ANNA UNIVERSITY, CHENNAI
AFFILIATED INSTITUTIONS
R - 2017
B.E. MECHANICAL AND AUTOMATION ENGINEERING
CHOICE BASED CREDIT SYSTEM

1. PROGRAMME EDUCATIONAL OBJECTIVES:
 Bachelor of Mechanical & Automation Engineering curriculum is designed:
 a) To enable students to identify, analyze, and solve problems in an advanced contemporary society by using the fundamentals of mathematics and engineering sciences with automation.
 b) To enable students to plan, design and manufacture engineering components by effective production methodologies with industrial automation and best management practices.
 c) To make students capable, to identify opportunities, work in multidisciplinary teams, establish work ethics, thus fulfilling the requirements of Industry and Research.
 d) To make students Outshine in professional career/higher studies for achieving global reputation through lifelong learning.
 e) To inculcate in our students, healthy interpersonal skills, entrepreneurship skills, communication skills, adhering to good values.

2. PROGRAMME OUTCOMES:
 a) An ability to apply knowledge of mathematics and engineering sciences to develop mathematical models for industrial problems.
 b) An ability to design and conduct experiments, as well as to analyze and interpret data obtained through those experiments.
 c) An ability to design mechanical systems, component, or a process to meet desired needs within the realistic constraints such as environmental, social, political and economic sustainability.
 d) An ability to identify, formulate, and solve complex engineering problems. with high degree of competence.
 e) Students will have a strong zeal towards ethical practices and good management principles.
 f) An ability to communicate, write reports and express research findings in a scientific community.
 g) An ability to adapt quickly to the global changes and contemporary practices.
 h) An ability to be an active team member in a multidisciplinary team augmenting coordination through all hierarchy.
 i) An ability to start new business ventures, lead projects with an undisputable spirit.
 j) An ability to observe, understand the local industrial problems and to solve them with existing engineering tools for realistic outcomes.
 k) An ability to deliver novelty to the task assigned through lateral thinking.
 l) An ability to engage in life-long learning.

3. PEO / PO Mapping

<table>
<thead>
<tr>
<th>PEO / PO</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Semester Course wise PEO mapping

<table>
<thead>
<tr>
<th>COURSE TITLE</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMESTER I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communicative English</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Engineering Mathematics I</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Physics</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Problem Solving and Python Programming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Graphics</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem Solving and Python Programming Laboratory</td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics and Chemistry Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMESTER II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical English</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Engineering Mathematics II</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Electrical, Electronics and InstrumentationEngineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Engineering Practices Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Electrical, Electronics and InstrumentationEngineering Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR II</th>
<th>Course Title</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMESTER III</td>
<td>Transforms and Partial Differential Equations</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Engineering Thermodynamics</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Fluid Mechanics and Machinery</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Manufacturing Technology – I</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Electrical Drives and Controls</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Electronics and Microprocessors</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering Laboratory</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Electronics and Microprocessors Laboratory</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Interpersonal Skills / Listening & Speaking</td>
<td></td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Operations Research</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Manufacturing System Management</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Strength of Materials for Mechanical Engineers</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Mechanics of Machines</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Engineering Metallurgy</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Manufacturing Technology – II</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Strength of Materials and Fluid Mechanics &</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Machinery Laboratory</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Manufacturing Technology Laboratory</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Advanced Reading and Writing</td>
<td></td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>YEAR III</td>
<td>Course Title</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>k</td>
<td>l</td>
</tr>
<tr>
<td>SEMESTER V</td>
<td>Database Management Systems</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Design of Machine Elements</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Applied Hydraulics and Pneumatics</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>LAN and Networking</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Open Elective - I</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Dynamics and Metrology Laboratory</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Database Management Systems Laboratory</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>LAN and Networking Laboratory</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Course Title</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>k</td>
<td>l</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Principles of Management</td>
<td></td>
</tr>
<tr>
<td>Thermal Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design of Transmission Systems</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finite Element Analysis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing Automation</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Elective – I</td>
<td></td>
</tr>
<tr>
<td>Automation Laboratory</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design and Fabrication Project</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Communication</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Title</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechatronics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Integrated Manufacturing Systems</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurements and Controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Elective - II</td>
<td></td>
</tr>
<tr>
<td>Professional Elective – II</td>
<td></td>
</tr>
<tr>
<td>Professional Elective – III</td>
<td></td>
</tr>
<tr>
<td>Computer Aided Simulation and Analysis Laboratory</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechatronics Laboratory</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Seminar</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robotics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Elective– IV</td>
<td></td>
</tr>
<tr>
<td>Professional Elective– V</td>
<td></td>
</tr>
<tr>
<td>Project Work</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Semester I

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS8151</td>
<td>Communicative English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MA8151</td>
<td>Engineering Mathematics - I</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH8151</td>
<td>Engineering Physics</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CY8151</td>
<td>Engineering Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE8151</td>
<td>Problem Solving and Python Programming</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE8152</td>
<td>Engineering Graphics</td>
<td>ES</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>GE8161</td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>BS8161</td>
<td>Physics and Chemistry Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>31</td>
<td>19</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

Semester II

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS8251</td>
<td>Technical English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MA8251</td>
<td>Engineering Mathematics - II</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH8251</td>
<td>Materials Science</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>BE8253</td>
<td>Basic Electrical, Electronics and Instrumentation Engineering</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE8291</td>
<td>Environmental Science and Engineering</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE8292</td>
<td>Engineering Mechanics</td>
<td>ES</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>GE8261</td>
<td>Engineering Practices Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>BE8261</td>
<td>Basic Electrical, Electronics and Instrumentation Engineering Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>30</td>
<td>20</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>
SEMESTER - III

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA8353</td>
<td>Transforms and Partial Differential Equations</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>ME8391</td>
<td>Engineering Thermodynamics</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>CE8394</td>
<td>Fluid Mechanics and Machinery</td>
<td>ES</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>ME8351</td>
<td>Manufacturing Technology– I</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EE8353</td>
<td>Electrical Drives and Controls</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>EC8396</td>
<td>Electronics and Microprocessors</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PRACTICAL								
7.	EE8361	Electrical Engineering Laboratory	ES	4	0	0	4	2
8.	EC8382	Electronics and Microprocessors Laboratory	ES	4	0	0	4	2
9.	HS8381	Interpersonal Skills/Listening & Speaking	EEC	2	0	0	2	1

TOTAL 32 20 2 10 26

SEMESTER - IV

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MG8491</td>
<td>Operations Research</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>AN8401</td>
<td>Manufacturing System Management</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CE8395</td>
<td>Strength of Materials for Mechanical Engineers</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>PR8451</td>
<td>Mechanics of Machines</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>ME8491</td>
<td>Engineering Metallurgy</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>ME8451</td>
<td>Manufacturing Technology –II</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PRACTICAL								
7.	CE8381	Strength of Materials and Fluid Mechanics & Machinery Laboratory	ES	4	0	0	4	2
8.	ME8461	Manufacturing Technology Laboratory	PC	4	0	0	4	2
9.	HS8461	Advanced Reading and Writing	EEC	2	0	0	2	1

TOTAL 28 18 0 10 23

6
SEMESTER – V

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CS8492</td>
<td>Database Management Systems</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>ME8593</td>
<td>Design of Machine Elements</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>ME8591</td>
<td>Applied Hydraulics and Pneumatics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>AN8501</td>
<td>LAN and Networking</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Open Elective - I</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>AN8511</td>
<td>Dynamics and Metrology Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>CS8481</td>
<td>Database Management Systems Labor</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>AN8512</td>
<td>LAN and Networking Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>27</td>
<td>15</td>
<td>0</td>
<td>12</td>
<td>21</td>
</tr>
</tbody>
</table>

SEMESTER – VI

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MG8591</td>
<td>Principles of Management</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>AN8601</td>
<td>Thermal Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>ME8651</td>
<td>Design of Transmission Systems</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>ME8692</td>
<td>Finite Element Analysis</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>IE8591</td>
<td>Manufacturing Automation</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective – I</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>AN8681</td>
<td>Automation Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>ME8682</td>
<td>Design and Fabrication Project</td>
<td>EEC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>HS8581</td>
<td>Professional Communication</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>28</td>
<td>18</td>
<td>0</td>
<td>10</td>
<td>23</td>
</tr>
</tbody>
</table>
SEMESTER – VII

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>ME8791</td>
<td>Mechatronics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>ME8094</td>
<td>Computer Integrated Manufacturing Systems</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>AN8701</td>
<td>Measurements and Controls</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Open Elective – II</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective – II</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective – III</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>MF8761</td>
<td>Computer Aided Simulation and Analysis Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>ME8781</td>
<td>Mechatronics Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>AN8711</td>
<td>Technical Seminar</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>28</td>
<td>18</td>
<td>10</td>
<td>23</td>
</tr>
</tbody>
</table>

SEMESTER – VIII

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>ME8099</td>
<td>Robotics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Professional Elective– IV</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Professional Elective– V</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>AN8811</td>
<td>Project Work</td>
<td>EEC</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>29</td>
<td>9</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

TOTAL NUMBER OF CREDITS TO BE EARNED FOR AWARD OF THE DEGREE = 185
HUMANITIES AND SOCIAL SCIENCES (HS)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HS8151</td>
<td>Communicative English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>HS8251</td>
<td>Technical English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>GE8291</td>
<td>Environmental Science and Engineering</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>MG8591</td>
<td>Principles of Management</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

BASIC SCIENCE (BS)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA8151</td>
<td>Engineering Mathematics I</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>PH8151</td>
<td>Engineering Physics</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>CY8151</td>
<td>Engineering Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>BS8161</td>
<td>Physics and Chemistry Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>MA8251</td>
<td>Engineering Mathematics II</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>PH8251</td>
<td>Materials Science</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>MA8353</td>
<td>Transforms and Partial Differential Equations</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

ENGINEERING SCIENCES (ES)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GE8151</td>
<td>Problem Solving and Python Programming</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>GE8152</td>
<td>Engineering Graphics</td>
<td>ES</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>GE8161</td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>BE8253</td>
<td>Basic Electrical, Electronics and Instrumentation Engineering</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>GE8292</td>
<td>Engineering Mechanics</td>
<td>ES</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>GE8261</td>
<td>Engineering Practices Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>BE8261</td>
<td>Basic Electrical, Electronics and Instrumentation Engineering Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>CE8394</td>
<td>Fluid Mechanics and Machinery</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>EE8353</td>
<td>Electrical Drives and Controls</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>EC8396</td>
<td>Electronics and Microprocessors</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>SL. NO.</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>CONTACT PERIODS</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>EE8361</td>
<td>Electrical Engineering Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>EC8382</td>
<td>Electronics and Microprocessors Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>CE8395</td>
<td>Strength of Materials for Mechanical Engineers</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>CE8381</td>
<td>Strength of Materials and Fluid Mechanics & Machinery Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>CS8492</td>
<td>Database Management Systems</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>CS8481</td>
<td>Database Management Systems Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

PROFESSIONAL CORE (PC)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ME8391</td>
<td>Engineering Thermodynamics</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>ME8351</td>
<td>Manufacturing Technology – I</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MG8491</td>
<td>Operations Research</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>AN8401</td>
<td>Manufacturing System Management</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>PR8451</td>
<td>Mechanics of Machines</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>ME8491</td>
<td>Engineering Metallurgy</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>ME8451</td>
<td>Manufacturing Technology –II</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>ME8461</td>
<td>Manufacturing Technology Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>ME8593</td>
<td>Design of Machine Elements</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>ME8591</td>
<td>Applied Hydraulics and Pneumatics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>AN8501</td>
<td>LAN and Networking</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>AN8511</td>
<td>Dynamics and Metrology Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>13.</td>
<td>AN8512</td>
<td>LAN and Networking Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>14.</td>
<td>AN8601</td>
<td>Thermal Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>ME8651</td>
<td>Design of Transmission Systems</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16.</td>
<td>ME8692</td>
<td>Finite Element Analysis</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17.</td>
<td>IE8591</td>
<td>Manufacturing Automation</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>18.</td>
<td>AN8681</td>
<td>Automation Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>19.</td>
<td>ME8791</td>
<td>Mechatronics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>20.</td>
<td>ME8094</td>
<td>Computer Integrated Manufacturing Systems</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>21.</td>
<td>AN8701</td>
<td>Measurements and Controls</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>22.</td>
<td>MF8761</td>
<td>Computer Aided Simulation and Analysis Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>23.</td>
<td>ME8781</td>
<td>Mechatronics Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>24.</td>
<td>ME8099</td>
<td>Robotics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
PROFESSIONAL ELECTIVES

SEMESTER VI, ELECTIVE – I

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA8491</td>
<td>Numerical Methods</td>
<td>PE</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>MT8791</td>
<td>Embedded System Design</td>
<td>PE</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>AN8001</td>
<td>Metal Cutting and Tool Design</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>GE8075</td>
<td>Intellectual Property Rights</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>GE8073</td>
<td>Fundamentals of Nano Science</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER VII, ELECTIVE – II

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ME8072</td>
<td>Renewable Sources of Energy</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>AN8091</td>
<td>Maintenance Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ME8098</td>
<td>Quality Control and Reliability Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ME8793</td>
<td>Process Planning and Cost Estimation</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ME8073</td>
<td>Unconventional Machining Processes</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>ME8071</td>
<td>Refrigeration and Air-Conditioning</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>GE8071</td>
<td>Disaster Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>GE8077</td>
<td>Total Quality Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER VII, ELECTIVE – III

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ME8095</td>
<td>Design of Jigs, Fixtures and Press Tools</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ME8093</td>
<td>Computational Fluid Dynamics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ME8092</td>
<td>Composite Materials and Mechanics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>GE8072</td>
<td>Foundation Skills in Integrated Product Development</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>GE8074</td>
<td>Human Rights</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
SEMESTER VIII, ELECTIVE – IV

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MF8691</td>
<td>Flexible Manufacturing Systems</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>ME8074</td>
<td>Vibration and Noise Control</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>IE8693</td>
<td>Production Planning and Control</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MG8091</td>
<td>Entrepreneurship Development</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER VIII, ELECTIVE – V

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MG8892</td>
<td>Marketing Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>AN8002</td>
<td>Concepts of Engineering Design</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MT8491</td>
<td>Microprocessors and Microcontrollers</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>GE8076</td>
<td>Professional Ethics in Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HS8381</td>
<td>Interpersonal Skills/Listening & Speaking</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>HS8461</td>
<td>Advanced Reading and Writing</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>HS8581</td>
<td>Professional Communication</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>ME8682</td>
<td>Design and Fabrication Project</td>
<td>EEC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>AN8711</td>
<td>Technical Seminar</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>AN8811</td>
<td>Project Work</td>
<td>EEC</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>
SUMMARY

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>SUBJECT AREA</th>
<th>CREDITS PER SEMESTER</th>
<th>CREDITS TOTAL</th>
<th>PERCENTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>1.</td>
<td>HS</td>
<td>4</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>BS</td>
<td>12</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>ES</td>
<td>9</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>4.</td>
<td>PC</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>5.</td>
<td>PE</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>OE</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>EEC</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>25</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>8.</td>
<td>Non Credit / Mandatory</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OBJECTIVES:
• To develop the basic reading and writing skills of first year engineering and technology students.
• To help learners develop their listening skills, which will, enable them listen to lectures and comprehend them by asking questions; seeking clarifications.
• To help learners develop their speaking skills and speak fluently in real contexts.
• To help learners develop vocabulary of a general kind by developing their reading skills

UNIT I SHARING INFORMATION RELATED TO ONESELF/FAMILY& FRIENDS 12

UNIT II GENERAL READING AND FREE WRITING 12
Reading - comprehension-pre-reading-post reading- comprehension questions (multiple choice questions and /or short questions/ open-ended questions)-inductive reading- short narratives and descriptions from newspapers including dialogues and conversations (also used as short Listening texts)- register- Writing – paragraph writing- topic sentence- main ideas- free writing, short narrative descriptions using some suggested vocabulary and structures –Listening- telephonic conversations. Speaking – sharing information of a personal kind—greeting – taking leave-Language development – prepositions, conjunctions Vocabulary development- guessing meanings of words in context.

UNIT III GRAMMAR AND LANGUAGE DEVELOPMENT 12
Reading- short texts and longer passages (close reading) Writing- understanding text structure-use of reference words and discourse markers-coherence-jumbled sentences Listening – listening to longer texts and filling up the table- product description- narratives from different sources. Speaking- asking about routine actions and expressing opinions. Language development- degrees of comparison- pronouns- direct vs indirect questions- Vocabulary development – single word substitutes- adverbs.

