑓(𝑥𝑢). 

4. Check Validity: 

o Ensure 𝑓𝑙 × 𝑓𝑢 < 0 (i.e., the function values at the guesses have 

opposite signs). 

5. Set Tolerance and Initialize Error: 

o Define tolerance tol and initialize err. 

6. Iterate: 

o While err>tol: 

 Compute the midpoint  

𝑥𝑛𝑒𝑤 =
𝑥𝑙 + 𝑥𝑢

2
 

 Evaluate 𝑓(𝑥𝑛𝑒𝑤). 

 Update 𝑥𝑙 or 𝑥𝑢 based on the sign of 𝑓(𝑥𝑛𝑒𝑤). 

 Update err as 𝑒𝑟𝑟 =∣ 𝑥𝑙 − 𝑥𝑢| 

7. Display Results: 

o Print the final values of 𝑥𝑙, 𝑥𝑢, and the approximate root 𝑥𝑛𝑒𝑤. 

 

Code: 

BISECTION METHOD (BRACKETING METHOD) 

% Define the function f(x) 

f = @(x) x^2 - 4*x + 3; 

 

% Initial guesses 

xl = 0;  % Lower bound 

xu = 2;  % Upper bound (chosen so that the root at x = 1 lies between xl and xu) 

 

% Evaluate f at the initial guesses 
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fl = f(xl); 

fu = f(xu); 

 

% Check if the initial guesses are valid 

if (fl * fu > 0) 

    error('Initial guess should have different signs') 

end 

 

% Define the error tolerance 

tol = 1e-6;  % Tolerance for the stopping criterion 

err = abs(xl - xu); 

 

% Bisection method loop 

while err > tol 

    xnew = (xl + xu) / 2;  % Midpoint 

    fnew = f(xnew);        % Evaluate f at the midpoint 

 

    if (fl * fnew > 0) 

        xl = xnew;  % Update lower bound 

        fl = fnew;  % Update function value at lower bound 

    else 

        xu = xnew;  % Update upper bound 

    end 

 

    err = abs(xl - xu);  % Update error 

end 

 

% Print current values 

fprintf('xl = %.4f\n', xl); 

fprintf('fl = %.4f\n', fl); 

fprintf('fu = %.4f\n', fu); 

fprintf('xu = %.4f\n\n', xu); 

 

% Display the final approximation 

fprintf('The root is approximately at x = %f\n', xnew); 

 

O/P: 

xl = 1.0000 

fl = 0.0000 

fu = -1.0000 

xu = 1.0000 

 

The root is approximately at x = 0.999999 



102 
 

 

Ex 9.2: 

Procedure: 

 

Regula Falsi Method (Bracketing Method) 

1. Define the Function: 

o Specify 𝑓(𝑥). 

2. Set Initial Guesses: 

o Choose 𝑥𝑙 and 𝑥𝑢 such that 𝑓(𝑥𝑙) and 𝑓(𝑥𝑢) have opposite signs. 

3. Evaluate Function at Initial Guesses: 

o Compute 𝑓𝑙 = 𝑓(𝑥𝑙) and 𝑓𝑢 = 𝑓(𝑥𝑢). 

4. Check Validity: 

o Ensure 𝑓𝑙 × 𝑓𝑢 < 0 (i.e., the function values at the guesses have 

opposite signs). 

5. Set Tolerance and Maximum Iterations: 

o Define the tolerance and maximum number of iterations 

maxIterations. 

6. Iterate: 

o For i=1 to maxIterations: 

 Compute the new estimate 𝑥𝑛𝑒𝑤 =
𝑥𝑙−𝑓𝑙×(𝑥𝑢−𝑥𝑙)

𝑓𝑢−𝑓𝑙
  

 Evaluate 𝑓(𝑥𝑛𝑒𝑤) 

 Update the bounds based on the sign of 𝑓(𝑥𝑛𝑒𝑤): 

 If 𝑓𝑙 × 𝑓(𝑥𝑛𝑒𝑤) > 0, set 𝑥𝑙=𝑥𝑛𝑒𝑤 and 𝑓𝑙 = 𝑓(𝑥𝑛𝑒𝑤) 

 Otherwise, set 𝑥𝑢 = 𝑥𝑛𝑒𝑤 and 𝑓𝑢 = 𝑓(𝑥𝑛𝑒𝑤). 

 Check for convergence: 

 If ∣ 𝑓(𝑥𝑛𝑒𝑤) ∣< 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, stop iterating 

7. Display Results: 

o Print the approximate root and the number of iterations. 

 

Code: 

 

REGULA FALSI METHOD (BRACKETING METHOD) 

% Define the function f(x) 

f = @(x) exp(x) - 3*x; 

 

% Adjusted initial guesses 

xl = 0; % Lower bound 

xu = 1; % Upper bound 
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% Evaluate f at the initial guesses 

fl = f(xl); 

fu = f(xu); 

 

% Check if the initial guesses bracket a root 

if (fl * fu > 0) 

    error('Initial guess should have different signs'); 

end 

 

% Define the tolerance and maximum number of iterations 

tolerance = 1e-6; 

maxIterations = 100; 

 

% Regula Falsi (False Position) method 

for i = 1:maxIterations 

    xnew = xl - fl * (xu - xl) / (fu - fl); % Compute the root estimate 

    fnew = f(xnew); % Evaluate the function at the new estimate 

 

    % Update the bounds 

    if (fl * fnew > 0) 

        xl = xnew; 

        fl = fnew; 

    else 

        xu = xnew; 

        fu = fnew; 

    end 

 

    % Check for convergence 

    if abs(fnew) < tolerance 

        break; 

    end 

end 

 

% Display the results 

fprintf('Approximate root: %f\n', xnew); 

fprintf('Number of iterations: %d\n', i); 

 

O/P: 

Approximate root: 0.619062 

Number of iterations: 12 
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Ex 9.3: 

Procedure: 

Secant Method (Open Method) 

1. Define the Function: 

o Specify 𝑓(𝑥). 