UNIT IV READING AND LANGUAGE DEVELOPMENT 12
Reading- comprehension-reading longer texts- reading different types of texts- magazines Writing-letter writing, informal or personal letters-e-mails-conventions of personal email- Listening-listening to dialogues or conversations and completing exercises based on them. Speaking-speaking about oneself- speaking about one’s friend- Language development- Tenses- simple present-simple past- present continuous and past continuous- Vocabulary development- synonyms-antonyms- phrasal verbs
UNIT V EXTENDED WRITING
Reading- longer texts- close reading –Writing- brainstorming -writing short essays – developing an outline- identifying main and subordinate ideas- dialogue writing-Listening – listening to talks-
conversations- Speaking – participating in conversations- short group conversations-Language development-modal verbs- present/ past perfect tense - Vocabulary development-collocations-
fixed and semi-fixed expressions

OUTCOMES: At the end of the course, learners will be able to:
• Read articles of a general kind in magazines and newspapers.
• Participate effectively in informal conversations; introduce themselves and their friends and express opinions in English.
• Comprehend conversations and short talks delivered in English
• Write short essays of a general kind and personal letters and emails in English.

TEXT BOOKS:

REFERENCES
3 Redston, Chris &Gillies Cunningham Face2Face (Pre-intermediate Student’s Book& Workbook) Cambridge University Press, New Delhi: 2005
5 Dutt P. Kiranmai and RajeevanGeeta. Basic Communication Skills, Foundation Books: 2013

MA8151 ENGINEERING MATHEMATICS – I

OBJECTIVES :
The goal of this course is to achieve conceptual understanding and to retain the best traditions of
traditional calculus. The syllabus is designed to provide the basic tools of calculus mainly for the
purpose of modeling the engineering problems mathematically and obtaining solutions. This is a
foundation course which mainly deals with topics such as single variable and multivariable calculus
and plays an important role in the understanding of science, engineering, economics and computer
science, among other disciplines.

UNIT I DIFFERENTIAL CALCULUS
Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules -
Maxima and Minima of functions of one variable.
UNIT II FUNCTIONS OF SEVERAL VARIABLES 12

UNIT III INTEGRAL CALCULUS 12
Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT IV MULTIPLE INTEGRALS 12

UNIT V DIFFERENTIAL EQUATIONS 12

TOTAL : 60 PERIODS

OUTCOMES :
After completing this course, students should demonstrate competency in the following skills:
- Use both the limit definition and rules of differentiation to differentiate functions.
- Apply differentiation to solve maxima and minima problems.
- Evaluate integrals both by using Riemann sums and by using the Fundamental Theorem of Calculus.
- Apply integration to compute multiple integrals, area, volume, integrals in polar coordinates, in addition to change of order and change of variables.
- Evaluate integrals using techniques of integration, such as substitution, partial fractions and integration by parts.
- Determine convergence/divergence of improper integrals and evaluate convergent improper integrals.
- Apply various techniques in solving differential equations.

TEXT BOOKS :
2. James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 7th Edition, New Delhi, 2015. [For Units I & III - Sections 1.1, 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1(Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 - 7.4 and 7.8].

REFERENCES :
OBJECTIVES:
- To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.

UNIT I PROPERTIES OF MATTER

UNIT II WAVES AND FIBER OPTICS

UNIT III THERMAL PHYSICS

UNIT IV QUANTUM PHYSICS

UNIT V CRYSTAL PHYSICS
Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances - coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures - crystal imperfections: point defects, line defects – Burger vectors, stacking faults – role of imperfections in plastic deformation - growth of single crystals: solution and melt growth techniques.

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of this course,
- the students will gain knowledge on the basics of properties of matter and its applications,
- the students will acquire knowledge on the concepts of waves and optical devices and their applications in fibre optics,
- the students will have adequate knowledge on the concepts of thermal properties of materials and their applications in expansion joints and heat exchangers,
- the students will get knowledge on advanced physics concepts of quantum theory and its applications in tunneling microscopes, and
- the students will understand the basics of crystals, their structures and different crystal growth techniques.

TEXT BOOKS:

REFERENCES:

CY8151 ENGINEERING CHEMISTRY

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

OBJECTIVES:
- To make the students conversant with boiler feed water requirements, related problems and water treatment techniques.
- To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
- Preparation, properties and applications of engineering materials.
- Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.
- Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.

UNIT I WATER AND ITS TREATMENT

UNIT II SURFACE CHEMISTRY AND CATALYSIS

UNIT III ALLOYS AND PHASE RULE

UNIT IV FUELS AND COMBUSTION
Fuels: Introduction - classification of fuels - coal - analysis of coal (proximate and ultimate) - carbonization - manufacture of metallurgical coke (Otto Hoffmann method) - petroleum - manufacture of synthetic petrol (Bergius process) - knocking - octane number - diesel oil - cetane number - natural gas - compressed natural gas (CNG) - liquefied petroleum gases (LPG) - power alcohol and biodiesel.
Combustion of fuels: Introduction - calorific value - higher and lower calorific values- theoretical calculation of calorific value - ignition temperature - spontaneous ignition temperature - explosive range - flue gas analysis (ORSAT Method).

UNIT V ENERGY SOURCES AND STORAGE DEVICES
Nuclear fission - controlled nuclear fission - nuclear fusion - differences between nuclear fission and fusion - nuclear chain reactions - nuclear energy - light water nuclear power plant - breeder reactor - solar energy conversion - solar cells - wind energy. Batteries, fuel cells and supercapacitors: Types of batteries – primary battery (dry cell) secondary battery (lead acid battery, lithium-ion-battery) fuel cells – H\textsubscript{2}-O\textsubscript{2} fuel cell.

OUTCOMES:
- The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:

REFERENCES:

GE8151 PROBLEM SOLVING AND PYTHON PROGRAMMING
OBJECTIVES:
- To know the basics of algorithmic problem solving
- To read and write simple Python programs.
- To develop Python programs with conditionals and loops.
- To define Python functions and call them.
- To use Python data structures — lists, tuples, dictionaries.
- To do input/output with files in Python.

UNIT I ALGORITHMIC PROBLEM SOLVING
Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.
UNIT II DATA, EXPRESSIONS, STATEMENTS
Python interpreter and interactive mode; values and types: int, float, boolean, string, and list;
variables, expressions, statements, tuple assignment, precedence of operators, comments; modules
and functions, function definition and use, flow of execution, parameters and arguments; Illustrative
programs: exchange the values of two variables, circulate the values of n variables, distance between
two points.

UNIT III CONTROL FLOW, FUNCTIONS
Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional
(if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values,
parameters, local and global scope, function composition, recursion; Strings: string slices,
immutability, string functions and methods, string module; Lists as arrays. Illustrative programs:
square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES
Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters;
Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list
processing - list comprehension; Illustrative Dictionaries: selection sort, insertion sort, mergesort,
histogram.

UNIT V FILES, MODULES, PACKAGES
Files and exception: text files, reading and writing files, format operator; command line arguments,
errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count,
copy file.

OUTCOMES:
Upon completion of the course, students will be able to
- Develop algorithmic solutions to simple computational problems
- Read, write, execute by hand simple Python programs.
- Structure simple Python programs for solving problems.
- Decompose a Python program into functions.
- Represent compound data using Python lists, tuples, dictionaries.
- Read and write data from/to files in Python Programs.

TOTAL : 45 PERIODS

TEXT BOOKS:
1. Allen B. Downey, “Think Python: How to Think Like a Computer Scientist”, 2nd edition, Updated
 for Python 3, Shroff/O'Reilly Publishers, 2016 (http://greenteapress.com/wp/think-python/)

REFERENCES:
1. John V Guttag, “Introduction to Computation and Programming Using Python”, Revised and
 Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.
5. Charles Dierbach, “Introduction to Computer Science using Python: A Computational Problem-
6. Paul Gries, Jennifer Campbell and Jason Montojo, “Practical Programming: An Introduction to
OBJECTIVES:

- To develop in students, graphic skills for communication of concepts, ideas and design of Engineering products.
- To expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (Not for Examination)
Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREEHAND SKETCHING
Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves. Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three Dimensional objects – Layout of views- Freehand sketching of multiple views from pictorial views of objects

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE
Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES
Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones.

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS
Principles of isometric projection – isometric scale –Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.

TOTAL: 90 PERIODS

OUTCOMES:
On Completion of the course the student will be able to

- perform freehand sketching of basic geometrical constructions and multiple views of objects.
- do orthographic projection of lines and plane surfaces.
- draw projections and solids and development of surfaces.
- prepare isometric and perspective sections of simple solids.
TEXT BOOK:

REFERENCES:

Publication of Bureau of Indian Standards:

Special points applicable to University Examinations on Engineering Graphics:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
4. The examination will be conducted in appropriate sessions on the same day

GE8161 PROBLEM SOLVING AND PYTHON PROGRAMMING

LABORATORY

OBJECTIVES:
- To write, test, and debug simple Python programs.
- To implement Python programs with conditionals and loops.
- Use functions for structuring Python programs.
- Represent compound data using Python lists, tuples, dictionaries.
- Read and write data from/to files in Python.

LIST OF PROGRAMS
1. Compute the GCD of two numbers.
2. Find the square root of a number (Newton’s method)
3. Exponentiation (power of a number)
4. Find the maximum of a list of numbers
5. Linear search and Binary search
6. Selection sort, Insertion sort
7. Merge sort
8. First n prime numbers
9. Multiply matrices
10. Programs that take command line arguments (word count)
11. Find the most frequent words in a text read from a file
12. Simulate elliptical orbits in Pygame
13. Simulate bouncing ball using Pygame

PLATFORM NEEDED
Python 3 interpreter for Windows/Linux

OUTCOMES:
Upon completion of the course, students will be able to
- Write, test, and debug simple Python programs.
- Implement Python programs with conditionals and loops.
- Develop Python programs step-wise by defining functions and calling them.
- Use Python lists, tuples, dictionaries for representing compound data.
- Read and write data from/to files in Python.

TOTAL: 60 PERIODS

BS8161 PHYSICS AND CHEMISTRY LABORATORY
(Common to all branches of B.E. / B.Tech Programmes)

L T P C
0 0 4 2

OBJECTIVES:
- To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics, properties of matter and liquids.

LIST OF EXPERIMENTS: PHYSICS LABORATORY (Any 5 Experiments)
1. Determination of rigidity modulus – Torsion pendulum
2. Determination of Young’s modulus by non-uniform bending method
3. (a) Determination of wavelength, and particle size using Laser
 (b) Determination of acceptance angle in an optical fiber.
5. Determination of velocity of sound and compressibility of liquid – Ultrasonic interferometer
6. Determination of wavelength of mercury spectrum – spectrometer grating
7. Determination of band gap of a semiconductor
8. Determination of thickness of a thin wire – Air wedge method

TOTAL: 30 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to
- Apply principles of elasticity, optics and thermal properties for engineering applications.
CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

OBJECTIVES:
- To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To acquaint the students with the determination of molecular weight of a polymer by viscometry.
1. Estimation of HCl using Na₂CO₃ as primary standard and Determination of alkalinity in water sample.
2. Determination of total, temporary & permanent hardness of water by EDTA method.
3. Determination of DO content of water sample by Winkler’s method.
4. Determination of chloride content of water sample by argentometric method.
5. Estimation of copper content of the given solution by iodometry.
6. Determination of strength of given hydrochloric acid using pH meter.
7. Determination of strength of acids in a mixture of acids using conductivity meter.
8. Estimation of iron content of the given solution using potentiometer.
9. Estimation of iron content of the water sample using spectrophotometer (1, 10-Phenanthroline / thiocyanate method).
10. Estimation of sodium and potassium present in water using flame photometer.
12. Pseudo first order kinetics-ester hydrolysis.
14. Determination of CMC.
15. Phase change in a solid.
16. Conductometric titration of strong acid vs strong base.

OUTCOMES:
- The students will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters.

TOTAL: 30 PERIODS

TEXTBOOKS:
UNIT I
INTRODUCTION TECHNICAL ENGLISH
12
Listening- Listening to talks mostly of a scientific/technical nature and completing information-gap exercises- Speaking –Asking for and giving directions- Reading – reading short technical texts from journals- newspapers- Writing- purpose statements – extended definitions – issue- writing instructions – checklists-recommendations-Vocabulary Development- technical vocabulary
Language Development –subject verb agreement - compound words.

UNIT II
READING AND STUDY SKILLS
12
Listening- Listening to longer technical talks and completing exercises based on them-Speaking – describing a process-Reading – reading longer technical texts- identifying the various transitions in a text- paragraphing- Writing- interpreting cgarts, graphs- Vocabulary Development- vocabularyused in formal letters/emails and reports Language Development- impersonal passive voice, numerical adjectives.

UNIT III
TECHNICAL WRITING AND GRAMMAR
12
Listening- Listening to classroom lectures/ talksls on engineering/technology -Speaking – introduction to technical presentations- Reading – longer texts both general and technical, practice in speed reading; Writing-Describing a process, use of sequence words- Vocabulary Development- sequence words- Misspelled words. Language Development- embedded sentences

UNIT IV
REPORT WRITING
12

UNIT V
GROUP DISCUSSION AND JOB APPLICATIONS
12
Listening- TED/Ink talks; Speaking –participating in a group discussion -Reading– reading and understanding technical articles Writing– Writing reports- minutes of a meeting- accident and survey-Vocabulary Development- verbal analogies Language Development- reported speech

TOTAL : 60 PERIODS

OUTCOMES:
At the end of the course learners will be able to:
• Read technical texts and write area- specific texts effortlessly.
• Listen and comprehend lectures and talks in their area of specialisation successfully.
• Speak appropriately and effectively in varied formal and informal contexts.
• Write reports and winning job applications.

TEXT BOOKS:

REFERENCES
OBJECTIVES:
This course is designed to cover topics such as Matrix Algebra, Vector Calculus, Complex Analysis and Laplace Transform. Matrix Algebra is one of the powerful tools to handle practical problems arising in the field of engineering. Vector calculus can be widely used for modelling the various laws of physics. The various methods of complex analysis and Laplace transforms can be used for efficiently solving the problems that occur in various branches of engineering disciplines.

UNIT I MATRICES

UNIT II VECTOR CALCULUS
Gradient and directional derivative – Divergence and curl - Vector identities – Irrotational and Solenoidal vector fields – Line integral over a plane curve – Surface integral - Area of a curved surface - Volume integral - Green’s, Gauss divergence and Stoke’s theorems – Verification and application in evaluating line, surface and volume integrals.

UNIT III ANALYTIC FUNCTIONS
Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by functions \(w = z + c, \frac{1}{z}, z^2 \) - Bilinear transformation.

UNIT IV COMPLEX INTEGRATION

UNIT V LAPLACE TRANSFORMS

TOTAL: 60 PERIODS
 OUTCOMES:
After successfully completing the course, the student will have a good understanding of the following topics and their applications:

- Eigen values and eigenvectors, diagonalization of a matrix, Symmetric matrices, Positive definite matrices and similar matrices.
- Gradient, divergence and curl of a vector point function and related identities.
- Evaluation of line, surface and volume integrals using Gauss, Stokes and Green’s theorems and their verification.
- Analytic functions, conformal mapping and complex integration.
- Laplace transform and inverse transform of simple functions, properties, various related theorems and application to differential equations with constant coefficients.

TEXT BOOKS:

REFERENCES:

MATERIALS SCIENCE (Common to courses offered in Faculty of Mechanical Engineering) L T P C
PH8251
Except B.E. Materials Science and Engineering)
3 0 0 3

OBJECTIVES:
- To introduce the essential principles of materials science for mechanical and related engineering applications.

UNIT I PHASE DIAGRAMS
Solid solutions - Hume Rothery's rules – the phase rule - single component system - one-component system of iron - binary phase diagrams - isomorphous systems - the tie-line rule - the lever rule - application to isomorphous system - eutectic phase diagram - peritectic phase diagram - other invariant reactions – free energy composition curves for binary systems - microstructural change during cooling.
UNIT II FERROUS ALLOYS

UNIT III MECHANICAL PROPERTIES

UNIT IV MAGNETIC, DIELECTRIC AND SUPERCONDUCTING MATERIALS

UNIT V NEW MATERIALS

TOTAL : 45 PERIODS

OUTCOMES:
Upon completion of this course,
- the students will have knowledge on the various phase diagrams and their applications
- the students will acquire knowledge on Fe-Fe₃C phase diagram, various microstructures and alloys
- the students will get knowledge on mechanical properties of materials and their measurement
- the students will gain knowledge on magnetic, dielectric and superconducting properties of materials
- the students will understand the basics of ceramics, composites and nanomaterials.

TEXT BOOKS:

REFERENCES
OBJECTIVES:
To impart knowledge on
- Electric circuit laws, single and three phase circuits and wiring
- Working principles of Electrical Machines
- Working principle of Various electronic devices and measuring instruments

UNIT I ELECTRICAL CIRCUITS

UNIT II AC CIRCUITS
Introduction to AC circuits – waveforms and RMS value – power and power factor, single phase and three-phase balanced circuits – Three phase loads - housing wiring, industrial wiring, materials of wiring

UNIT III ELECTRICAL MACHINES
Principles of operation and characteristics of ; DC machines, Transformers (single and three phase) ,Synchronous machines , three phase and single phase induction motors.

UNIT IV ELECTRONIC DEVICES & CIRCUITS

UNIT V MEASUREMENTS & INSTRUMENTATION
Introduction to transducers - Classification of Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect and Mechanical - ,Classification of instruments - Types of indicating Instruments - multimeters –Oscilloscopes- – three-phase power measurements– instrument transformers (CT and PT)

OUTCOMES:
Ability to
- Understand electric circuits and working principles of electrical machines
- Understand the concepts of various electronic devices
- Choose appropriate instruments for electrical measurement for a specific application

TEXT BOOKS
REFERENCES

GE8291 ENVIRONMENTAL SCIENCE AND ENGINEERING L T P C
3 0 0 3

OBJECTIVES:
- To study the nature and facts about environment.
- To finding and implementing scientific, technological, economic and political solutions to environmental problems.
- To study the interrelationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- To study the dynamic processes and understand the features of the earth’s interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY 14
Definition, scope and importance of environment – need for public awareness - concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers – energy flow in the ecosystem – ecological succession – food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds; Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION 8
Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – solid waste management: causes, effects and control measures of municipal solid wastes – role of an individual in prevention of pollution – pollution case studies – disaster management: floods, earthquake, cyclone and landslides. Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES 10
Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and over- utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems – Mineral
resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

TOTAL: 45 PERIODS

OUTCOMES:
- Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.
- Public awareness of environmental is at infant stage.
- Ignorance and incomplete knowledge has lead to misconceptions
- Development and improvement in std. of living has lead to serious environmental disasters

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
• To develop capacity to predict the effect of force and motion in the course of carrying out the design functions of engineering.

UNIT I STATICS OF PARTICLES

UNIT II EQUILIBRIUM OF RIGID BODIES

UNIT III PROPERTIES OF SURFACES AND SOLIDS

UNIT IV DYNAMICS OF PARTICLES

UNIT V FRICTION AND RIGID BODY DYNAMICS
Friction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge friction-. Rolling resistance -Translation and Rotation of Rigid Bodies – Velocity and acceleration – General Plane motion of simple rigid bodies such as cylinder, disc/wheel and sphere.

OUTCOMES:
• Ability to explain the differential principles applies to solve engineering problems dealing with force, displacement, velocity and acceleration.
• Ability to analyise the forces in any structures.
• Ability to solve rigid body subjected to dynamic forces.

TEXT BOOKS:
REFERENCES:

GE8261 ENGINEERING PRACTICES LABORATORY

OBJECTIVES:
- To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP A (CIVIL & MECHANICAL)

I CIVIL ENGINEERING PRACTICE

Buildings:
(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:
(a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
(b) Study of pipe connections requirements for pumps and turbines.
(c) Preparation of plumbing line sketches for water supply and sewage works.
(d) Hands-on-exercise:
 - Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.
(e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:
(a) Study of the joints in roofs, doors, windows and furniture.
(b) Hands-on-exercise:
 - Wood work, joints by sawing, planing and cutting.

II MECHANICAL ENGINEERING PRACTICE

Welding:
(a) Preparation of butt joints, lap joints and T- joints by Shielded metal arc welding.
(b) Gas welding practice

Basic Machining:
(a) Simple Turning and Taper turning
(b) Drilling Practice
Sheet Metal Work:
(a) Forming & Bending:
(b) Model making – Trays and funnels.
(c) Different type of joints.

Machine assembly practice:
(a) Study of centrifugal pump
(b) Study of air conditioner

Demonstration on:
(a) Smithy operations, upsetting, swaging, setting down and bending. Example –
Exercise – Production of hexagonal headed bolt.
(b) Foundry operations like mould preparation for gear and step cone pulley.
(c) Fitting – Exercises – Preparation of square fitting and V – fitting models.

GROUP B (ELECTRICAL & ELECTRONICS)

III ELECTRICAL ENGINEERING PRACTICE 13
1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
2. Fluorescent lamp wiring.
3. Stair case wiring
5. Measurement of energy using single phase energy meter.

IV ELECTRONICS ENGINEERING PRACTICE 16
1. Study of Electronic components and equipments – Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.
2. Study of logic gates AND, OR, EX-OR and NOT.
4. Soldering practice – Components Devices and Circuits – Using general purpose PCB.
5. Measurement of ripple factor of HWR and FWR.

TOTAL: 60 PERIODS

OUTCOMES:
- Ability to fabricate carpentry components and pipe connections including plumbing works.
- Ability to use welding equipments to join the structures.
- Ability to fabricate electrical and electronics circuits.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CIVIL

1. Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. 15 Sets.
2. Carpentry vice (fitted to work bench) 15 Nos.
4. Models of industrial trusses, door joints, furniture joints 5 each
5. Power Tools: (a) Rotary Hammer 2 Nos
 (b) Demolition Hammer 2 Nos
 (c) Circular Saw 2 Nos
(d) Planer 2 Nos
(e) Hand Drilling Machine 2 Nos
(f) Jigsaw 2 Nos

MECHANICAL

1. Arc welding transformer with cables and holders 5 Nos.
2. Welding booth with exhaust facility 5 Nos.
3. Welding accessories like welding shield, chipping hammer, wire brush, etc. 5 Sets.
4. Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. 2 Nos.
5. Centre lathe 2 Nos.
6. Hearth furnace, anvil and smithy tools 2 Sets.
7. Moulding table, foundry tools 2 Sets.
9. Study-purpose items: centrifugal pump, air-conditioner One each.

ELECTRICAL

1. Assorted electrical components for house wiring 15 Sets
2. Electrical measuring instruments 10 Sets
3. Study purpose items: Iron box, fan and regulator, emergency lamp 1 each
4. Megger (250V/500V) 1 No.
5. Power Tools: (a) Range Finder 2 Nos
 (b) Digital Live-wire detector 2 Nos

ELECTRONICS

1. Soldering guns 10 Nos.
2. Assorted electronic components for making circuits 50 Nos.
3. Small PCBs 10 Nos.
5. Study purpose items: Telephone, FM radio, low-voltage power supply

BE8261 BASIC ELECTRICAL, ELECTRONICS AND INSTRUMENTATION
ENGINEERING LABORATORY

OBJECTIVE:
- To train the students in performing various tests on electrical drives, sensors and circuits.

LIST OF EXPERIMENTS:
1. Load test on separately excited DC generator
2. Load test on Single phase Transformer
3. Load test on Induction motor
4. Verification of Circuit Laws
5. Verification of Circuit Theorems
6. Measurement of three phase power
7. Load test on DC shunt motor.
8. Diode based application circuits
9. Transistor based application circuits
10. Study of CRO and measurement of AC signals
11. Characteristics of LVDT
12. Calibration of Rotometer
13. RTD and Thermistor

Minimum of 10 Experiments to be carried out :-

TOTAL: 60 PERIODS

OUTCOMES:
- Ability to determine the speed characteristic of different electrical machines
- Ability to design simple circuits involving diodes and transistors
- Ability to use operational amplifiers

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

<table>
<thead>
<tr>
<th>S.No.</th>
<th>NAME OF THE EQUIPMENT</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D. C. Motor Generator Set</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>D.C. Shunt Motor</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Single Phase Transformer</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Single Phase Induction Motor</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Ammeter A.C and D.C</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>Voltmeters A.C and D.C</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Watt meters LPF and UPF</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Resistors & Breadboards</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Cathode Ray Oscilloscopes</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>Dual Regulated power supplies</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>A.C. Signal Generators</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>Transistors (BJT, JFET)</td>
<td></td>
</tr>
</tbody>
</table>

MA8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

OBJECTIVES:
- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS
Formation of partial differential equations – Singular integrals - Solutions of standard types of first order partial differential equations - Lagrange’s linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.
UNIT II FOURIER SERIES

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS
Classification of PDE – Method of separation of variables - Fourier Series Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction.

UNIT IV FOURIER TRANSFORMS

UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS

TOTAL : 60 PERIODS

OUTCOMES :
Upon successful completion of the course, students should be able to:
- Understand how to solve the given standard partial differential equations.
- Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.
- Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.
- Understand the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.
- Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems.

TEXT BOOKS :

REFERENCES :
OBJECTIVE:

- To familiarize the students to understand the fundamentals of thermodynamics and to perform thermal analysis on their behavior and performance.

 Use of Standard and approved Steam Table, Mollier Chart, Compressibility Chart and Psychrometric Chart permitted)

UNIT I BASIC CONCEPTS AND FIRST LAW

UNIT II SECOND LAW AND AVAILABILITY ANALYSIS

UNIT III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE

UNIT IV IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS

UNIT V GAS MIXTURES AND PSYCHROMETRY

Mole and Mass fraction, Dalton’s and Amagat’s Law. Properties of gas mixture – Molar mass, gas constant, density, change in internal energy, enthalpy, entropy and Gibbs function. Psychrometric properties, Psychrometric charts. Property calculations of air vapour mixtures by using chart and expressions. Psychrometric process – adiabatic saturation, sensible heating and cooling, humidification, dehumidification, evaporative cooling and adiabatic mixing. Simple Applications

TOTAL : 75 PERIODS
OUTCOMES:
Upon the completion of this course the students will be able to
CO1 Apply the first law of thermodynamics for simple open and closed systems under steady and unsteady conditions.
CO2 Apply second law of thermodynamics to open and closed systems and calculate entropy and availability.
CO3 Apply Rankine cycle to steam power plant and compare few cycle improvement methods
CO4 Derive simple thermodynamic relations of ideal and real gases
CO5 Calculate the properties of gas mixtures and moist air and its use in psychometric processes

TEXT BOOKS:

REFERENCES:

CE8394 FLUID MECHANICS AND MACHINERY L T P C
4 0 0 4

OBJECTIVES:
• The properties of fluids and concept of control volume are studied
• The applications of the conservation laws to flow through pipes are studied.
• To understand the importance of dimensional analysis
• To understand the importance of various types of flow in pumps.
• To understand the importance of various types of flow in turbines.

UNIT I FLUID PROPERTIES AND FLOW CHARACTERISTICS 12
Units and dimensions- Properties of fluids- mass density, specific weight, specific volume, specific gravity, viscosity, compressibility, vapor pressure, surface tension and capillarity. Flow characteristics – concept of control volume - application of continuity equation, energy equation and momentum equation.

UNIT II FLOW THROUGH CIRCULAR CONDUITS 12

UNIT III DIMENSIONAL ANALYSIS 12
Need for dimensional analysis – methods of dimensional analysis – Similitude –types of similitude - Dimensionless parameters- application of dimensionless parameters – Model analysis.

UNIT IV PUMPS 12
UNIT V TURBINES

OUTCOMES:
Upon completion of this course, the students will be able to
• Apply mathematical knowledge to predict the properties and characteristics of a fluid.
• Can analyse and calculate major and minor losses associated with pipe flow in piping networks.
• Can mathematically predict the nature of physical quantities
• Can critically analyse the performance of pumps
• Can critically analyse the performance of turbines.

TEXT BOOK:

REFERENCES:

ME8351 MANUFACTURING TECHNOLOGY – I

OBJECTIVE:
• To introduce the concepts of basic manufacturing processes and fabrication techniques, such as metal casting, metal joining, metal forming and manufacture of plastic components.

UNIT I METAL CASTING PROCESSES
Sand Casting : Sand Mould – Type of patterns - Pattern Materials – Pattern allowances –Moulding sand Properties and testing – Cores –Types and applications – Moulding machines– Types and applications; Melting furnaces : Blast and Cupola Furnaces; Principle of special casting processes : Shell - investment – Ceramic mould – Pressure die casting - Centrifugal Casting - CO2 process – Stir casting; Defects in Sand casting

UNIT II JOINING PROCESSES
Operating principle, basic equipment, merits and applications of: Fusion welding processes: Gas welding - Types – Flame characteristics; Manual metal arc welding – Gas Tungsten arc welding - Gas metal arc welding – Submerged arc welding – Electro slag welding; Operating principle and applications of: Resistance welding - Plasma arc welding – Thermit welding – Electron beam welding – Friction welding and Friction Stir Welding; Brazing and soldering; Weld defects: types, causes and cure.
UNIT III METAL FORMING PROCESSES

UNIT IV SHEET METAL PROCESSES

UNIT V MANUFACTURE OF PLASTIC COMPONENTS

TOTAL: 45 PERIODS

OUTCOMES:
CO1 Explain different metal casting processes, associated defects, merits and demerits
CO2 Compare different metal joining processes.
CO3 Summarize various hot working and cold working methods of metals.
CO4 Explain various sheet metal making processes.
CO5 Distinguish various methods of manufacturing plastic components.

TEXT BOOKS:

REFERENCES:

EE8353 ELECTRICAL DRIVES AND CONTROLS L T P C
3 0 0 3

OBJECTIVES:
- To understand the basic concepts of different types of electrical machines and their performance.
- To study the different methods of starting D.C motors and induction motors.
- To study the conventional and solid-state drives
UNIT I INTRODUCTION
Basic Elements – Types of Electric Drives – factors influencing the choice of electrical drives – heating and cooling curves – Loading conditions and classes of duty – Selection of power rating for drive motors with regard to thermal overloading and Load variation factors

UNIT II DRIVE MOTOR CHARACTERISTICS
Mechanical characteristics – Speed-Torque characteristics of various types of load and drive motors – Braking of Electrical motors – DC motors: Shunt, series and compound - single phase and three phase induction motors.

UNIT III STARTING METHODS
Types of D.C Motor starters – Typical control circuits for shunt and series motors – Three phase squirrel cage and slip ring induction motors.

UNIT IV CONVENTIONAL AND SOLID STATE SPEED CONTROL OF D.C. DRIVES
Speed control of DC series and shunt motors – Armature and field control, Ward-Leonard control system - Using controlled rectifiers and DC choppers –applications.

UNIT V CONVENTIONAL AND SOLID STATE SPEED CONTROL OF A.C. DRIVES
Speed control of three phase induction motor – Voltage control, voltage / frequency control, slip power recovery scheme – Using inverters and AC voltage regulators – applications.

TOTAL: 45 PERIODS

OUTCOME:
• Upon Completion of this subject, the students can able to explain different types of electrical machines and their performance

TEXT BOOKS:

REFERENCES:

EC8396 ELECTRONICS AND MICROPROCESSORS

OBJECTIVE:
• To enable the students to understand the fundamental concepts of Semi Conductors, Transistors, Rectifiers, Digital Electronics and 8085 Microprocessors

UNIT I SEMICONDUCTORS AND RECTIFIERS
Classification of solids based on energy band theory-Intrinsic semiconductors-Extrinsic semiconductors-P type and N type- PN junction-Zenor effect-Zenor diode characteristics- Half wave and full wave rectifiers -Voltage regulation
UNIT II TRANSISTORS AND AMPLIFIERS
Bipolar junction transistor- CB, CE, CC configuration and characteristics-Biasing circuits- Class A, and C amplifiers- Field effect transistor-Configuration and characteristic of FET amplifier-SCR, Diac, Triac, UJT-Characteristics and simple applications-Switching transistors-Concept of feedback-Negative feedback-Application in temperature and motor speed control.

UNIT III DIGITAL ELECTRONICS
Binary number system - AND, OR, NOT, NAND, NOR circuits -Boolean algebra- Exclusive OR gate - Flip flops-Half and full adders-Registers-Counters-A/D and D/A conversion.

UNIT IV 8085 MICROPROCESSOR
Block diagram of microcomputer-Architecture of 8085-Pin configuration-Instruction set- Addressing modes-Simple programs using arithmetic and logical operations.

UNIT V INTERFACING AND APPLICATIONS OF MICROPROCESSOR
Basic interfacing concepts - Interfacing of Input and Output devices-Applications of microprocessor
Temperature control, Stepper motor control, traffic light control.