2. Set Initial Guesses: 

o Choose initial guesses 𝑥0 and  𝑥1. 

3. Set Parameters: 

o Define the maximum number of iterations 

maxiter\text{maxiter}maxiter and the tolerance tolx. 

4. Secant Method Loop: 

o For 𝑖 = 1 to maxiter: 

 Compute 𝑓(𝑥0) and 𝑓(𝑥1). 

 Update 𝑥 using the Secant formula: 

𝑥 = 𝑥1 −
𝑓(𝑥1) ⋅ (𝑥1 − 𝑥0)

𝑓(𝑥1) − 𝑓(𝑥0)
 

 Calculate the error 𝑒𝑟𝑟 =∣ 𝑥 − 𝑥1| 

 If err < tolx, stop iterating. 

 Update guesses: 

 Set 𝑥0= 𝑥1 

 Set 𝑥1= 𝑥 

5. Display the Result: 

o Print the approximate root 𝑥. 

 

Code: 

SECANT METHOD (OPEN METHOD) 

% Define the function f(x) 

f = @(x) cos(x) - x; 

 

% Initial guesses 

x0 = 0; 

x1 = 1; 

maxiter = 50; 

tolx = 1e-4; 

 

% Secant method loop 

for i = 1:maxiter 

    fx0 = f(x0); 
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    fx1 = f(x1); 

 

    % Update x using the Secant formula 

    x = x1 - (fx1 * (x1 - x0)) / (fx1 - fx0); 

 

    % Calculate the error 

    err = abs(x - x1); 

    if err < tolx 

        break; 

    end 

 

    % Update the guesses 

    x0 = x1; 

    x1 = x; 

end 

 

% Display the result 

fprintf('The root is approximately at x = %f\n', x); 

 

O/P: 

The root is approximately at x = 0.739085 

 

Ex 9.4: 

Procedure: 

 

Fixed Point Iterations (Open Method) 

1. Define Initial Parameters: 

o Set initial guess 𝑥0. 

o Define the maximum number of iterations maxiter and the 

tolerance tolx. 

2. First Rearrangement: 𝒙 = √𝒔𝒊𝒏 (𝒙) 

o Initialize 𝑥 and 𝑥𝑜𝑙𝑑 with 𝑥0. 

o Fixed Point Iteration Loop: 

 For 𝑖 =  1 to maxiter: 

 Update 𝑥 using the formula 𝑥 = √si n(𝑥) 

 Compute the error 𝑒𝑟𝑟 =∣  𝑥 − 𝑥𝑜𝑙𝑑| 

 Update 𝑥𝑜𝑙𝑑 with the current 𝑥. 

 If err < tolx, stop iterating. 

o Store the result in 𝑥1. 

3. Second Rearrangement: 𝒙 = 𝐬𝐢𝐧−𝟏( 𝒙𝟐) 
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o Initialize 𝑥 and 𝑥𝑜𝑙𝑑 with 𝑥0. 

o Fixed Point Iteration Loop: 

 For 𝑖 = 1 to maxiter: 

 Update x using the formula 𝑥 = sin−1( 𝑥2) 

 Compute the error 𝑒𝑟𝑟 =∣  𝑥 − 𝑥𝑜𝑙𝑑| 

 Update 𝑥𝑜𝑙𝑑 with the current 𝑥. 

 If err < tolx, stop iterating. 

o Store the result in 𝑥2. 

4. Display the Results: 

o Print 𝑥1 for the first rearrangement. 

o Print 𝑥2 for the second rearrangement. 

 

Code: 

 

FIXED POINT ITERATIONS (OPEN METHOD) 

% Define the initial guess and parameters 

x0 = 0.5; % Initial guess (adjust as needed) 

maxiter = 50; 

tolx = 1e-4; 

 

% First rearrangement: x = sqrt(sin(x)) 

x = x0;  

xold = x0; 

for i = 1:maxiter  

    x = sqrt(sin(x)); % Update using the first rearrangement 

    err = abs(x - xold);  

    xold = x; 

    if (err < tolx)  

        break;  

    end 

end 

x1 = x; % Store the result from the first rearrangement 

 

% Second rearrangement: x = asin(x^2) 

x = x0;  

xold = x0; 

for i = 1:maxiter  

    x = asin(x^2); % Update using the second rearrangement 

    err = abs(x - xold);  

    xold = x; 

    if (err < tolx)  
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        break;  

    end 

end 

x2 = x; % Store the result from the second rearrangement 

 

% Display the outputs 

fprintf('Output using first rearrangement (x = sqrt(sin(x))): x = %f\n', x1); 

fprintf('Output using second rearrangement (x = asin(x^2)): x = %f\n', x2); 

 

 

 

O/P: 

Output using first rearrangement (x = sqrt(sin(x))): x = 0.876699 

Output using second rearrangement (x = asin(x^2)): x = 0.000000 

 

Ex 9.5: 

Procedure: 

Newton-Raphson Method (Open Method) 

1. Define Initial Parameters: 

o Set the initial guess 𝑥0. 

o Define the maximum number of iterations maxiter and the 

tolerance tolx. 