TOTAL : 45 PERIODS

OUTCOMES:
- Ability to perform performing on 8085 Microprocessor to control devices
- Ability to use microcontroller and programming

TEXT BOOKS:

REFERENCES:

EE8361 ELECTRICAL ENGINEERING LABORATORY

OBJECTIVE:
- To validate the principles studied in theory by performing experiments in the laboratory

LIST OF EXPERIMENTS
1. Load test on DC Shunt & DC Series motor
2. O.C.C & Load characteristics of DC Shunt and DC Series generator
3. Speed control of DC shunt motor (Armature, Field control)
4. Load test on single phase transformer
5. O.C & S.C Test on a single phase transformer
6. Regulation of an alternator by EMF & MMF methods.
7. V curves and inverted V curves of synchronous Motor
8. Load test on three phase squirrel cage Induction motor
9. Speed control of three phase slip ring Induction Motor
10. Study of DC & AC Starters

TOTAL: 60 PERIODS

OUTCOME:
- Ability to perform speed characteristic of different electrical machine

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

<table>
<thead>
<tr>
<th>S.No.</th>
<th>NAME OF THE EQUIPMENT</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC Shunt motor</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>DC Series motor</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>DC shunt motor-DC Shunt Generator set</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>DC Shunt motor-DC Series Generator set</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Single phase transformer</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Three phase alternator</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Three phase synchronous motor</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Three phase Squirrel cage Induction motor</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Three phase Slip ring Induction motor</td>
<td>1</td>
</tr>
</tbody>
</table>

EC8382 ELECTRONICS AND MICROPROCESSORS LABORATORY

OBJECTIVE:
- To supplement the theoretical knowledge with practical use of electronic components and programming and control using micro-processors

LIST OF EXPERIMENTS

ELECTRONICS
- VI Characteristics of PN Junction Diode
- VI Characteristics of Zener Diode
- Characteristics of CE Transistor
- Characteristics of JFET
- Characteristics of Uni Junction Transistor
- RC or Wein Bridge Oscillator
- Study of Logic Gates (Basic Gates)
- Half Adder and Full Adder
- Shift Registers and Counters
- Operational Amplifier (Adder, Subtractor, Differentiator, Integrator, Inverting and Non – Inverting

MICROPROCESSORS
- Block Transfer
- 8 bit Addition, Subtraction
- Multiplication and Division
- Maximum and Minimum of block of data
- Sorting
- Stepper Motor Interfacing

TOTAL: 60 PERIODS
OUTCOME:

- Ability to perform speed characteristic of different electronics and microprocessor machine

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

<table>
<thead>
<tr>
<th>S.No.</th>
<th>NAME OF THE EQUIPMENT</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Voltmeters</td>
<td>5 Nos.</td>
</tr>
<tr>
<td>2</td>
<td>Ammeters</td>
<td>5 Nos.</td>
</tr>
<tr>
<td>3</td>
<td>PN Diode, BJT, JFET, Logic Gates, Shift Registers and Counters</td>
<td>1 set.</td>
</tr>
<tr>
<td>4</td>
<td>Digital Logic Trainer Kits</td>
<td>1 No.</td>
</tr>
<tr>
<td>5</td>
<td>Breadboards</td>
<td>1 No.</td>
</tr>
<tr>
<td>6</td>
<td>Microprocessor Kits – 8085</td>
<td>5 Nos.</td>
</tr>
<tr>
<td>7</td>
<td>D/A Converter Interface</td>
<td>1 No.</td>
</tr>
<tr>
<td>8</td>
<td>Stepper Motor Interface</td>
<td>1 No.</td>
</tr>
<tr>
<td>9</td>
<td>CRO</td>
<td>1 No.</td>
</tr>
<tr>
<td>10</td>
<td>Waveform Generator</td>
<td>1 No.</td>
</tr>
<tr>
<td>11</td>
<td>Multimeter</td>
<td>1 No.</td>
</tr>
</tbody>
</table>

INTERPERSONAL SKILLS/LISTENING&SPEAKING

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS8381</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

OBJECTIVES: The Course will enable learners to:

- Equip students with the English language skills required for the successful undertaking of academic studies with primary emphasis on academic speaking and listening skills.
- Provide guidance and practice in basic general and classroom conversation and to engage in specific academic speaking activities.
- Improve general and academic listening skills
- Make effective presentations.

UNIT I

Listening as a key skill- its importance- speaking - give personal information - ask for personal information - express ability - enquire about ability - ask for clarification Improving pronunciation - pronunciation basics taking lecture notes - preparing to listen to a lecture - articulate a complete idea as opposed to producing fragmented utterances.

UNIT II

Listen to a process information- give information, as part of a simple explanation - conversation starters: small talk - stressing syllables and speaking clearly - intonation patterns - compare and contrast information and ideas from multiple sources- converse with reasonable accuracy over a wide range of everyday topics.

UNIT III

Lexical chunking for accuracy and fluency- factors influence fluency, deliver a five-minute informal talk - greet - respond to greetings - describe health and symptoms - invite and offer - accept - decline - take leave - listen for and follow the gist- listen for detail
UNIT IV
Being an active listener: giving verbal and non-verbal feedback - participating in a group discussion - summarizing academic readings and lectures conversational speech listening to and participating in conversations - persuade.

UNIT V
Formal and informal talk - listen to follow and respond to explanations, directions and instructions in academic and business contexts - strategies for presentations and interactive communication - group/pair presentations - negotiate disagreement in group work.

OUTCOMES: At the end of the course Learners will be able to:
• Listen and respond appropriately.
• Participate in group discussions
• Make effective presentations
• Participate confidently and appropriately in conversations both formal and informal

TEXT BOOKS:

REFERENCES

MG8491 OPERATIONS RESEARCH

OBJECTIVE:
• To provide knowledge and training in using optimization techniques under limited resources for the engineering and business problems.

UNIT I LINEAR MODELS

UNIT II TRANSPORTATION MODELS AND NETWORK MODELS
UNIT III INVENTORY MODELS
Inventory models – Economic order quantity models – Quantity discount models – Stochastic inventory models – Multi product models – Inventory control models in practice.

UNIT IV QUEUEING MODELS
Queueing models - Queueing systems and structures – Notation parameter – Single server and multi server models – Poisson input – Exponential service – Constant rate service – Infinite population – Simulation.

UNIT V DECISION MODELS

OUTCOME:
- Upon completion of this course, the students can able to use the optimization techniques for use engineering and Business problems

TEXT BOOKS:

REFERENCES:
Method Study: Definition and concepts, method study procedures, symbols, advantages, Flow process charts, Motion study, micro motion, SIMO charts, Systems Concepts, Classification analysis techniques.

UNIT III WORK MEASUREMENT
Definition, objectives & techniques, Time study equipment, performance rating, allowances, standard time, work sampling, PMTS.

UNIT IV INDUSTRIAL MAINTENANCE
Types, organization for maintenance department, Breakdown and preventive maintenance. Inventory control and replacement analysis: Introduction replacement policy and method adopted, EOQ.

UNIT V MANAGEMENT CONCEPTS

TOTAL : 45 PERIODS

OUTCOMES:
- Knowledge gained in replacement policies of man power and equipments.
- Knowledge in product cost and costing analysis.

TEXT BOOKS:

REFERENCE:

CE8395 STRENGTH OF MATERIALS FOR MECHANICAL ENGINEERS
L T P C
3 0 0 3

OBJECTIVES:
- To understand the concepts of stress, strain, principal stresses and principal planes.
- To study the concept of shearing force and bending moment due to external loads in determinate beams and their effect on stresses.
- To determine stresses and deformation in circular shafts and helical spring due to torsion.
- To compute slopes and deflections in determinate beams by various methods.
- To study the stresses and deformations induced in thin and thick shells.

UNIT I STRESS, STRAIN AND DEFORMATION OF SOLIDS
UNIT II TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM 9
Beams – types transverse loading on beams – Shear force and bending moment in beams –
Cantilevers – Simply supported beams and over – hanging beams. Theory of simple
bending– bending stress distribution – Load carrying capacity – Proportioning of sections – Flitched
beams – Shear stress distribution.

UNIT III TORSION 9
Torsion formulation stresses and deformation in circular and hollows shafts – Stepped shafts–
Deflection in shafts fixed at the both ends – Stresses in helical springs – Deflection of helical
springs, carriage springs.

UNIT IV DEFLECTION OF BEAMS 9
Double Integration method – Macaulay’s method – Area moment method for computation of
slopes and deflections in beams - Conjugate beam and strain energy – Maxwell’s reciprocal
theorems.

UNIT V THIN CYLINDERS, SPHERES AND THICK CYLINDERS 9
Stresses in thin cylindrical shell due to internal pressure circumferential and longitudinal stresses
and deformation in thin and thick cylinders – spherical shells subjected to internal pressure –
Deformation in spherical shells – Lame’s theorem.

TOTAL: 45 PERIODS
OUTCOMES:
Students will be able to
- Understand the concepts of stress and strain in simple and compound bars, the importance of
 principal stresses and principal planes.
- Understand the load transferring mechanism in beams and stress distribution due to shearing
 force and bending moment.
- Apply basic equation of simple torsion in designing of shafts and helical spring
- Calculate the slope and deflection in beams using different methods.
- Analyze and design thin and thick shells for the applied internal and external pressures.

TEXT BOOKS:

REFERENCES:
 Series, 2010.
OBJECTIVES:
- To understand the principles in the formation of mechanisms and their kinematics.
- To understand the effect of friction in different machine elements.
- To understand the importance of balancing and vibration.

UNIT I KINEMATICS OF MACHINES
Mechanisms – Terminology and definitions – kinematics inversions of 4 bar and slide crank chain –
kinematics analysis in simple mechanisms – velocity and acceleration polygons – Cam and followers –
classifications – displacement diagrams - layout of plate cam profiles – derivatives of followers motion

UNIT II GEARS and GEAR TRAINS

UNIT III FRICTION
Types of friction – Friction Drives -friction in screw threads – bearings – Friction clutches – Belt drives

UNIT IV BALANCING AND MECHANISM FOR CONTROL
Static and Dynamic balancing – Balancing of revolving and reciprocating masses – Balancing machines -Balancing a single cylinder engine – Balancing of Multi-cylinder inline, V-engines – Partial balancing in engines- Governors and Gyroscopic effects..

UNIT V VIBRATION

TOTAL: 45 PERIODS

OUTCOMES:
Student will be able to
- Understand the principles in the formation of mechanisms and their kinematics.
- Understand the construction features of Gears and Gear Trains.
- Understand the effect of friction in different machine elements.
- Understand the importance of balancing.
- Understand the importance of Governors and Gyroscopic effects.
- Understand the importance of vibration.

TEXT BOOKS:

REFERENCES:
OBJECTIVE:
- To impart knowledge on the structure, properties, treatment, testing and applications of metals and non-metallic materials so as to identify and select suitable materials for various engineering applications.

UNIT I ALLOYS AND PHASE DIAGRAMS 9

UNIT II HEAT TREATMENT 9

UNIT III FERROUS AND NON-FERROUS METALS 9

UNIT IV NON-METALLIC MATERIALS 9
Polymers – types of polymer, commodity and engineering polymers – Properties and applications of various thermosetting and thermoplastic polymers (PP, PS, PVC, PMMA, PET,PC, PA, ABS, PI, PAI, PPO, PPS, PEEK, PTFE, Polymers – Urea and Phenol formaldehydes)- Engineering Ceramics – Properties and applications of Al2O3, SiC, Si3N4, PSZ and SIALON –Composites-Classifications-Metal Matrix and FRP - Applications of Composites.

UNIT V MECHANICAL PROPERTIES AND DEFORMATION MECHANISMS 9

TOTAL: 45 PERIODS

OUTCOMES:
Upon the completion of this course the students will be able to
- CO2 Explain isothermal transformation, continuous cooling diagrams and different heat treatment processes.
- CO3 Summarize the mechanism of plastic deformation and testing mechanical properties.
- CO4 Clarify the effect of alloying elements on ferrous and non-ferrous metals.
- CO5 Differentiate different non-metallc materials.

TEXT BOOKS:
REFERENCES:

<table>
<thead>
<tr>
<th>ME8451</th>
<th>MANUFACTURING TECHNOLOGY – II</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

OBJECTIVES:
- To understand the concept and basic mechanics of metal cutting, working of standard machine tools such as lathe, shaping and allied machines, milling, drilling and allied machines, grinding and allied machines and broaching.
- To understand the basic concepts of Computer Numerical Control (CNC) of machine tools and CNC Programming

UNIT I THEORY OF METAL CUTTING
Mechanics of chip formation, single point cutting tool, forces in machining, Types of chip, cutting tools— nomenclature, orthogonal metal cutting, thermal aspects, cutting tool materials, tool wear, tool life, surface finish, cutting fluids and Machinability.

UNIT II TURNING MACHINES
Centre lathe, constructional features, specification, operations – taper turning methods, thread cutting methods, special attachments, machining time and power estimation. Capstan and turret lathes- tool layout – automatic lathes: semi automatic – single spindle : Swiss type, automatic screw type – multi spindle:

UNIT III SHAPER, MILLING AND GEAR CUTTING MACHINES

UNIT IV ABRASIVE PROCESS AND BROACHING
Abrasive processes: grinding wheel – specifications and selection, types of grinding process–cylindrical grinding, surface grinding, centreless grinding and internal grinding. Typical applications – concepts of surface integrity, broaching machines: broach construction – push, pull, surface and continuous broaching machines

UNIT V CNC MACHINING

TOTAL : 45 PERIODS
OUTCOMES:
Upon the completion of this course the students will be able to
CO1 Explain the mechanism of material removal processes.
CO2 Describe the constructional and operational features of centre lathe and other special
purpose lathes.
CO3 Describe the constructional and operational features of shaper, planner, milling, drilling,
sawing and broaching machines.
CO4 Explain the grinding and other super finishing processes apart from gear manufacturing
processes.
CO5 Summarize numerical control of machine tools and write a part program.

TEXT BOOKS:

REFERENCES:
Education 2006.

CE8381 STRENGTH OF MATERIALS AND FLUID MECHANICS & MACHINERY LABORATORY

OBJECTIVES:
- To study the mechanical properties of materials when subjected to different types of
 loading.
- To verify the principles studied in Fluid Mechanics theory by performing experiments in
 lab.

STRENGTH OF MATERIALS

LIST OF EXPERIMENTS
1. Tension test on a mild steel rod
2. Double shear test on Mild steel and Aluminium rods
3. Torsion test on mild steel rod
4. Impact test on metal specimen
5. Hardness test on metals - Brinnell and Rockwell Hardness Number
6. Deflection test on beams
7. Compression test on helical springs
8. Strain Measurement using Rosette strain gauge
10. Tempering- Improvement Mechanical properties Comparison
 (i) Unhardened specimen
 (ii) Quenched Specimen and
 (iii) Quenched and tempered specimen.
11. Microscopic Examination of
 (i) Hardened samples and
 (ii) Hardened and tempered samples.

OUTCOME:
 • Ability to perform Tension, Torsion, Hardness, Compression, and Deformation test on Solid materials.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>NAME OF THE EQUIPMENT</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Universal Tensile Testing machine with double 1 shear attachment – 40 Ton Capacity</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Torsion Testing Machine (60 NM Capacity)</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Impact Testing Machine (300 J Capacity)</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Brinell Hardness Testing Machine</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Rockwell Hardness Testing Machine</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Spring Testing Machine for tensile and compressive loads (2500 N)</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Metallurgical Microscopes</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>Muffle Furnace (800 C)</td>
<td>1</td>
</tr>
</tbody>
</table>

FLUID MECHANICS AND MACHINES LABORATORY

LIST OF EXPERIMENTS
1. Determination of the Coefficient of discharge of given Orifice meter.
2. Determination of the Coefficient of discharge of given Venturi meter.
3. Calculation of the rate of flow using Rota meter.
4. Determination of friction factor for a given set of pipes.
5. Conducting experiments and drawing the characteristic curves of centrifugal pump/ submersible pump
6. Conducting experiments and drawing the characteristic curves of reciprocating pump.
7. Conducting experiments and drawing the characteristic curves of Gear pump.
8. Conducting experiments and drawing the characteristic curves of Pelton wheel.
9. Conducting experiments and drawing the characteristics curves of Francis turbine.
10. Conducting experiments and drawing the characteristic curves of Kaplan turbine.

TOTAL: 60 PERIODS

OUTCOMES:
Upon completion of this course, the students will be able to:
 • Perform Tension, Torsion, Hardness, Compression, and Deformation test on Solid materials.
 • Use the measurement equipments for flow measurement.
 • Perform test on different fluid machinery.

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>NAME OF THE EQUIPMENT</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Orifice meter setup</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Venturi meter setup</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Rotameter setup</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Pipe Flow analysis setup</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Centrifugal pump/submersible pump setup</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Reciprocating pump setup</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Gear pump setup</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Pelton wheel setup</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Francis turbine setup</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Kaplan turbine setup</td>
<td>1</td>
</tr>
</tbody>
</table>
OBJECTIVE:
- Demonstration and study of the VARIOUS machines. The Main emphasis will be on a complete understanding of the machine capabilities and processes.

LIST OF EXPERIMENTS

UNIT I LATHE PRACTICE
a. Plain Turning
b. Taper Turning
c. Thread Cutting
Estimation of machining time for the above turning processes.

UNIT II DRILLING PRACTICE
a. Drilling
b. Tapping
c. Reaming.

UNIT III MILLING
a. Surface Milling.
b. Gear Cutting.
c. Contour Milling.

UNIT IV PLANNING AND SHAPING
a. Cutting Key Ways.
b. Dove tail machining.

OUTCOMES:
- Ability to use different machine tools to manufacturing gears.
- Ability to use different machine tools for finishing operations
- Ability to manufacture tools using cutter grinder
- Develop CNC part programming

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

<table>
<thead>
<tr>
<th>S. No.</th>
<th>NAME OF THE EQUIPMENT</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lathe</td>
<td>15 Nos.</td>
</tr>
<tr>
<td>2</td>
<td>Drilling Machine</td>
<td>1 No.</td>
</tr>
<tr>
<td>3</td>
<td>Milling Machine</td>
<td>2 Nos.</td>
</tr>
<tr>
<td>4</td>
<td>Planning Machine</td>
<td>1 No.</td>
</tr>
<tr>
<td>5</td>
<td>Shaping Machine</td>
<td>2 Nos.</td>
</tr>
</tbody>
</table>
OBJECTIVES:
- Strengthen the reading skills of students of engineering.
- Enhance their writing skills with specific reference to technical writing.
- Develop students’ critical thinking skills.
- Provide more opportunities to develop their project and proposal writing skills.

UNIT I
Reading - Strategies for effective reading-Use glosses and footnotes to aid reading comprehension-Read and recognize different text types-Predicting content using photos and title Writing-Plan before writing- Develop a paragraph: topic sentence, supporting sentences, concluding sentence –Write a descriptive paragraph

UNIT II
Reading-Read for details-Use of graphic organizers to review and aid comprehension Writing-State reasons and examples to support ideas in writing- Write a paragraph with reasons and examples-Write an opinion paragraph

UNIT III
Reading- Understanding pronoun reference and use of connectors in a passage- speed reading techniques-Writing- Elements of a good essay-Types of essays- descriptive-narrative- issue-based-argumentative-analytical.

UNIT IV
Reading- Genre and Organization of Ideas- Writing- Email writing- resumes – Job application- project writing-writing convincing proposals.

UNIT V
Reading- Critical reading and thinking- understanding how the text positions the reader- identify Writing- Statement of Purpose- letter of recommendation- Vision statement

TOTAL: 30 PERIODS

OUTCOMES: At the end of the course Learners will be able to:
- Write different types of essays.
- Write winning job applications.
- Read and evaluate texts critically.
- Display critical thinking in various professional contexts.

TEXT BOOKS:

REFERENCES
OBJECTIVES

- To learn the fundamentals of data models and to represent a database system using ER diagrams.
- To study SQL and relational database design.
- To understand the internal storage structures using different file and indexing techniques which will help in physical DB design.
- To understand the fundamental concepts of transaction processing - concurrency control techniques and recovery procedures.
- To have an introductory knowledge about the Storage and Query processing Techniques

UNIT I RELATIONAL DATABASES
Purpose of Database System – Views of data – Data Models – Database System Architecture –

UNIT II DATABASE DESIGN
Functional Dependencies – Non-loss Decomposition – First, Second, Third Normal Forms, Dependency Preservation – Boyce/Codd Normal Form – Multi-valued Dependencies and Fourth Normal Form – Join Dependencies and Fifth Normal Form

UNIT III TRANSACTIONS

UNIT IV IMPLEMENTATION TECHNIQUES

UNIT V ADVANCED TOPICS

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:

- Classify the modern and futuristic database applications based on size and complexity
- Map ER model to Relational model to perform database design effectively
- Write queries using normalization criteria and optimize queries
- Compare and contrast various indexing strategies in different database systems
- Appraise how advanced databases differ from traditional databases.

TEXT BOOKS:
REFERENCES:

ME8593 DESIGN OF MACHINE ELEMENTS

OBJECTIVES:
• To familiarize the various steps involved in the Design Process
• To understand the principles involved in evaluating the shape and dimensions of a component to satisfy functional and strength requirements.
• To learn to use standard practices and standard data
• To learn to use catalogues and standard machine components (Use of P S G Design Data Book is permitted)

UNIT I STEADY STRESSES AND VARIABLE STRESSES IN MACHINE MEMBERS 9

UNIT II SHAFTS AND COUPLINGS 9
Design of solid and hollow shafts based on strength, rigidity and critical speed – Keys, keyways and splines - Rigid and flexible couplings.

UNIT III TEMPORARY AND PERMANENT JOINTS 9
Threaded fastners - Bolted joints including eccentric loading, Knuckle joints, Cotter joints – Welded joints, riveted joints for structures - theory of bonded joints.

UNIT IV ENERGY STORING ELEMENTS AND ENGINE COMPONENTS 9
Various types of springs, optimization of helical springs - rubber springs - Flywheels considering stresses in rims and arms for engines and punching machines- Connecting Rods and crank shafts.

UNIT V BEARINGS 9
Sliding contact and rolling contact bearings - Hydrodynamic journal bearings, Sommerfeld Number, Raimondi and Boyd graphs, -- Selection of Rolling Contact bearings.

TOTAL: 45 PERIODS

OUTCOMES:
Upon the completion of this course the students will be able to
CO1 Explain the influence of steady and variable stresses in machine component design.
CO2 Apply the concepts of design to shafts, keys and couplings.
CO3 Apply the concepts of design to temporary and permanent joints.
CO4 Apply the concepts of design to energy absorbing members, bearings and connecting rod.
CO5 Apply the concepts of design to bearings.
TEXT BOOKS:

REFERENCES:

ME8591 APPLIED HYDRAULICS AND PNEUMATICS L T P C
3 0 0 3

OBJECTIVE:
- This course will give an appreciation of the fundamental principles, design and operation of hydraulic and pneumatic components and systems and their application in manufacturing and mechanical systems.

UNIT I FLUID POWER PRINCIPLES AND HYDRAULIC PUMPS 9

UNIT II HYDRAULIC ACTUATORS AND VALVES 9

UNIT III HYDRAULIC SYSTEMS 9
Accumulators, Intensifiers, Industrial hydraulic circuits- Regenerative, Pump Unloading, Double-pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-safe, Speed control, Hydrostatic transmission, Electro hydraulic circuits, Mechanical Hydraulic servo systems.

UNIT IV PNEUMATIC SYSTEMS 9
UNIT V TROUBLE SHOOTING AND APPLICATIONS

OUTCOMES:
- Understanding operating principles and constructional features of hydraulic and pneumatic systems.
- Knowledge with selection of hydraulic / pneumatic components
- Understanding of designing and layout of Hydraulic Power package and trouble shooting.

REFERENCES:

AN8501 LAN AND NETWORKING

OBJECTIVES:
- To describe communication protocols and layered network architecture
- Design basic network system
- To analyse data communication Technology

UNIT I
Introduction to computer networks, reference models: OSI model, TCP/IP model, Evolution of Internet. 9

UNIT II
Fundamentals of MAC layer, Data Link layer, Transmission media: Guided and Unguided, Twisted pair cable (STP&UTP), coaxial cable, fiber optic cable, radiowaves, infrared, microwaves links. 9

UNIT III
LAN technologies: Traditional Ethernet (Concept of CSMA/CD),Fast Ethernet, Gigabit Ethernet IEEE802.4(Tokenbus),IEEE802.5(Tokenring),IEEE802.11(WirelessLAN), Working of repeater, hub, bridge and switch. 9

UNIT IV
Network layer concepts and routing algorithms, IPV6 and IPV4, sub netting and subnet masking, working of routers inLAN. Concept of Virtual LAN 9
UNIT V
Introduction to encryption and compression of data, network security issues, working of dialup connection, role of internet service provider(ISP) and working of ISDN and broadband internet connection etc, Application layer protocol: DNS, HTTP, FTP, telnet.

TOTAL: 45 PERIODS

OUTCOMES:

- Explain the characteristics and function of the OSI model
- Explain the configuration for TCP/IP configuration
- Explain the fundamentals of networking process
- Explain the data transfer through networks.

TEXT BOOKS:

REFERENCES:

AN8511 DYNAMICS AND METROLOGY LABORATORY L T P C
0 0 4 2

DYNAMICS LABORATORY

OBJECTIVES:

- To supplement the principles learnt in kinematics and Dynamics of Machinery.
- To understand how certain measuring devices are used for dynamic testing.

LIST OF EXPERIMENTS:
1. a) Study of gear parameters.
 b) Experimental study of velocity ratios of simple, compound, Epicyclic and differential gear trains.
2. a) Kinematics of Four Bar, Slider Crank, Crank Rocker, Double crank, Double rocker, Oscillating cylinder Mechanisms.
 b) Kinematics of single and double universal joints.
3. a) Determination of Mass moment of inertia of Fly wheel and Axle system.
 b) Determination of Mass Moment of Inertia of axisymmetric bodies using Turn Table apparatus.
 c) Determination of Mass Moment of Inertia using bifilar suspension and compound pendulum.
4. Motorized gyroscope – Study of gyroscopic effect and couple.
5. Governor - Determination of range sensitivity, effort etc., for Watts, Porter, Proell, and Hartnell Governors.
6. Cams – Cam profile drawing, Motion curves and study of jump phenomenon
 b) Multi degree freedom suspension system – Determination of influence coefficient.
8. a) Determination of torsional natural frequency of single and Double Rotor systems.-Undamped and Damped Natural frequencies.
b) Vibration Absorber – Tuned vibration absorber.
9. Vibration of Equivalent Spring mass system – undamped and damped vibration.
11. a) Balancing of rotating masses.
 b) Balancing of reciprocating masses.
12. a) Transverse vibration of Free-Free beam – with and without concentrated masses.
 b) Forced Vibration of Cantilever beam – Mode shapes and natural frequencies.
 c) Determination of transmissibility ratio using vibrating table.

Students should be familiar with the use of the following device/equipments depending upon availability.
1. Tachometers – Contact and non contact
2. Dial gauge
3. Stroboscope
4. Accelerometers – Vibration pickups
5. Displacement meters.
6. Oscilloscope
7. Vibration Shaker
8. F.F.T. Analyzer, and

METROLOGY LABORATORY

LIST OF EXPERIMENTS:
Contact methods:
• Linear and Angular measurement using Autocollimator.
• Measurement of composite error using gear tester.
• Calibration of optical comparator and measurement of dimension
• Determining the accuracy of electrical and optical comparator.
• Measurement of taper angle using sine bar.
• Measurement of various angles using Bevel Protractor.

Non-contact measurement techniques:
• Measurement of Taper angle using Tool Makers Microscope.
• Measurement of various elements of screw thread using Tools Makers Microscope.
• Experiments in CMM.

TOTAL: 60 PERIODS

OUTCOMES:
• To make the students understand the fundamental principles of measuring techniques by practicing exercises on various measuring instruments.
• To make the students understand the fundamental principles of measuring techniques by practicing exercises on various measuring instruments.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>NAME OF THE EQUIPMENT</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Micrometer</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Vernier Caliper</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Vernier Height Gauge</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Vernier Depth Gauge</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Slip Gauge Set</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Gear Tooth Vernier</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Sine Bar</td>
<td>1</td>
</tr>
</tbody>
</table>
AIM:
The aim of this laboratory is to inculcate the abilities of applying the principles of the database management systems. This course aims to prepare the students for projects where a proper implementation of databases will be required.

OBJECTIVES:
- To understand data definitions and data manipulation commands
- To learn the use of nested and join queries
- To understand functions, procedures and procedural extensions of data bases
- To be familiar with the use of a front end tool
- To understand design and implementation of typical database applications

1. Data Definition Commands, Data Manipulation Commands for inserting, deleting, updating and retrieving Tables and Transaction Control statements
2. Database Querying – Simple queries, Nested queries, Sub queries and Joins
3. Views, Sequences, Synonyms
4. Database Programming: Implicit and Explicit Cursors
5. Procedures and Functions
6. Triggers
7. Exception Handling
8. Database Design using ER modeling, normalization and Implementation for any application
9. Database Connectivity with Front End Tools
10. Case Study using real life database applications

OUTCOMES:
Upon completion of the course, the students will be able to:
- Use typical data definitions and manipulation commands.
- Design applications to test Nested and Join Queries
- Implement simple applications that use Views
- Implement applications that require a Front-end Tool
- Critically analyze the use of Tables, Views, Functions and Procedures
OBJECTIVE:
- To familiarize the students to write program for LAN and networks

LIST OF EXPERIMENTS:
1. Looking up Internet Addresses.
2. Testing the characteristics of an IP address.
3. Write a program to trace the port of a particular host.
4. Write a program to implement the day time protocol.
5. Write a program to implement the echoclient.
6. Write a program to implement the finger client.
7. Write a program to implement the whoisclient.
8. Demonstration of TCP/IP protocol.
10. Implement achat server using TCP/IP protocol.
11. Transfer of files from PC to PC using Windows/Unix socket processing

TOTAL : 60 PERIODS

OUTCOME:
- Ability to demonstrate LAN and Networking

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Description of Equipment</th>
<th>Quantity required</th>
<th>Quantity available</th>
<th>Deficiency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>SOFTWARE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C / C++ / Java/ Equivalent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compiler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Network simulator like</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NS2/Glomsim/OPNET/ Equivalent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>HARDWARE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stand alone desktops</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MG8591 PRINCIPLES OF MANAGEMENT

OBJECTIVE:
- To enable the students to study the evolution of Management, to study the functions and principles of management and to learn the application of the principles in an organization

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS
UNIT II PLANNING

UNIT III ORGANISING

UNIT IV DIRECTING

UNIT V CONTROLLING
System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

TOTAL: 45 PERIODS

OUTCOME:
- Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management

TEXT BOOKS:

REFERENCES:

AN8601 THERMAL ENGINEERING

OBJECTIVES:
- To integrate the concepts, laws and methodologies from the first course in thermodynamics into analysis of cyclic processes
- To apply the thermodynamic concepts into various thermal application like IC engines, Steam Turbines, Compressors and Refrigeration and Air conditioning systems (Use of standard refrigerant property data book, Steam Tables, Mollier diagram and Psychrometric chart permitted)
UNIT I GAS POWER CYCLES 8
Otto, Diesel, Dual, Brayton cycles, Calculation of mean effective pressure, and air standard efficiency - Comparison of cycles.

UNIT II INTERNAL COMBUSTION ENGINES 10

UNIT III STEAM NOZZLES AND TURBINES 9
Flow of steam through nozzles, shapes of nozzles, effect of friction, critical pressure ratio, supersaturated flow. Impulse and Reaction principles, compounding, velocity diagram for simple and multi-stage turbines, speed regulations –Governors.

UNIT IV AIR COMPRESSOR 9
Classification and working principle of various types of compressors, work of compression with and without clearance, Volumetric efficiency, Isothermal efficiency and Isentropic efficiency of reciprocating compressors, Multistage air compressor and inter cooling –work of multistage air compressor

UNIT V REFRIGERATION AND AIR CONDITIONING 9

TOTAL: 45 PERIODS

OUTCOME:
- Upon completion of this course, the students can able to apply the different gas power cycles and use of them in IC and R&AC applications.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To gain knowledge on the principles and procedure for the design of Mechanical power Transmission components.
- To understand the standard procedure available for Design of Transmission of Mechanical elements
- To learn to use standard data and catalogues
 (Use of P S G Design Data Book permitted)

UNIT I DESIGN OF FLEXIBLE ELEMENTS
Design of Flat belts and pulleys - Selection of V belts and pulleys – Selection of hoisting wire ropes and pulleys – Design of Transmission chains and Sprockets.

UNIT II SPUR GEARS AND PARALLEL AXIS HELICAL GEARS
Speed ratios and number of teeth-Force analysis -Tooth stresses - Dynamic effects – Fatigue strength - Factor of safety - Gear materials – Design of straight tooth spur & helical gears based on strength and wear considerations – Pressure angle in the normal and transverse plane- Equivalent number of teeth-forces for helical gears.