2. Newton-Raphson Iteration Loop: 

o Initialize 𝑥 and 𝑥𝑜𝑙𝑑 with 𝑥0. 

o For 𝑖 = 1 to maxiter: 

 Define the function 𝑓(𝑥) and its derivative 𝑓′(𝑥): 

 𝑓(𝑥) = 𝑠𝑖𝑛 (𝑥) −
𝑥

2
 

 𝑓′(𝑥) = 𝑐𝑜𝑠 (𝑥) −
1

2
 

 Update 𝑥 using the Newton-Raphson formula:  

𝑥 = 𝑥 −
𝑓(𝑥)

𝑓′(𝑥)
 

Compute the error 𝑒𝑟𝑟 =∣ 𝑥 − 𝑥𝑜𝑙𝑑 ∣ 

 Update 𝑥𝑜𝑙𝑑 with the current 𝑥. 

 If err < tolx, stop iterating. 

3. Display the Result: 

o Print the final value of 𝑥 as the approximate root. 

 

Code: 

NEWTON RAPHSON METHOD (OPEN METHOD) 
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% Initial guess 

x0 = 2; % Adjust if necessary 

maxiter = 50; 

tolx = 1e-4; 

 

% Newton-Raphson loop 

x = x0; 

xold = x0; 

for i = 1:maxiter 

    % Define the function f(x) and its derivative df(x) 

    f = sin(x) - x/2; 

    df = cos(x) - 1/2; 

 

    % Update x using the Newton-Raphson formula 

    x = x - f/df; 

 

    % Calculate the error 

    err = abs(x - xold); 

    xold = x; 

 

    % Check if the error is within the tolerance 

    if (err < tolx) 

        break; 

    end 

end 

 

% Display the result 

fprintf('The root is approximately at x = %f\n', x); 

 

O/P: 

The root is approximately at x = 1.895494 
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Expt 

No. 

10 

ALGEBRA AND TRANSFORMS 
Date of 

Expt: 

 

Ex 10.1: 

Procedure: 

Solving Quadratic Equations Using solve Function 

1. Declare the Symbolic Variable: 

o Use syms x to define x as a symbolic variable. 

2. Formulate Each Quadratic Equation: 

o Define each quadratic equation in the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 

using symbolic expressions. 

3. Solve the Equations: 

o Apply the solve function to each equation to find the roots. 

4. Output the Solutions: 

o Display the solutions for each quadratic equation. 

 

Code: 

 

SOLVING QUADRACTIC EQUATION USING SOLVE FUNCTION - 

REAL AND IMAGINARY ROOTS 

syms x 

 

% Equation 1: 2x^2 - 4x + 2 = 0 

eqn1 = 2*x^2 - 4*x + 2 == 0; 

sol1 = solve(eqn1, x); 

 

% Equation 2: 3x^2 + 6x + 3 = 0 

eqn2 = 3*x^2 + 6*x + 3 == 0; 

sol2 = solve(eqn2, x); 

 

% Equation 3: x^2 + 2x + 6 = 0 

eqn3 = x^2 + 2*x + 6 == 0; 

sol3 = solve(eqn3, x); 

 

% Equation 4: 3x^2 + 3x + 7 = 0 

eqn4 = 3*x^2 + 3*x + 7 == 0; 

sol4 = solve(eqn4, x); 

 

% Display solutions 

sol1, sol2, sol3, sol4 

O/P: 
sol1 = 
  
1 
1 
  
sol2 = 
  
-1 
-1 
  
sol3 = 
  
- 1 - 5^(1/2)*1i 
- 1 + 5^(1/2)*1i  
  
sol4 = 
  
- (3^(1/2)*5i)/6 - 1/2 
  (3^(1/2)*5i)/6 - ½ 
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Ex 10.2: 

Procedure: 

Solving Quadratic Equations Using the Quadratic Formula 

1. Identify Coefficients: 

o For each quadratic equation of the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, 

determine the coefficients 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐. 

2. Compute the Discriminant: 

o Calculate the discriminant 𝛥 = 𝑏2 − 4𝑎𝑐. 

3. Calculate the Roots: 

o Use the quadratic formula to find the roots:  

𝑥1,2 =
−𝑏 ± √𝛥

2𝑎
 

o Compute the roots 𝑥1 and 𝑥2 for each equation, considering both 

the positive and negative square root of the discriminant. 

4. Handle Complex Roots: 

o If the discriminant is negative, the square root will be imaginary. 

Ensure to compute the roots as complex numbers. 

5. Display the Solutions: 

o Present the solutions for each quadratic equation, including both 

real and imaginary parts if applicable. 

 

Code: 

SOLVING QUADRACTIC EQUATION USING QUADRACTIC 

FORMULA- REAL AND IMAGINARY ROOTS 

% Equation 1: 2x^2 - 4x + 2 = 0 

a1 = 2; b1 = -4; c1 = 2; 

x1_1 = ((-b1) + sqrt(b1^2 - 4*a1*c1)) / (2*a1); 

x1_2 = ((-b1) - sqrt(b1^2 - 4*a1*c1)) / (2*a1); 

 

% Equation 2: 3x^2 + 6x + 3 = 0 

a2 = 3; b2 = 6; c2 = 3; 

x2_1 = ((-b2) + sqrt(b2^2 - 4*a2*c2)) / (2*a2); 

x2_2 = ((-b2) - sqrt(b2^2 - 4*a2*c2)) / (2*a2); 

 

% Equation 3: x^2 + 2x + 6 = 0 

a3 = 1; b3 = 2; c3 = 6; 

x3_1 = ((-b3) + sqrt(b3^2 - 4*a3*c3)) / (2*a3); 

x3_2 = ((-b3) - sqrt(b3^2 - 4*a3*c3)) / (2*a3); 

 