UNIT III BEVEL, WORM AND CROSS HELICAL GEARS

UNIT IV GEAR BOXES
Geometric progression - Standard step ratio - Ray diagram, kinematics layout -Design of sliding mesh gear box - Design of multi speed gear box for machine tool applications - Constant mesh gear box - Speed reducer unit. – Variable speed gear box, Fluid Couplings, Torque Converters for automotive applications.

UNIT V CAMS, CLUTCHES AND BRAKES
Cam Design: Types-pressure angle and under cutting base circle determination-forces and surface stresses. Design of plate clutches –axial clutches-cone clutches-internal expanding rim clutches- Electromagnetic clutches. Band and Block brakes - external shoe brakes – Internal expanding shoe brake.

OUTCOMES:
Upon the completion of this course the students will be able to
CO1 apply the concepts of design to belts, chains and rope drives.
CO2 apply the concepts of design to spur, helical gears.
CO3 apply the concepts of design to worm and bevel gears.
CO4 apply the concepts of design to gear boxes.
CO5 apply the concepts of design to cams, brakes and clutches

TOTAL : 45 PERIODS

TEXT BOOKS:
REFERENCES:

ME8692 FINITE ELEMENT ANALYSIS

OBJECTIVES:
- To introduce the concepts of Mathematical Modeling of Engineering Problems.
- To appreciate the use of FEM to a range of Engineering Problems.

UNIT I INTRODUCTION

UNIT II ONE-DIMENSIONAL PROBLEMS

UNIT III TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS

UNIT IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS
Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Body forces and temperature effects – Stress calculations - Plate and shell elements.

UNIT V ISOPARAMETRIC FORMULATION

TOTAL : 45 PERIODS
OUTCOMES:
1. CQ1 Summarize the basics of finite element formulation.
2. CQ2 Apply finite element formulations to solve one-dimensional problems.
3. CQ3 Apply finite element formulations to solve two-dimensional problems.
4. CQ4 Apply finite element method to solve heat transfer and fluid mechanics problems.
5. CQ5 Apply finite element method to solve problems on dynamic analysis.

TEXT BOOKS:

REFERENCES:

IE8591 MANUFACTURING AUTOMATION L T P C 3 0 0 3

OBJECTIVES:
- To give a brief exposure to automation principles and control technologies.
- To introduce the concept of fixed automation using transfer lines.
- To train the students in the programmable automation such as CNC and industrial robotics.
- To provide knowledge on the use of automated material handling, storage and data capture.

UNIT I MANUFACTURING OPERATIONS 9
Automation in production systems, principles and strategies, Product/production relationships, Production concepts and mathematical models, manufacturing economics.

UNIT II CONTROL TECHNOLOGIES 9
Automated systems – elements, functions, levels, Continuous Vs discrete control, Computer process control, Sensors, Actuators, ADC, DAC, Programmable logic controllers – ladder logic diagrams.

UNIT III TRANSFER LINES 9
Automated production lines – applications, Analysis – with and without buffers, automated assembly systems, line unbalancing concept.

UNIT IV NUMERICAL CONTROL AND ROBOTICS 9
UNIT V AUTOMATED HANDLING AND STORAGE

Automated guided vehicle systems, AS/RS, Carousel storage, Automatic data capture - Bar code technology.

OUTCOMES:

- Ability to understand the requirements of automation in manufacturing systems.
- Knowledge in the techniques of machinery automation, shop floor automation.
- Selection of material handling systems for automated industries.
- Gaining basic knowledge in CAD systems.

TEXT BOOK:

REFERENCE:

AN8681 AUTOMATION LABORATORY L T P C

0 0 4 2

OBJECTIVES:

To give hands on experience on

- CNC programming on Lathe and Milling Machine
- Programming of Robotics
- Programming of PLC

1. Part programming and Machining of Simple Turning using CNC Lathe
2. Part programming and Machining of Taper Turning using CNC Lathe
3. Part programming and Machining using Multiple Turning cycle in CNC Lathe
4. Part programming and Simulation of Thread Cutting using CNC Lathe
5. Part programming and Machining of Contour using CNC Milling Machi
6. Part programming and Machining of Circular Pocket using CNC Milling Machine
7. Part programming and Machining of Rectangular Pocket using CNC Milling Machine
8. Part programming and Machining using Mirroring Cycle in CNC Milling Machine
9. Programming Exercise for Robots
10. Programming of PLC using Ladder Logic Diagram

OUTCOMES:

Students will be able to

CO1: Perform CNC programming using G-code and M-code. S2
CO2: Perform programming for controlling the robots. S2
CO3: Perform programming PLC using ladder Logic Diagram. S2

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

1. CNC Lathe
2. CNC Milling Machine
3. Pick and Place Robot
4. PLC Trainer
ME8682 DESIGN AND FABRICATION PROJECT

OBJECTIVE:
- The main objective is to give an opportunity to the student to get hands on training in the fabrication of one or more components of a complete working model, which is designed by them.

GUIDELINE FOR REVIEW AND EVALUATION
The students may be grouped into 2 to 4 and work under a project supervisor. The device/system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL: 60 PERIODS

OUTCOMES:
Upon the completion of this course the students will be able to
CO1 design and Fabricate the machine element or the mechanical product.
CO2 demonstrate the working model of the machine element or the mechanical product.

--

HS8581 PROFESSIONAL COMMUNICATION

OBJECTIVES:
The course aims to:
- Enhance the Employability and Career Skills of students
- Orient the students towards grooming as a professional
- Make them Employable Graduates
- Develop their confidence and help them attend interviews successfully.

UNIT I
Introduction to Soft Skills— Hard skills & soft skills - employability and career Skills—Grooming as a professional with values—Time Management—General awareness of Current Affairs

UNIT II
Self-Introduction-organizing the material - Introducing oneself to the audience – introducing the topic – answering questions – individual presentation practice— presenting the visuals effectively – 5 minute presentations

UNIT III
Introduction to Group Discussion— Participating in group discussions – understanding group dynamics - brainstorming the topic — questioning and clarifying — GD strategies- activities to improve GD skills

UNIT IV
Interview etiquette – dress code – body language – attending job interviews– telephone/skype interview -one to one interview &panel interview – FAQs related to job interviews

71
UNIT V
Recognizing differences between groups and teams - managing time-managing stress - networking professionally - respecting social protocols-understanding career management-developing a long-term career plan-making career changes

TOTAL: 30 PERIODS

OUTCOMES:
At the end of the course Learners will be able to:
• Make effective presentations
• Participate confidently in Group Discussions.
• Attend job interviews and be successful in them.
• Develop adequate Soft Skills required for the workplace

Recommended Software
1. Globearena
2. Win English

REFERENCES:

ME8791 MECHATRONICS

OBJECTIVE:
• To impart knowledge about the elements and techniques involved in Mechatronics systems which are very much essential to understand the emerging field of automation.

UNIT I INTRODUCTION

UNIT II MICROPROCESSOR AND MICROCONTROLLER

UNIT III PROGRAMMABLE PERIPHERAL INTERFACE

UNIT IV PROGRAMMABLE LOGIC CONTROLLER
Introduction – Basic structure – Input and output processing – Programming – Mnemonics – Timers, counters and internal relays – Data handling – Selection of PLC.
UNIT V ACTUATORS AND MECHATRONIC SYSTEM DESIGN

OUTCOMES:
Upon the completion of this course the students will be able to
CO1 Discuss the interdisciplinary applications of Electronics, Electrical, Mechanical and Computer Systems for the Control of Mechanical, Electronic Systems and sensor technology.
CO2 Discuss the architecture of Microprocessor and Microcontroller, Pin Diagram, Addressing Modes of Microprocessor and Microcontroller.
CO3 Discuss Programmable Peripheral Interface, Architecture of 8255 PPI, and various device interfacing
CO4 Explain the architecture, programming and application of programmable logic controllers to problems and challenges in the areas of Mechatronic engineering.
CO5 Discuss various Actuators and Mechatronics system using the knowledge and skills acquired through the course and also from the given case studies

TEXT BOOKS:

REFERENCES:

ME8094 COMPUTER INTEGRATED MANUFACTURING SYSTEMS

OBJECTIVE:
• To understand the application of computers in various aspects of Manufacturing viz., Design, Proper planning, Manufacturing cost, Layout & Material Handling system.

UNIT I INTRODUCTION
UNIT II PRODUCTION PLANNING AND CONTROL AND COMPUTERISED PROCESS PLANNING

UNIT III CELLULAR MANUFACTURING

UNIT IV FLEXIBLE MANUFACTURING SYSTEM (FMS) AND AUTOMATED GUIDED VEHICLE SYSTEM (AGVS)

UNIT V INDUSTRIAL ROBOTICS

TOTAL : 45 PERIODS

OUTCOMES:
CO1 Explain the basic concepts of CAD, CAM and computer integrated manufacturing systems
CO2 Summarize the production planning and control and computerized process planning
CO3 Differentiate the different coding systems used in group technology
CO4 Explain the concepts of flexible manufacturing system (FMS) and automated guided vehicle (AGV) system
CO5 Classification of robots used in industrial applications

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To understand the principle and use of sensors for measurement of different parameters.
- To understand the concept of feedback control systems and their applications.

UNIT I MEASUREMENTS

UNIT II INSTRUMENTS
Transducer, Modifying (intermediate) and Terminal stages - Mechanical and electrical transducers - preamplifiers - charge amplifiers - filters - attenuaters - D' Arsonval CRO - Oscillographs - records - micro processor based data logging, processing and output.

UNIT III PARAMETERS FOR MEASUREMENT

UNIT IV AUTOMATIC CONTROL SYSTEMS
Basic elements - feedback principle implication of measurements - Error detectors final actuating elements - Two position, multi position, floating, pro-portional controls relays – seNO amplifiers - seNO motors - mechanical, Electrical, magnetic, electronic, hydraulic, pneumatic systems.

UNIT V APPLICATION OF CONTROL SYSTEMS
Governing of speed kinetic and process control- pressure, temperature, fluid level, flow thrust and flight control - photo electric controls.

OUTCOMES:
Understanding terminologies of Mechanical Measurements.
- Gaining knowledge of parameters of Mechanical Measurements.
- Usage of Automobile control of mechanisms in measurements of mechanical parameters.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:

- To give exposure to software tools needed to analyze engineering problems.
- To expose the students to different applications of simulation and analysis tools.

LIST OF EXPERIMENTS:

A. SIMULATION
1. MATLAB basics, Dealing with matrices, Graphing-Functions of one variable and two variables
2. Use of Matlab to solve simple problems in vibration
3. Mechanism Simulation using software

B. ANALYSIS
1. Force and Stress analysis using link elements in Trusses, cables etc.
2. Stress and deflection analysis in beams with different support conditions.
3. Stress analysis of flat plates and simple shells.
5. Thermal stress and heat transfer analysis of plates.
7. Vibration analysis of spring-mass systems.
8. Model analysis of Beams.
9. Harmonic, transient and spectrum analysis of simple systems.

TOTAL: 60 PERIODS

OUTCOME:

- To train the students to make use of software for simulation and analysis for various applications in the field of manufacturing engineering.

TEXT BOOKS:

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS

OBJECTIVE:

- To know the method of programming the microprocessor and also the design, modeling & analysis of basic electrical, hydraulic & pneumatic Systems which enable the students to understand the concept of mechatronics.

LIST OF EXPERIMENTS:
2. Stepper motor interface.
4. Speed control of DC motor.
5. Study of various types of transducers.
7. Modelling and analysis of basic hydraulic, pneumatic and electrical circuits using Software.
8. Study of PLC and its applications.
9. Study of image processing technique.

TOTAL: 60 PERIODS

OUTCOMES:
Upon the completion of this course the students will be able to
CO1 Demonstrate the functioning of mechatronics system with various pneumatic, hydraulic and electrical systems.
CO2 Demonstrate the functioning of control systems with the help of PLC and microcontrollers.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>NAME OF THE EQUIPMENT</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic Pneumatic Trainer Kit with manual and electrical controls/ PLC Control each</td>
<td>1 No.</td>
</tr>
<tr>
<td>2</td>
<td>Basic Hydraulic Trainer Kit</td>
<td>1 No</td>
</tr>
<tr>
<td>3</td>
<td>Hydraulics and Pneumatics Systems Simulation</td>
<td>10 No</td>
</tr>
<tr>
<td>4</td>
<td>8051 - Microcontroller kit with stepper motor and drive circuit sets</td>
<td>2 No</td>
</tr>
<tr>
<td>5</td>
<td>Image processing system with hardware & software</td>
<td>1 No</td>
</tr>
</tbody>
</table>

ME8099 ROBOTICS

OBJECTIVES:
- To understand the functions of the basic components of a Robot.
- To study the use of various types of End of Effectors and Sensors
- To impart knowledge in Robot Kinematics and Programming
- To learn Robot safety issues and economics.

UNIT I FUNDAMENTALS OF ROBOT
Robot - Definition - Robot Anatomy - Co ordinate Systems, Work Envelope Types and Classification- Specifications-Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load- Robot Parts and their Functions-Need for Robots-Different Applications.

UNIT II ROBOT DRIVE SYSTEMS AND END EFFECTORS
Pneumatic Drives-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. Servo Motors, Stepper Motors, A.C. Servo Motors-Salient Features, Applications and Comparison of all these Drives, End Effectors-Grippers-Mechanical Grippers, Pneumatic and Hydraulic- Grippers, Magnetic Grippers, Vacuum Grippers; Two Fingered and Three Fingered Grippers; Internal Grippers and External Grippers; Selection and Design Considerations.

UNIT III SENSORS AND MACHINE VISION
Requirements of a sensor, Principles and Applications of the following types of sensors- Position sensors - Piezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumatic Position Sensors, Range Sensors Triangulations Principles, Structured, Lighting Approach, Time of Flight, Range

UNIT IV ROBOT KINEMATICS AND ROBOT PROGRAMMING

Forward Kinematics, Inverse Kinematics and Difference; Forward Kinematics and Reverse Kinematics of manipulators with Two, Three Degrees of Freedom (in 2 Dimension), Four Degrees of freedom (in 3 Dimension) Jacobians, Velocity and Forces-Manipulator Dynamics, Trajectory Generator, Manipulator Mechanism Design-Derivations and problems. Lead through Programming, Robot programming Languages-VAL Programming-Motion Commands, Sensor Commands, End Effector commands and simple Programs.

UNIT V IMPLEMENTATION AND ROBOT ECONOMICS

RGV, AGV; Implementation of Robots in Industries-Various Steps; Safety Considerations for Robot Operations - Economic Analysis of Robots.

TOTAL: 45 PERIODS

OUTCOMES:
Upon the completion of this course the students will be able to

CO1 Explain the concepts of industrial robots, classification, specifications and coordinate systems. Also summarize the need and application of robots in different sectors.

CO2 Illustrate the different types of robot drive systems as well as robot end effectors.

CO3 Apply the different sensors and image processing techniques in robotics to improve the ability of robots.

CO4 Develop robotic programs for different tasks and familiarize with the kinematics of robot.

CO5 Examine the implementation of robots in various industrial sectors and interpolate the economic analysis of robots.

TEXT BOOKS:

REFERENCES:

AN8811 PROJECT WORK

OBJECTIVE:
☐ To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL: 300 PERIODS

OUTCOME:
- On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

MA8491 NUMERICAL METHODS

OBJECTIVES:
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals in real life situations.
- To acquaint the student with understanding of numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.
- To understand the knowledge of various techniques and methods of solving various types of partial differential equations.

UNIT I SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS
12

UNIT II INTERPOLATION AND APPROXIMATION
12
Interpolation with unequal intervals - Lagrange's interpolation – Newton’s divided difference interpolation – Cubic Splines - Difference operators and relations - Interpolation with equal intervals - Newton’s forward and backward difference formulae.

UNIT III NUMERICAL DIFFERENTIATION AND INTEGRATION
12
UNIT IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

UNIT V BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS
Finite difference methods for solving second order two - point linear boundary value problems - Finite difference techniques for the solution of two dimensional Laplace’s and Poisson’s equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

TOTAL : 60 PERIODS

OUTCOMES :
Upon successful completion of the course, students should be able to:

- Understand the basic concepts and techniques of solving algebraic and transcendental equations.
- Appreciate the numerical techniques of interpolation and error approximations in various intervals in real life situations.
- Apply the numerical techniques of differentiation and integration for engineering problems.
- Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
- Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications.