% Equation 4: 3x^2 + 3x + 7 = 0 

a4 = 3; b4 = 3; c4 = 7; 

x4_1 = ((-b4) + sqrt(b4^2 - 4*a4*c4)) / (2*a4); 

x4_2 = ((-b4) - sqrt(b4^2 - 4*a4*c4)) / (2*a4); 
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% Display solutions 

[x1_1, x1_2; x2_1, x2_2; x3_1, x3_2; x4_1, x4_2] 

 

O/P: 

ans = 

 

   1.0000 + 0.0000i   1.0000 + 0.0000i 

  -1.0000 + 0.0000i  -1.0000 + 0.0000i 

  -1.0000 + 2.2361i  -1.0000 - 2.2361i 

  -0.5000 + 1.4434i  -0.5000 - 1.4434i 

 

Ex 10.3: 

Code: 

 

LIMITS 

syms x 

 

% Example 1: Exponential and Polynomial Function 

limit_exp_poly_1 = limit(exp(x)/(x^2 + 1), x, Inf); 

limit_exp_poly_2 = limit(x^3/(exp(x) - 1), x, Inf); 

 

% Example 2: Trigonometric and Polynomial Function 

limit_trig_poly_1 = limit(sin(x)/x, x, 0); 

limit_trig_poly_2 = limit((x^2 + 2*x + 1)/(cos(x) + 2), x, Inf); 

 

% Display the results 

[limit_exp_poly_1, limit_exp_poly_2; limit_trig_poly_1, limit_trig_poly_2] 

 

O/P: 

ans = 

  

[Inf,   0] 

[  1, Inf] 

 

syms x 

 

% Example 1: Function k(x) = sin(x)/abs(x) 

k = sin(x)/abs(x); 

limit_k_left = limit(k, x, 0, 'left'); 

limit_k_right = limit(k, x, 0, 'right'); 

 

% Example 2: Function m(x) = |x|/x 
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m = abs(x)/x; 

limit_m_left = limit(m, x, 0, 'left'); 

limit_m_right = limit(m, x, 0, 'right'); 

 

% Display the results 

[limit_k_left, limit_k_right; limit_m_left, limit_m_right] 

 

O/P: 

ans = 

  

[-1, 1] 

[-1, 1] 

 

 

Ex 10.4: 

Procedure: 

Differentiation and Solving Differential Equations 

1. Differentiate a Function: 

o Use diff(function) to find the derivative of the function. 

2. Higher Order Differentiation: 

o Use diff(function, n) to find the n-th order derivative of the 

function. 

3. Solve a Differential Equation: 

o Use dsolve('differential_equation') to find the general solution of 

the differential equation. 

4. Solve Differential Equation with Initial and Boundary Conditions: 

o Use dsolve('differential_equation', 'initial_condition1', 

'initial_condition2', ...) to find a particular solution with specified 

initial and boundary conditions. 

5. Display Results: 

o Collect and display the results from differentiation and differential 

equation solutions. 

 

Code: 

DIFFERENTIATION 

syms x 

 

% Differentiation Example 

diff_example = diff(4*x^2); 

% Higher Order Differentiation Example 
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diff_high_order_example = diff(2*x^5, 2); 

 

% Differential Equation Solution Example 

syms y(t) 

dsolve_example = dsolve('D2y + 3*y = 0'); 

 

% Differential Equation with Initial and Boundary Conditions Example 

dsolve_ibc_example = dsolve('D2y + 3*y = 0', 'y(0) = 1', 'Dy(0) = -1'); 

 

% Display the results 

[diff_example, diff_high_order_example, dsolve_example, 

dsolve_ibc_example] 

 

O/P: 

ans = 

  

[8*x, 40*x^3, C1*cos(3^(1/2)*t) - C2*sin(3^(1/2)*t), cos(3^(1/2)*t) - 

(3^(1/2)*sin(3^(1/2)*t))/3] 

 

syms x t 

 

% Non-Linear Differential Equation Example 

syms y(t) 

nonlinear_ode = (diff(y, t) - y)^2 == 4; 

nonlinear_cond = y(0) == 1; 

nonlinear_ysol(t) = dsolve(nonlinear_ode, nonlinear_cond); 

 

% Display Non-Linear Differential Equation Solution 

disp('Solution to Non-Linear Differential Equation:'); 

disp(nonlinear_ysol(t)); 

 

% Maxima and Minima Example 

y_function = x^4 - 6*x^3 + 11*x^2 - 6*x; 

m_derivative = diff(y_function); 

stationary_points = solve(m_derivative); 

 

% Display Stationary Points for Maxima and Minima 

disp('Stationary Points for Maxima and Minima:'); 

disp(stationary_points); 

 

O/P: 

Solution to Non-Linear Differential Equation: 

3*exp(t) - 2 
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  2 - exp(t) 

  

Stationary Points for Maxima and Minima: 

            3/2 

3/2 - 5^(1/2)/2 

5^(1/2)/2 + 3/2 

 

Ex 10.5: 

Procedure: 

Integration 

1. Compute Indefinite Integrals: 

o Use int(function) to compute the indefinite integral of a function. 

2. Compute Definite Integrals: 

o Use int(function, lower_limit, upper_limit) to compute the definite 

integral of a function over a specified range. 

3. Compute Area Under the Curve: 

o Define the function and use int(function, lower_limit, upper_limit) 

to find the area under the curve over the specified range. 

4. Plot the Function (Optional): 

o Use ezplot(function, [lower_limit, upper_limit]) to plot the 

function over the specified range. 

5. Display Results: 

o Use disp() to display the results of the integrals and area under the 

curve. 