TEXT BOOKS :

REFERENCES :

MT8791 EMBEDDED SYSTEM DESIGN

OBJECTIVES:
- To provide the overview of embedded system design principles
- To understand the concepts of real time operating systems
- To provide exposure to embedded system development tools with hands on experience in using basic programming techniques.
UNIT I INTRODUCTION TO EMBEDDED SYSTEMS
Overview of embedded systems, embedded system design process, challenges - common design metrics and optimizing them. Hardware - Software codesign embedded product development.

UNIT II REAL TIME OPERATING SYSTEM
Real time operating systems Architecture - Tasks and Task states - Tasks and Data - Semaphore and shared data - Message queues, mail boxes and pipes - Encapsulating semaphores and queues - interrupt routines in an RTOS Environment. Introduction to Vx works, RT Linux.

UNIT III PIC MICROCONTROLLER
Architecture - Instruction set - Addressing modes - Timers - Interrupt logic - CCP modules - ADC.

UNIT IV EMBEDDED NETWORKING
Introduction - CAN BUS - I2C - GSM - GPRS - Zig bee.

UNIT V EMBEDDED PROGRAMMING LABORATORY : LIST OF EXPERIMENTS
I/O Programming
Interrupts and Timer application
Interfacing Keypad
Interfacing LCD
Interfacing ADC/DAC
TOTAL : 60 PERIODS

OUTCOMES:
CO1. Explain the need of embedded systems and their development procedures.
CO2. Summarizes the concepts involved in Real time operating systems.
CO3. Use various tools for developing embedded applications.
CO4. Explain the construction, addressing modes and instructions sets of PIC micro controller.
CO5. Conduct experiments with I/O systems used in embedded systems.

TEXT BOOKS:

REFERENCES
AN8001 METAL CUTTING AND TOOL DESIGN

OBJECTIVE:
- To use mechanics of various cutting processes and selection of cutting parameters.

UNIT I INTRODUCTION
Definition of feed, depth of cut and cutting speed. Concept of specific cutting energy in metal cutting and Numerical based on calculation of machining time on lathe, drilling machine, shaper, milling machine and grinding machines considering specific cutting energy of materials. Theory of Metal Cutting: Orthogonal and oblique cutting, types of chips, Factors affecting the formation, Cutting forces in orthogonal cutting and their measurement, Merchant circle and derivation of relationships between the cutting forces, chip thickness ratio, shear angle, stress and strain in the chip, work done and power required in metal cutting, plowing forces and the 'size- effect', apparent mean shear strength of work material.

UNIT II ERNST MERCHANT THEORY

UNIT III MACHINABILITY
Machinability and its criteria, forms of tool-wear in metal cutting, tool-life and its criteria, effect of different cutting parameters on tool-life. Economics of machining and numericals. Cutting fluids, their physical action and applications.
Grinding: Specifications of grinding wheel, Mechanics of grinding, effect of grinding conditions and type of grinding on wheel behaviour, equivalent diameter of grinding wheel.

UNIT IV CUTTING TOOL DESIGN:
General considerations, single point tool geometry. Principles of different cutting tool materials and their important characteristics. Geometry of a drill. Basic principles of design of a single point and multiple point tools i.e broaches and twist drill.

UNIT V JIGS AND FIXTURES

TOTAL: 45 PERIODS

OUTCOMES:
- Knowledge in the mechanics of various cutting processes and selection of cutting parameters.
- Ability to design single / multipoint cutting tools.
- Confidence in designing and recommending jigs and fixtures.

TEXT BOOKS:

REFERENCES:
OBJECTIVE:
- To give an idea about IPR, registration and its enforcement.

UNIT I INTRODUCTION
Introduction to IPRs, Basic concepts and need for Intellectual Property - Patents, Copyrights, Geographical Indications, IPR in India and Abroad – Genesis and Development – the way from WTO to WIPO –TRIPS, Nature of Intellectual Property, Industrial Property, technological Research, Inventions and Innovations – Important examples of IPR.

UNIT II REGISTRATION OF IPRs
Meaning and practical aspects of registration of Copy Rights, Trademarks, Patents, Geographical Indications, Trade Secrets and Industrial Design registration in India and Abroad

UNIT III AGREEMENTS AND LEGISLATIONS

UNIT IV DIGITAL PRODUCTS AND LAW

UNIT V ENFORCEMENT OF IPRs
Infringement of IPRs, Enforcement Measures, Emerging issues – Case Studies.

TOTAL :45 PERIODS

OUTCOME:
- Ability to manage Intellectual Property portfolio to enhance the value of the firm.

TEXT BOOKS

REFERENCES
OBJECTIVE:
To learn about basis of nanomaterial science, preparation method, types and application

UNIT I INTRODUCTION
Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering-Classifications of nanostructured materials- nano particles- quantum dots, nanowires-ultra-thinfilms-multilayered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only).

UNIT II GENERAL METHODS OF PREPARATION
Bottom-up Synthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.

UNIT III NANOMATERIALS

UNIT IV CHARACTERIZATION TECHNIQUES

UNIT V APPLICATIONS

OUTCOMES:
- Will familiarize about the science of nanomaterials
- Will demonstrate the preparation of nanomaterials
- Will develop knowledge in characteristic nanomaterial

TEXT BOOKS:

REFERENCES:
OBJECTIVE:
- At the end of the course, the students are expected to identify the new methodologies technologies for effective utilization of renewable energy sources.

UNIT I INTRODUCTION 9

UNIT II SOLAR ENERGY 9

UNIT III WIND ENERGY 9

UNIT IV BIO - ENERGY 9

UNIT V OTHER RENEWABLE ENERGY SOURCES 9

TOTAL : 45 PERIODS

OUTCOMES:
Upon the completion of this course the students will be able to
CO1 Discuss the importance and Economic of renewable Energy
CO2 Discuss the method of power generation from Solar Energy
CO3 Discuss the method of power generation from Wind Energy
CO4 Explain the method of power generation from Bio Energy

TEXT BOOKS:

REFERENCES:
OBJECTIVES:

- To enable the student to understand the principles, functions and practices adapted in industry for the successful management of maintenance activities.
- To explain the different maintenance categories like Preventive maintenance, condition monitoring and repair of machine elements.
- To illustrate some of the simple instruments used for condition monitoring in industry.

UNIT I PRINCIPLES AND PRACTICES OF MAINTENANCE PLANNING

UNIT II MAINTENANCE POLICIES – PREVENTIVE MAINTENANCE

Maintenance categories – Comparative merits of each category – Preventive maintenance, maintenance schedules, repair cycle - Principles and methods of lubrication – TPM.

UNIT III CONDITION MONITORING

Condition Monitoring – Cost comparison with and without CM – On-load testing and offload testing – Methods and instruments for CM – Temperature sensitive tapes – Pistol thermometers – wear- debris analysis

UNIT IV REPAIR METHODS FOR BASIC MACHINE ELEMENTS

Repair methods for beds, slide ways, spindles, gears, lead screws and bearings – Failure analysis – Failures and their development – Logical fault location methods – Sequential fault location.

UNIT V REPAIR METHODS FOR MATERIAL HANDLING EQUIPMENT

Repair methods for Material handling equipment - Equipment records –Job order systems -Use of computers in maintenance

OUTCOMES:

- Upon completion of the programme, the students can able to implement the maintenance function and different practices in industries for the successful management of maintenance activities
- To identify the different maintenance categories like Preventive maintenance, condition monitoring and repair of machine elements.

TEXT BOOKS:

REFERENCES:

OBJECTIVES:
- To introduce the concept of SQC
- To understand process control and acceptance sampling procedure and their application.
- To learn the concept of reliability.

UNIT I INTRODUCTION AND PROCESS CONTROL FOR VARIABLES 9
Introduction, definition of quality, basic concept of quality, definition of SQC, benefits and limitation of SQC, Quality assurance, Quality control: Quality cost-Variation in process causes of variation – Theory of control chart- uses of control chart –X chart, R chart and chart - process capability – process capability studies and simple problems. Six sigma concepts

UNIT II PROCESS CONTROL FOR ATTRIBUTES 9
Control chart for attributes –control chart for non conformings– p chart and np chart – control chart for nonconformities– C and U charts, State of control and process out of control identification in charts, pattern study.

UNIT III ACCEPTANCE SAMPLING 9

UNIT IV LIFE TESTING – RELIABILITY 9

UNIT V QUALITY AND RELIABILITY 9
Note: Use of approved statistical table permitted in the examination.

TOTAL: 45 PERIODS

OUTCOMES:
Upon the completion of this course the students will be able to
CO1 Summarize the concept of Quality and Process control for variables
CO2 Apply the process control for attributes
CO3 Explain the concept of sampling and to solve problems
CO4 Explain the concept of Life testing
CO5 Explain the concept Reliability and techniques involved

TEXT BOOKS:

REFERENCES:
OBJECTIVE:
- To introduce the process planning concepts to make cost estimation for various products after process planning

UNIT I INTRODUCTION TO PROCESS PLANNING 9
Introduction- methods of process planning-Drawing interpretation-Material evaluation – steps in process selection-.Production equipment and tooling selection

UNIT II PROCESS PLANNING ACTIVITIES 9
Process parameters calculation for various production processes-Selection jigs and fixtures election of quality assurance methods - Set of documents for process planning-Economics of process planning- case studies

UNIT III INTRODUCTION TO COST ESTIMATION 9
Importance of costing and estimation –methods of costing-elements of cost estimation –Types of estimates – Estimating procedure- Estimation labor cost, material cost- allocation of over head charges- Calculation of depreciation cost

UNIT IV PRODUCTION COST ESTIMATION 9
Estimation of Different Types of Jobs - Estimation of Forging Shop, Estimation of Welding Shop, Estimation of Foundry Shop

UNIT V MACHINING TIME CALCULATION 9
Estimation of Machining Time - Importance of Machine Time Calculation- Calculation of Machining Time for Different Lathe Operations ,Drilling and Boring - Machining Time Calculation for Milling, Shaping and Planning -Machining Time Calculation for Grinding.

TOTAL: 45 PERIODS

OUTCOMES:
Upon the completion of this course the students will be able to
CO1 select the process, equipment and tools for various industrial products.
CO2 prepare process planning activity chart.
CO3 explain the concept of cost estimation.
CO4 compute the job order cost for different type of shop floor.
CO5 calculate the machining time for various machining operations.

TEXT BOOKS:

REFERENCES:
OBJECTIVE:
- To learn about various unconventional machining processes, the various process parameters and their influence on performance and their applications

UNIT I INTRODUCTION AND MECHANICAL ENERGY BASED PROCESSES 9

UNIT II THERMAL AND ELECTRICAL ENERGY BASED PROCESSES 9

UNIT III CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES 9

UNIT IV ADVANCED NANO FINISHING PROCESSES 9
Abrasive flow machining, chemo-mechanical polishing, magnetic abrasive finishing, magneto rheological finishing, magneto rheological abrasive flow finishing their working principles, equipments, effect of process parameters, applications, advantages and limitations.

UNIT V RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES 9
Recent developments in non-traditional machining processes, their working principles, equipments, effect of process parameters, applications, advantages and limitations. Comparison of non-traditional machining processes.

TOTAL: 45 PERIODS

OUTCOMES:
Upon the completion of this course the students will be able to
CO1 Explain the need for unconventional machining processes and its classification
CO2 Compare various thermal energy and electrical energy based unconventional machining processes.
CO3 Summarize various chemical and electro-chemical energy based unconventional machining processes.
CO4 Explain various nano abrasives based unconventional machining processes.
CO5 Distinguish various recent trends based unconventional machining processes.

TEXT BOOKS:
REFERENCES:

ME8071 REFRIGERATION AND AIR - CONDITIONING L T P C
3 0 0 3

OBJECTIVES:
- To understand the underlying principles of operations in different Refrigeration & Air conditioning systems and components.
- To provide knowledge on design aspects of Refrigeration & Air conditioning systems

UNIT I INTRODUCTION
Introduction to Refrigeration - Unit of Refrigeration and C.O.P.– Ideal cycles- Refrigerants Desirable properties – Classification - Nomenclature - ODP & GWP.

UNIT II VAPOUR COMPRESSION REFRIGERATION SYSTEM

UNIT III OTHER REFRIGERATION SYSTEMS
Working principles of Vapour absorption systems and adsorption cooling systems – Steam jet refrigeration- Ejector refrigeration systems- Thermoelectric refrigeration- Air refrigeration - Magnetic - Vortex and Pulse tube refrigeration systems.

UNIT IV PSYCHROMETRIC PROPERTIES AND PROCESSES
Properties of moist Air-Gibbs Dalton law, Specific humidity, Dew point temperature, Degree of saturation, Relative humidity, Enthalpy, Humid specific heat, Wet bulb temperature Thermodynamic wet bulb temperature, Psychrometric chart; Psychrometric of air-conditioning processes, mixing of air streams.

UNIT V AIR CONDITIONING SYSTEMS AND LOAD ESTIMATION
Air conditioning loads: Outside and inside design conditions; Heat transfer through structure, Solar radiation, Electrical appliances, Infiltration and ventilation, internal heat load; Apparatus selection; fresh air load, human comfort & IAQ principles, effective temperature & chart, calculation of summer & winter air conditioning load; Classifications, Layout of plants; Air distribution system; Filters; Air Conditioning Systems with Controls: Temperature, Pressure and Humidity sensors, Actuators & Safety controls.

OUTCOMES:
Upon the completion of this course the students will be able to
CO1 Explain the basic concepts of Refrigeration
CO2 Explain the Vapor compression Refrigeration systems and to solve problems
CO3 Discuss the various types of Refrigeration systems
CO4 Calculate the Psychrometric properties and its use in psychrometric processes
CO5 Explain the concepts of Air conditioning and to solve problems

TOTAL: 45 PERIODS
TEXT BOOK:

REFERENCES:

GE8071 DISASTER MANAGEMENT

OBJECTIVES:
- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- To enhance awareness of institutional processes in the country and
da disaster response in areas where they live, with due sensitivity

UNIT I INTRODUCTION TO DISASTERS
Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don'ts during various types of Disasters.

UNIT II APPROACHES TO DISASTER RISK REDUCTION (DRR)
Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Processess and Framework at State and Central Level- State Disaster Management Authority(SDMA) – Early Warning System – Advisors from Appropriate Agencies.

UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT
Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT IV DISASTER RISK MANAGEMENT IN INDIA
Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.
UNIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS

Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

OUTCOMES:
The students will be able to
- Differentiate the types of disasters, causes and their impact on environment and society
- Assess vulnerability and various methods of risk reduction measures as well as mitigation.
- Draw the hazard and vulnerability profile of India, Scenarios in the Indian context, Disaster damage assessment and management.

TEXT BOOKS:

REFERENCES
1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005

GE8077 TOTAL QUALITY MANAGEMENT

OBJECTIVE:
- To facilitate the understanding of Quality Management principles and process.

UNIT I INTRODUCTION

UNIT II TQM PRINCIPLES
Leadership - Quality Statements, Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT III TQM TOOLS AND TECHNIQUES I
The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.
UNIT IV TQM TOOLS AND TECHNIQUES II
Quality Circles - Cost of Quality - Quality Function Deployment (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.

UNIT V QUALITY MANAGEMENT SYSTEM

ENVIRONMENTAL MANAGEMENT SYSTEM:

TOTAL: 45 PERIODS

OUTCOME:
• The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.

TEXT BOOK:

REFERENCES:
4. ISO 9001-2015 standards

ME8095 DESIGN OF JIGS, FIXTURES AND PRESS TOOLS

OBJECTIVES:
• To understand the functions and design principles of Jigs, fixtures and press tools
• To gain proficiency in the development of required views of the final design.

UNIT I LOCATING AND CLAMPING PRINCIPLES:

UNIT II JIGS AND FIXTURES
Design and development of jigs and fixtures for given component- Types of Jigs – Post, Turnover, Channel, latch, box, pot, angular post jigs – Indexing jigs – General principles of milling, Lathe, boring, broaching and grinding fixtures – Assembly, Inspection and Welding fixtures – Modular fixturing systems- Quick change fixtures.
UNIT III PRESS WORKING TERMINOLOGIES AND ELEMENTS OF CUTTING DIES

UNIT IV BENDING AND DRAWING DIES

UNIT V FORMING TECHNIQUES AND EVALUATION

Bulging, Swaging, Embossing, coining, curling, hole flanging, shaving and sizing, assembly, fine Blanking dies – recent trends in tool design- computer Aids for sheet metal forming Analysis – basic introduction - tooling for numerically controlled machines- setup reduction for work holding – Single minute exchange of dies – Poka Yoke.