 

Code: 

INTEGRATION 

syms x 

 

% Integration Examples 

f1 = 2 + x; 

int_f1 = int(f1); 

 

f2 = sin(x); 

int_f2 = int(f2); 

 

f3 = x^3 + 2*x^2 + 3*x - 16; 

int_f3 = int(f3, 1, 2); 

 

% Display Integration Results 

disp('Indefinite Integral of 2 + x:'); 
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disp(int_f1); 

 

disp('Indefinite Integral of sin(x):'); 

disp(int_f2); 

 

disp('Definite Integral of x^3 + 2*x^2 + 3*x - 16 from 1 to 2:'); 

disp(int_f3); 

 

% Area Under the Curve Example 

f4 = x^2*cos(x); 

area_f4 = int(f4, -4, 9); 

 

% Display Area Under the Curve Result 

disp('Area under the curve of x^2*cos(x) from -4 to 9:'); 

disp(area_f4); 

 

% Plot the function 

ezplot(f4, [-4, 9]); 

 

O/P: 

Indefinite Integral of 2 + x:(x*(x + 4))/2 

  

Indefinite Integral of sin(x):-cos(x) 

  

Definite Integral of x^3 + 2*x^2 + 3*x - 16 from 1 to 2:-37/12 

  

Area under the curve of x^2*cos(x) from -4 to 9:8 
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Ex 10.6: 

Procedure: 

Laplace Transform 

1. Compute Laplace Transform: 

o Use laplace(function) to compute the Laplace transform of a 

function with respect to t. 

2. Compute Inverse Laplace Transform: 

o Use ilaplace(expression, s, t) to compute the inverse Laplace 

transform of an expression with respect to s, returning a function in 

terms of t. 

3. Display Results: 

o Use disp() to display the results of the Laplace and inverse Laplace 

transforms. 

 

Code: 

LAPLACE TRANSFORM 

syms t s 

 

% Laplace Transform Example 

laplace_t_example = laplace(t^3); 

 

% Display Laplace Transform Result 

disp('Laplace Transform of t^3:'); 

disp(laplace_t_example); 

 

% Inverse Laplace Transform Examples 

ilaplace_x_example = ilaplace(cos(s), s, t); 

ilaplace_s_example = ilaplace(1/s^3, s, t); 

 

% Display Inverse Laplace Transform Results 

disp('Inverse Laplace Transform of cos(s):'); 

disp(ilaplace_x_example); 

 

disp('Inverse Laplace Transform of 1/s^3:'); 

disp(ilaplace_s_example); 

 

O/P: 

Laplace Transform of t^3:6/s^4 

  

Inverse Laplace Transform of cos(s):ilaplace(cos(s), s, t) 

  

Inverse Laplace Transform of 1/s^3:t^2/2 

 



117 
 

Ex 10.7: 

Procedure: 

Fourier Transform 

1. Compute Fourier Transform: 

o Use fourier(function) to compute the Fourier transform of a 

function with respect to x. 

2. Compute Inverse Fourier Transform: 

o Use ifourier(expression) to compute the inverse Fourier transform 

of an expression with respect to w. 

3. Display Results: 

o Use disp() to display the results of the Fourier and inverse Fourier 

transforms. 

 

Code: 

 

FOURIER TRANSFORM 

syms x w 

 

% Fourier Transform Examples 

fourier_x_example = fourier(cos(x)); 

fourier_x2_example = fourier(sin(x)); 

 

% Display Fourier Transform Results 

disp('Fourier Transform of cos(x):'); 

disp(fourier_x_example); 

 

disp('Fourier Transform of sin(x):'); 

disp(fourier_x2_example); 

 

% Inverse Fourier Transform Examples 

ifourier_x_example = ifourier(exp(-w^2)); 

ifourier_x2_example = ifourier(1/(1 + w^2)); 

 

% Display Inverse Fourier Transform Results 

disp('Inverse Fourier Transform of exp(-w^2):'); 

disp(ifourier_x_example); 

 

disp('Inverse Fourier Transform of 1/(1 + w^2):'); 

disp(ifourier_x2_example); 

 

O/P: 

Fourier Transform of cos(x):pi*(dirac(w - 1) + dirac(w + 1)) 
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Fourier Transform of sin(x):-pi*(dirac(w - 1) - dirac(w + 1))*1i 

  

Inverse Fourier Transform of exp(-w^2):exp(-x^2/4)/(2*pi^(1/2)) 

  

Inverse Fourier Transform of 1/(1 + w^2):exp(-abs(x))/2 
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Expt 

No. 

11 

REGRESSION AND INTERPOLATION 
Date of 

Expt: 

 

Ex 11.1: 

Procedure: 

Newton Divided Difference Method 

1. Define Variables: 

o Set the number of data points, nnn. 

o Define the vectors 𝑥 and 𝑓𝑥 for the data points and their 

corresponding function values. 

2. Initialize Divided Difference Table: 

o Create an (𝑛 + 1) × (𝑛 + 1) matrix 𝐹 and set the first column to 

𝑓𝑥. 

3. Compute Divided Differences: 

o Use nested loops to fill in the matrix FFF using the divided 

difference formula:  

𝐹(𝑖 + 1, 𝑗 + 1) =
𝐹(𝑖 + 1, 𝑗) − 𝐹(𝑖, 𝑗)

𝑥(𝑖 + 1) − 𝑥(𝑖 − 𝑗 + 1)
 

4. Extract Coefficients: 

o Extract the coefficients of the Newton polynomial from the 

diagonal of matrix 𝐹. 

5. Evaluate Newton Polynomial: 

o Generate values for the variable (e.g., 𝑝𝑙𝑜𝑡𝑥). 

o Compute the corresponding values using the Newton polynomial 

formula with the coefficients obtained. 

6. Plot Results: 

o Plot the Newton polynomial and the original data points to 

visualize the interpolation. 

 

Code: 

NEWTON DIVIDED DIFFERENCE METHOD 

n=4; 

x=[1;2;3;4;5]; 

fx=[2.5;3.6;1.8;3.1;2.0]; 

F=zeros(n+1, n+1); 

F(:,1)=fx; 

% Compute the Newton divided differences. 

for i=1:n 
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    for j=1:i 

        F(i+1,j+1)=(F(i+1,j)-F(i,j))/(x(i+1)-x(i-j+1)); 

    end 

end 

a=diag(F) 

hold on 

plotx=1:0.1:5; 

ploty = a(n+1)*ones(size(plotx)); 

for i=n:(-1):1 

    ploty = a(i) + ploty.*(plotx-x(i)); 

end 

figure(1); 

plot(plotx,ploty,'-',x,fx,'*'); 

 

O/P: 

a = 

    2.5000 

    1.1000 

   -1.4500 

    1.0000 

   -0.4792 

 
 

 

Ex 11.2: 

Procedure: 

Regression Method 

1. Define Variables: 

o Set up the vectors 𝑋 and 𝑌 for the independent and dependent 

variables. 

o Determine the number of data points, 𝑛. 
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2. Construct the Matrix 𝑨 and Vector 𝒃: 

o Matrix 𝐴 contains sums related to 𝑋 and X2:  

𝐴 =  [
𝑛 ∑ 𝑋

∑ 𝑋 ∑ X2
] 

 

o Vector 𝑏 contains sums related to 𝑌 and 𝑋 ⋅ 𝑌: 

𝑏 =  [
∑ 𝑋

∑(𝑋 ⋅ 𝑌)
] 

3. Compute the Coefficients: 

o Solve for the coefficients φ by computing:  

𝜑 =  𝑖𝑛𝑣(𝐴) ⋅ 𝑏  

o φ will contain the intercept and slope of the regression line. 

4. Plot Results: 

o Plot the original data points (𝑋, 𝑌) as blue squares. 

o Plot the regression line using the computed coefficients φ in red. 

This method fits a linear regression model to the given data. 

 

Code: 

REGRESSION METHOD 

X = [1; 2; 3; 4; 5]; 

Y = [2.1; 3.9; 5.8; 8.2; 10.1]; 

n = length(X); 

A = [n, sum(X); sum(X), sum(X.*X)]; 

b = [sum(Y); sum(X.*Y)]; 

phi = inv(A)*b; 

plot(X, Y, 'bs', [0 5], phi(1) + phi(2)*[0 5], '-r'); 

 

O/P: 
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Ex 11.3: 

Procedure: 

Multi-Regression Method 

1. Initialize Data: 

o Define the independent variable and dependent variable datasets. 

2. Set Up the Regression Matrix: 

o Construct a matrix that includes a column of ones (to account for 

the intercept) and the independent variable data. 

3. Compute Regression Coefficients: 

o Use the ordinary least squares method to calculate the regression 

coefficients. 

4. Plot Data and Regression Line: 

o Create a plot showing the original data points and overlay the 

regression line. 

5. Output the Coefficients: 

o Display the calculated regression coefficients. 

 

Code: 

MULTI-REGRESSION METHOD 

% Data 

x = [1.2; 2.1; 3.3; 4.5; 5.2; 6.1]; 

y = [2.8; 3.4; 5.2; 6.8; 7.9; 8.3]; 

n = length(x); 

 

% Regression setup 

X = [ones(n,1), x]; 

Y = y; 

 

% Compute regression coefficients 

phi = inv(X'*X)*X'*Y; 
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% Plot 

plot(x, y, 'bs', [1 6], phi(1) + phi(2)*[1 6], '-

r'); 

title('Linear Regression'); 

xlabel('x'); 

ylabel('y'); 

legend('Data points', 'Regression line'); 

 

% Output 

phi 

 

O/P: 

phi = 

    1.1670 

    1.2231 

 

Ex 11.4: 

Procedure: 

Spline and PCHIP Interpolation 

1. Initialize Data: 

o Define the time vector T and corresponding values vector S. 

2. Plot Original Data: 

o Plot the original data points using a specified line style and color. 

3. Perform Spline Interpolation: 

o Compute spline interpolation values for a finer time vector. 

o Plot the spline interpolation results using a different marker and 

color. 

4. Perform PCHIP Interpolation: 

o Compute PCHIP (Piecewise Cubic Hermite Interpolating 

Polynomial) interpolation values for the same finer time vector. 

o Plot the PCHIP interpolation results using a different line style and 

marker. 

5. Enhance the Plot: 

o Add title, axis labels, and a legend to distinguish between the 

original data, spline interpolation, and PCHIP interpolation. 

 

Code: 

SPLINE AND PCHIP INTERPOLATION 

% Data 

T = 0:5:40; 
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S = [10, 15, 20, 18, 22, 30, 25, 28, 35]; 

 

% Plot original data 

plot(T, S, '-r'); 

hold on; 

 

% Spline Interpolation 

TI = 0:40; 

SI = spline(T, S, TI); 

plot(TI, SI, 'xb'); 

% PCHIP Interpolation 

TIP = 0:40; 

SI_P = pchip(T, S, TIP); 

plot(TI, SI_P, '--v'); 

 

% Enhance the plot 

title('Spline and PCHIP Interpolation'); 

xlabel('Time'); 

ylabel('Values'); 

legend('Original Data', 'Spline Interpolation', 'PCHIP Interpolation'); 

  

O/P: 
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The Image Processing Toolbox in MATLAB is a powerful collection of 

functions and tools designed to assist with a wide range of image processing 

tasks. It provides an extensive set of algorithms and workflows for processing, 

analyzing, visualizing, and algorithm development in the field of image and video 

data. Here are some of its key features: 

1. Image Importing and Exporting: 

 Supports various image formats such as JPEG, PNG, TIFF, BMP, and 

others. 