TOTAL: 45 PERIODS

Note: (Use of P S G Design Data Book is permitted in the University examination)

OUTCOMES:

Upon the completion of this course the students will be able to

CO1 Summarize the different methods of Locating Jigs and Fixtures and Clamping principles
CO2 Design and develop jigs and fixtures for given component
CO3 Discuss the press working terminologies and elements of cutting dies
CO4 Distinguish between Bending and Drawing dies.
CO5 Discuss the different types of forming techniques

TEXT BOOKS:

REFERENCES:

1. ASTME Fundamentals of Tool Design Prentice Hall of India.
OBJECTIVES:
- To introduce Governing Equations of viscous fluid flows
- To introduce numerical modeling and its role in the field of fluid flow and heat transfer
- To enable the students to understand the various discretization methods, solution procedures and turbulence modeling.
- To create confidence to solve complex problems in the field of fluid flow and heat transfer by using high speed computers.

UNIT I GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 9

UNIT II FINITE DIFFERENCE AND FINITE VOLUME METHODS FOR DIFFUSION 9

UNIT III FINITE VOLUME METHOD FOR CONVECTION DIFFUSION 9
Steady one-dimensional convection and diffusion – Central, upwind differencing schemes properties of discretization schemes – Conservativeness, Boundedness, Transportiveness, Hybrid, Power-law, QUICK Schemes.

UNIT IV FLOW FIELD ANALYSIS 9

UNIT V TURBULENCE MODELS AND MESH GENERATION 9

TOTAL: 45 PERIODS

OUTCOMES:
Upon the completion of this course the students will be able to
- CO1 Derive the governing equations and boundary conditions for Fluid dynamics
- CO2 Analyze Finite difference and Finite volume method for Diffusion
- CO3 Analyze Finite volume method for Convective diffusion
- CO4 Analyze Flow field problems
- CO5 Explain the Turbulence models and Mesh generation techniques

TEXT BOOKS:
REFERENCES:

ME8092 COMPOSITE MATERIALS AND MECHANICS L T P C
 3 0 0 3

OBJECTIVES:
• To understand the fundamentals of composite material strength and its mechanical behavior
• Understanding the analysis of fiber reinforced Laminate design for different combinations of plies with different orientations of the fiber.
• Thermo-mechanical behavior and study of residual stresses in Laminates during processing.
• Implementation of Classical Laminate Theory (CLT) to study and analysis for residual stresses in an isotropic layered structure such as electronic chips.

UNIT I INTRODUCTION, LAMINA CONSTITUTIVE EQUATIONS & MANUFACTURING 9

UNIT II FLAT PLATE LAMINATE CONSTITUTE EQUATIONS 9

UNIT III LAMINA STRENGTH ANALYSIS 9

UNIT IV THERMAL ANALYSIS 9
UNIT V ANALYSIS OF LAMINATED FLAT PLATES

TOTAL: 45 PERIODS

OUTCOMES:
Upon the completion of this course the students will be able to
CO1 Summarize the various types of Fibers, Equations and manufacturing methods for Composite materials
CO2 Derive Flat plate Laminate equations
CO3 Analyze Lamina strength
CO4 Analyze the thermal behavior of Composite laminates
CO5 Analyze Laminate flat plates

TEXT BOOKS:

REFERENCES:

GE8072 FOUNDATION SKILLS IN INTEGRATED PRODUCT DEVELOPMENT

OBJECTIVES:
- To understand the global trends and development methodologies of various types of products and services
- To conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics and mechanical systems
- To understand requirement engineering and know how to collect, analyze and arrive at requirements for new product development and convert them in to design specification
- To understand system modeling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics
- To develop documentation, test specifications and coordinate with various teams to validate and sustain up to the EoL (End of Life) support activities for engineering customer
UNIT I FUNDAMENTALS OF PRODUCT DEVELOPMENT 9

UNIT II REQUIREMENTS AND SYSTEM DESIGN 9

UNIT III DESIGN AND TESTING 9

UNIT IV SUSTENANCE ENGINEERING AND END-OF-LIFE (EOL) SUPPORT 9

UNIT V BUSINESS DYNAMICS – ENGINEERING SERVICES INDUSTRY 9

OUTCOMES:
Upon completion of the course, the students will be able to:
- Define, formulate and analyze a problem
- Solve specific problems independently or as part of a team
- Gain knowledge of the Innovation & Product Development process in the Business Context
- Work independently as well as in teams
- Manage a project from start to finish

TEXTBOOKS:
1. Book specially prepared by NASSCOM as per the MoU.

TOTAL: 45 PERIODS
REFERENCES:

GE8074 \hspace{1cm} HUMAN RIGHTS \hspace{1cm} L T P C \\
\hspace{1cm} 3 \hspace{0.2cm} 0 \hspace{0.2cm} 0 \hspace{0.2cm} 3

OBJECTIVE:
- To sensitize the Engineering students to various aspects of Human Rights.

UNIT I

UNIT II

UNIT III
Theories and perspectives of UN Laws – UN Agencies to monitor and compliance.

UNIT IV
Human Rights in India – Constitutional Provisions / Guarantees.

UNIT V

TOTAL : 45 PERIODS

OUTCOME :
- Engineering students will acquire the basic knowledge of human rights.

REFERENCES:
OBJECTIVES:
At the end of this course the student should be able to understand
- Modern manufacturing systems
- To understand the concepts and applications of flexible manufacturing systems

UNIT I PLANNING, SCHEDULING AND CONTROL OF FLEXIBLE MANUFACTURING SYSTEMS

UNIT II COMPUTER CONTROL AND SOFTWARE FOR FLEXIBLE MANUFACTURING SYSTEMS

UNIT III FMS SIMULATION AND DATA BASE

UNIT IV GROUP TECHNOLOGY AND JUSTIFICATION OF FMS

UNIT V APPLICATIONS OF FMS AND FACTORY OF THE FUTURE

TOTAL: 45 PERIODS

OUTCOMES:
- Ability to perform Planning, Scheduling and control of Flexible Manufacturing systems
- Perform simulation on software’s use of group technology to product classification

TEXT BOOK

REFERENCES:
OBJECTIVE:
- The student will be able to understand the sources of vibration and noise in automobiles and make design modifications to reduce the vibration and noise and improve the life of the components

UNIT I BASICS OF VIBRATION 9
Introduction, classification of vibration: free and forced vibration, undamped and damped vibration, linear and non-linear vibration, response of damped and undamped systems under harmonic force, analysis of single degree and two degree of freedom systems, torsional vibration, determination of natural frequencies.

UNIT II BASICS OF NOISE 9
Introduction, amplitude, frequency, wavelength and sound pressure level, addition, subtraction and averaging decibel levels, noise dose level, legislation, measurement and analysis of noise, measurement environment, equipment, frequency analysis, tracking analysis, sound quality analysis.

UNIT III AUTOMOTIVE NOISE SOURCES 9

UNIT IV CONTROL TECHNIQUES 9
Vibration isolation, tuned absorbers, un-tuned viscous dampers, damping treatments, application dynamic forces generated by IC engines, engine isolation, crank shaft damping, modal analysis of the mass elastic model shock absorbers.

UNIT V SOURCE OF NOISE AND CONTROL 9
Methods for control of engine noise, combustion noise, mechanical noise, predictive analysis, palliative treatments and enclosures, automotive noise control principles, sound in enclosures, sound energy absorption, sound transmission through barriers

TOTAL: 45 PERIODS

OUTCOMES:
- Upon the completion of this course the students will be able to
 - CO1 Summarize the Basics of Vibration
 - CO2 Summarize the Basics of Noise
 - CO3 Explain the Sources of Automotive Noise
 - CO4 Discuss the Control techniques for vibration
 - CO5 Describe the sources and control of Noise

TEXT BOOK:

REFERENCES:

<table>
<thead>
<tr>
<th>IE8693</th>
<th>PRODUCTION PLANNING AND CONTROL</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

OBJECTIVES:
- To understand the various components and functions of production planning and control such as work study, product planning, process planning, production scheduling, Inventory Control.
- To know the recent trends like manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

UNIT I INTRODUCTION
Objectives and benefits of planning and control- Functions of production control- Types of production job- batch and continuous- Product development and design- Marketing aspect- Functional aspects Operational aspect- Durability and dependability aspect aesthetic aspect. Profit consideration Standardization, Simplification & specialization- Break even analysis- Economics of a new design.

UNIT II WORK STUDY
Method study, basic procedure- Selection- Recording of process- Critical analysis, Development Implementation- Micro motion and memo motion study- work measurement- Techniques of work measurement- Time study- Production study- Work sampling- Synthesis from standard data Predetermined motion time standards.

UNIT III PRODUCT PLANNING AND PROCESS PLANNING
Product planning- Extending the original product information- Value analysis- Problems in lack of product planning- Process planning and routing- Pre requisite information needed for process planning Steps in process planning- Quantity determination in batch production- Machine capacity, balancing Analysis of process capabilities in a multi product system.

UNIT IV PRODUCTION SCHEDULING
Production Control Systems- Loading and scheduling- Master Scheduling- Scheduling rules- Gantt charts- Perpetual loading- Basic scheduling problems- Line of balance- Flow production scheduling Batch production scheduling- Product sequencing- Production Control systems- Periodic batch control- Material requirement planning kanban- Dispatching- Progress reporting and expediting Manufacturing lead time- Techniques for aligning completion times and due dates.

UNIT V INVENTORY CONTROL AND RECENT TRENDS IN PPC
Inventory control- Purpose of holding stock- Effect of demand on inventories- Ordering procedures. Two bin system- Ordering cycle system- Determination of Economic order quantity and economic lot size ABC analysis- Recorder procedure- Introduction to computer integrated production planning systems elements of JUST IN TIME SYSTEMS- Fundamentals of MRP II and ERP.

TOTAL: 45 PERIODS
OUTCOMES:
- Upon completion of this course, the students can able to prepare production planning and control activities such as work study, product planning, production scheduling, Inventory Control
- They can plan manufacturing requirements manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

TEXT BOOKS:

REFERENCES:
7. Samson Eilon, “Elements of Production Planning and Control”, Universal Book Corp. 1984

MG8091 ENTERPRENEURSHIP DEVELOPMENT L T P C
3 0 0 3

OBJECTIVE:
- To develop and strengthen entrepreneurial quality and motivation in students and to impart basic entrepreneurial skills and understanding to run a business efficiently and effectively.

UNIT I ENTREPRENEURSHIP

UNIT II MOTIVATION
Major Motives Influencing an Entrepreneur – Achievement Motivation Training, Self Rating, Business Games, Thematic Apperception Test – Stress Management, Entrepreneurship Development Programs – Need, Objectives.

UNIT III BUSINESS
UNIT IV FINANCING AND ACCOUNTING 9

UNIT V SUPPORT TO ENTREPRENEURS 9

OUTCOME:
- Upon completion of the course, students will be able to gain knowledge and skills needed to run a business successfully.

TEXT BOOKS:

REFERENCES:

MG8892 MARKETING MANAGEMENT L T P C 3 0 0 3

OBJECTIVE:
- To enable students to deal with newer concepts of marketing concepts like strategic marketing
- segmentation, pricing, advertisement and strategic formulation. The course will enable a student to take up marketing as a professional career.

UNIT I MARKETING PROCESS 9
Definition, Marketing process, dynamics, needs, wants and demands, marketing concepts, environment, mix, types. Philosophies, selling versus marketing, organizations, industrial versus consumer marketing, consumer goods, industrial goods, product hierarchy.

UNIT II BUYING BEHAVIOUR AND MARKET SEGMENTATION 9
Cultural, demographic factors, motives, types, buying decisions, segmentation factors - demographic - Psycho graphic and geographic segmentation, process, patterns.

UNIT III PRODUCT PRICING AND MARKETING RESEARCH 9
Objectives, pricing, decisions and pricing methods, pricing management. Introduction, uses, process of marketing research.
UNIT IV MARKETING PLANNING AND STRATEGY FORMULATION 9
Components of marketing plan-strategy formulations and the marketing process, implementations, portfolio analysis, BCG, GEC grids.

UNIT V ADVERTISING, SALES PROMOTION AND DISTRIBUTION 9

TOTAL: 45 PERIODS

OUTCOME:
- The learning skills of Marketing will enhance the knowledge about Marketer’s Practices and create insights on Advertising, Branding, Retailing and Marketing Research.

TEXT BOOKS:

REFERENCES:

AN8002 CONCEPTS OF ENGINEERING DESIGN L T P C
3 0 0 3

OBJECTIVES:
- To impart the importance of design in today’s context of global competition, environmental awareness and customer oriented market.
- To impart the basic concepts and various aspects of design using simple examples and case studies.

UNIT I DESIGN TERMINOLOGY 9
Definition-various methods and forms of design-importance of product design-static and dynamic products-various design projects-morphology of design-requirements of a good design-concurrent engineering-computer aided engineering-codes and standards-product and process cycles-bench marking.

UNIT II DESIGN PROCESS 9
Basic module in design process-scientific method and design method-Need identification, importance of definition of problem-structured problem, real life problem- gathering information-customer requirements- Quality Function Deployment (QFD)- product design specifications-generation of alternative solutions- Analysis and selection-Detail design and drawings-Prototype, modeling, simulation, testing and evaluation (Basics only)
UNIT III CREATIVITY IN DESIGN 9
Creativity and problem solving-vertical and lateral thinking-invention-psychological view, mental blocks-Creativity methods-brainstorming, synectics, force fitting methods, mind map, concept map-Theory of innovative problem solving (TRIZ) - conceptual decomposition creating design concepts.

UNIT IV HUMAN AND SOCIETAL ASPECTS 9
Human factors in design, ergonomics, user friendly design-Aesthetics and visual aspects environmental aspects-marketing aspects-team aspects-legal aspects-presentation aspects.

UNIT V MATERIAL AND PROCESSES IN DESIGN 9
Material selection for performance characteristics of materials-selection for new design substitution for existing design-economics of materials-selection methods-recycling and material selection- types of manufacturing process, process systems- Design for manufacturability (DFM) - Design for assembly (DFA).

OUTCOMES:
• Understanding the Sequential steps of modern design process.
• Knowing the importance of creative thinking design.
• Knowledge in Human Factor, Environmental factors in Mechanical Design.

TEXT BOOK:

REFERENCES:

MT8491 MICROPROCESSORS AND MICROCONTROLLERS L T P C
3 0 0 3

OBJECTIVES:
Through the use of assembly language, by the end of the course students will become thoroughly familiar with the elements of microprocessor and microcontroller software and hardware. They will be able to:
• Understand fundamental operating concepts behind microprocessors and microcontrollers.
• Emphasis on the hardware features of Microprocessor 8085, 8086 and Microcontroller 8051 with their functions
• Understand commonly used peripheral / interfacing

UNIT I 8085 PROCESSOR 9
UNIT II PROGRAMMING OF 8085 PROCESSOR 9
Instruction - format and addressing modes – Assembly language format – Data transfer, data manipulation & control instructions – Programming: Loop structure with counting & Indexing – Look up table - Subroutine instructions - stack.

UNIT III 8051 MICRO CONTROLLER 9

UNIT IV PERIPHERAL INTERFACING 9
Introduction on Architecture, configuration and interfacing, with ICs: 8255 , 8259 , 8254,8237,8251, 8279 , - A/D and D/A converters.

UNIT V MICRO CONTROLLER PROGRAMMING & APPLICATIONS 9

TOTAL :45 PERIODS

OUTCOMES:
On the successful completion of the course, students will be able to
CO1: Distinguish the feature of the 8085 microprocessor, Hardware Architecture and PIN diagram.
CO2: Demonstrate programming proficiency using the various addressing modes and data transfer instructions of 8085 microprocessor
CO3: Acquaint the knowledge on architecture and programming of Microcontroller 8051.
CO4: Illustrate the interrupts handling and demonstrate peripherals applications in different IC and Know about A/D and D/A converters.
CO5: Apply the programming concepts to interface the hardware units with microprocessor and Microcontroller

TEXT BOOKS:

REFERENCES:
OBJECTIVE:
- To enable the students to create an awareness on Engineering Ethics and Human Values to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I HUMAN VALUES

UNIT II ENGINEERING ETHICS

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION
Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

UNIT V GLOBAL ISSUES

TOTAL: 45 PERIODS

OUTCOME:
- Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society.

TEXT BOOKS:

REFERENCES:
Web sources:
1. www.onlineethics.org
2. www.nspe.org
3. www.globalethics.org
4. www.ethics.org