 Allows for importing data from specialized formats like DICOM (for 

medical imaging) and GeoTIFF (for geospatial data). 

2. Image Enhancement: 

 Functions for improving image quality, such as contrast enhancement, 

histogram equalization, noise reduction, and filtering. 

 Includes advanced methods like adaptive histogram equalization and 

Wiener filtering. 

3. Geometric Transformations: 

 Enables transformations like scaling, rotating, cropping, and translating 

images. 

 Tools for image registration, aligning different images for comparison, 

and combining data from multiple sources. 

4. Filtering and Convolution: 
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 Offers a variety of linear and nonlinear filtering options, such as 

Gaussian, median, and Sobel filters. 

 Convolution operations to enhance or detect features in an image. 

 

 

 

5. Segmentation: 

 Tools for dividing an image into meaningful regions, such as 

thresholding, edge detection, and watershed segmentation. 

 Advanced segmentation techniques include active contours (snakes) and 

region-growing methods. 

6. Morphological Operations: 

 Functions for image morphology such as dilation, erosion, opening, 

closing, and skeletonization, useful for analyzing shapes and structures 

within an image. 

7. Feature Detection and Extraction: 

 Supports feature detection methods such as edge detection, corner 

detection, and blob analysis. 

 Functions to find shapes, objects, and boundaries in images, including the 

Hough transform and region properties analysis. 

8. Image Registration: 

 Tools for aligning images taken at different times or from different 

perspectives. 

 Techniques include intensity-based, feature-based, and multimodal 

registration. 

9. Object Detection and Measurement: 

 Supports measuring and analyzing objects within an image, including 

area, centroid, perimeter, and shape characteristics. 

 Tools for object detection, classification, and tracking in sequences of 

images or videos. 
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10. 3D Image Processing: 

 Capabilities to handle 3D image volumes, such as medical scans (MRI or 

CT) and microscopy data. 

 Functions for visualizing, processing, and analyzing volumetric data. 

11. Image Annotation and Visualization: 

 Tools for marking images with text, shapes, and lines. 

 Visualization tools that can overlay images, display histograms, and 

generate 3D plots. 

12. GPU Acceleration: 

 Many functions in the toolbox are optimized to leverage GPU 

acceleration, making it easier to process large images or perform 

computations faster. 

13. Machine Learning and Deep Learning Integration: 

 Supports integrating image processing with machine learning and deep 

learning workflows. 

 Includes pretrained networks for tasks such as image classification, object 

detection, and semantic segmentation. 

Ex 12. 1: Reading and Displaying Images 

 Objective: Learn how to read and display images in MATLAB. 

 Procedure: 

1. Read an image using imread. 

A = imread('nature.jpg'); 

2. Display the image using imshow. 

imshow(A); 

3. Check the size of the image. 

size(A); 

4. Open the image in a separate figure. 

figure; imshow(A); 

 
Ex 12.2: Image Resizing 

 Objective: Resize an image and visualize the results. 

 Procedure: 
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1. Resize the image to twice its size. 

B = imresize(A, 2); 

2. Display the original and resized images. 

subplot(1, 2, 1); imshow(A); title('Original Image'); 

subplot(1, 2, 2); imshow(B); title('Resized Image'); 

 
 

 

Ex 12. 3: Image Rotation 

 Objective: Rotate an image by 45 degrees. 

 Procedure: 

1. Rotate the image by 45 degrees. 

C = imrotate(A, 45); 

2. Display the rotated image. 

imshow(C); 

 
Ex 12.4: Grayscale Conversion 

 Objective: Convert a color image to grayscale. 

 Procedure: 

1. Convert the image to grayscale. 

gray_A = rgb2gray(A); 

2. Display the grayscale image. 

imshow(gray_A); 

 
Ex 12. 5: Image Histogram and Histogram Equalization 

 Objective: Equalize the histogram of an image to enhance contrast. 

 Procedure: 

1. Convert the image to grayscale. 

gray_A = rgb2gray(A); 

2. Apply histogram equalization. 

hist_A = histeq(gray_A); 

3. Display the original and histogram-equalized images along with 

their histograms. 

subplot(2, 2, 1); imshow(gray_A); title('Original Image'); 

subplot(2, 2, 2); imshow(hist_A); title('Histogram Equalized 

Image'); 

subplot(2, 2, 3); imhist(gray_A); title('Original Histogram'); 
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subplot(2, 2, 4); imhist(hist_A); title('Equalized Histogram'); 

 
Ex 12. 6: Filtering: Gaussian and Median 

 Objective: Apply different filters to remove noise. 

 Procedure: 

1. Convert the image to grayscale. 

gray_A = rgb2gray(A); 

2. Apply Gaussian and Median filters. 

h_gaussian = fspecial('gaussian', 3, 0.5); 

A_gaussian = imfilter(gray_A, h_gaussian); 

A_median = medfilt2(gray_A); 

3. Display the original, Gaussian, and median filtered images. 

subplot(1, 3, 1); imshow(gray_A); title('Original'); 

subplot(1, 3, 2); imshow(A_gaussian); title('Gaussian Filter'); 

subplot(1, 3, 3); imshow(A_median); title('Median Filter'); 

 
Ex 12.7: Edge Detection (Sobel, Prewitt, Canny) 

 Objective: Detect edges using different operators. 

 Procedure: 

1. Convert the image to grayscale. 

gray_A = rgb2gray(A); 

2. Apply Sobel, Prewitt, and Canny edge detection. 

A_sobel = edge(gray_A, 'sobel'); 

A_prewitt = edge(gray_A, 'prewitt'); 

A_canny = edge(gray_A, 'canny'); 

3. Display all results in a subplot. 

subplot(2, 2, 1); imshow(A); title('Original Image'); 

subplot(2, 2, 2); imshow(A_sobel); title('Sobel'); 

subplot(2, 2, 3); imshow(A_prewitt); title('Prewitt'); 

subplot(2, 2, 4); imshow(A_canny); title('Canny'); 

 

Ex 12. 8: Morphological Operations (Erosion and Dilation) 

 Objective: Perform erosion and dilation operations. 

 Procedure: 

1. Convert the image to grayscale. 

gray_A = rgb2gray(A); 
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2. Define a structuring element. 

se = strel('disk', 5); 

3. Apply erosion and dilation. 

A_eroded = imerode(gray_A, se); 

A_dilated = imdilate(gray_A, se); 

4. Display the original, eroded, and dilated images. 

subplot(1, 3, 1); imshow(gray_A); title('Original'); 

subplot(1, 3, 2); imshow(A_eroded); title('Eroded'); 

subplot(1, 3, 3); imshow(A_dilated); title('Dilated'); 

 
 

 

Ex 12.9: Image Thresholding 

 Objective: Convert an image to binary using thresholding. 

 Procedure: 

1. Convert the image to grayscale and double format. 

gray_A = im2double(rgb2gray(A)); 

2. Apply different threshold levels. 

B_thresh100 = im2bw(gray_A, 100/255); 

3. Display the original and thresholded images. 

subplot(1, 2, 1); imshow(gray_A); title('Original Image'); 

subplot(1, 2, 2); imshow(B_thresh100); title('Thresholded Image'); 

 

Ex 12.10: Noise Addition and Removal 

 Objective: Add different types of noise and remove them using filters. 

 Procedure: 

1. Add Gaussian and salt & pepper noise. 

B_gaussian = imnoise(A, 'gaussian'); 

B_saltpepper = imnoise(A, 'salt & pepper'); 

2. Apply a median filter to remove noise. 

B_filtered = medfilt2(rgb2gray(B_saltpepper)); 

3. Display the noisy and filtered images. 

subplot(1, 2, 1); imshow(B_saltpepper); title('Salt & Pepper 

Noise'); 

subplot(1, 2, 2); imshow(B_filtered); title('Filtered Image'); 
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Ex 12.11: Slope Calculation Using DEM 

 Objective: Calculate the slope from a Digital Elevation Model (DEM). 

 Procedure: 

1. Load the DEM file (ensure you have a DEM image or .tif file). 

DEM = imread('dem.tif'); 

DEM = double(DEM);  % Convert to double for calculation 

2. Calculate the gradient in the x and y directions using the gradient 

function. 

[Gx, Gy] = gradient(DEM); 

3. Compute the slope in degrees. 

slope = atan(sqrt(Gx.^2 + Gy.^2)) * (180/pi);  % Convert radians to 

degrees 

4. Display the slope map. 

imagesc(slope);  

colorbar;  

title('Slope Map'); 

 
Ex 12.12: Slope and Aspect Calculation 

 Objective: Compute both the slope and aspect from a DEM. 

 Procedure: 

1. Load the DEM and compute its gradients. 

DEM = imread('dem.tif'); 

DEM = double(DEM); 

[Gx, Gy] = gradient(DEM); 

2. Calculate the slope. 

slope = atan(sqrt(Gx.^2 + Gy.^2)) * (180/pi); 

3. Calculate the aspect (direction of the steepest slope). 

aspect = atan2(Gy, Gx) * (180/pi);  % Convert to degrees 

aspect(aspect < 0) = aspect(aspect < 0) + 360;  % Convert to 0-360 

degrees 

4. Display both slope and aspect maps. 

subplot(1, 2, 1); 

imagesc(slope); colorbar; title('Slope Map'); 

subplot(1, 2, 2); 

imagesc(aspect); colorbar; title('Aspect Map'); 

 
Ex 12.13: Slope Generation Using 3D Surface 
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 Objective: Generate a synthetic 3D surface and calculate its slope. 

 Procedure: 

1. Create a synthetic surface using a function (e.g., a Gaussian 

surface). 

[X, Y] = meshgrid(-5:0.1:5, -5:0.1:5); 

Z = exp(-X.^2 - Y.^2);  % Gaussian surface 

2. Compute the slope of the surface. 

[Gx, Gy] = gradient(Z); 

slope = atan(sqrt(Gx.^2 + Gy.^2)) * (180/pi);  % Slope in degrees 

3. Display the 3D surface and its slope map. 

figure; 

subplot(1, 2, 1); 

surf(X, Y, Z); title('3D Surface'); 

subplot(1, 2, 2); 

imagesc(slope); colorbar; title('Slope Map'); 

 
Ex 12.14: Slope Classification Based on Terrain Types 

 Objective: Classify slopes into different categories (e.g., gentle, 

moderate, steep). 

 Procedure: 

1. Calculate slope from DEM as in previous experiments. 

2. Define slope categories (e.g., gentle: 0-10°, moderate: 10-30°, 

steep: >30°). 

gentle = slope < 10; 

moderate = slope >= 10 & slope <= 30; 

steep = slope > 30; 

3. Create a classified slope map. 

slope_class = zeros(size(slope)); 

slope_class(gentle) = 1;  % Gentle 

slope_class(moderate) = 2;  % Moderate 

slope_class(steep) = 3;  % Steep 

imagesc(slope_class); 

colormap([0.8 1 0.8; 1 1 0.5; 1 0.5 0.5]);  % Color coding 

colorbar; title('Classified Slope Map'); 
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