1. **Programme Educational Objectives (PEOs)**
 a) To produce employable graduates with the knowledge and competency in Chemical and Electrochemical Engineering complemented by the appropriate skills and attributes.
 b) To produce creative and innovative graduates with design and soft skills to carry out various problem solving tasks.
 c) To enable the students to work as teams on multidisciplinary projects with effective communication skills, individual, supportive and leadership qualities with the right attitudes and ethics.
 d) To produce graduates who possess interest in research and lifelong learning, as well as continuously striving for the forefront of technology.
 e) To enable the students to set up models for an electrochemical system based on continuity equations and transport equations for relevant variables, and with necessary boundary conditions.

2. **Programme Outcomes (POs)**
 On successful completion of B. Tech. Chemical and Electrochemical Engineering programme, the graduates of this programme would have
 1. Ability to apply the knowledge of mathematics, science and engineering to solve domain specific engineering problems.
 2. Ability to design and conduct experiments; also have the ability to analyze and interpret experimental results.
 3. Ability to implement equations for production and transport of heat in electrochemical systems, and explain the temperature dependence of electrode potentials, electrode kinetics and mass transport properties.
 4. Ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
 5. Ability to implement models for current distribution in porous electrodes.

3. **PEOs / POs Mapping**

<table>
<thead>
<tr>
<th>PEOs / POs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>c</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>e</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
4. **Semester Course wise POs Mapping**

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Course Title</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>SEMESTER I</td>
<td>Communicative English</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Mathematics I</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Physics</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Chemistry</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem Solving and Python Programming</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Graphics</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem Solving and Python Programming Laboratory</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physics and Chemistry Laboratory</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEMESTER II</td>
<td>Technical English</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Mathematics II</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physics of Materials</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemistry for Technologists</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic Electrical and Electronics Engineering</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principles of Electrochemistry</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Practices Laboratory</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer Aided Drafting and Modeling Laboratory</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>SEMESTER III</td>
<td>Transforms and Partial Differential Equations</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molecular Physical Chemistry</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic Chemistry</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inorganic Chemistry</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Environmental Science and Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical Process Calculations</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Chemistry Laboratory</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic Electrical and Electronics Engineering</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mechanical Operations Laboratory</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>SEMESTER IV</td>
<td>Numerical Methods</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Materials Technology</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluid and Solid Operations</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical Engineering Thermodynamics</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat Transfer and its Applications</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical Reaction Engineering</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mechanical Operations Laboratory</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluid Mechanics Laboratory</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEMESTER V</td>
<td>Corrosion Science and Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instrumental Methods of Analysis</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mass Transfer I</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrodics and Electrocatalysis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrochemical Reaction Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year IV</td>
<td>Semester VI</td>
<td>Professional Communication</td>
<td>Heat and Mass Transfer Laboratory</td>
<td>Chemical and Electrochemical Reaction Engineering Laboratory</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>SEMESTER VII</td>
<td>Semester VIII</td>
<td>Electrochemical Materials Science</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mass Transfer II</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instrumentation</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrochemical Process Technology</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Process Dynamics and Control</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Process Engineering Economics</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equipment Design</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer Applications in Chemical Engineering Laboratory</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corrosion and Metal Finishing Laboratory</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Process Synthesis and Design</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transport Phenomena</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrometallurgy and Thermics</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrochemicals and Electro Metallurgy Laboratory</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Process Dynamics and Control Laboratory</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internship</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrochemical Energy Conversion and Storage</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surface Science</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Work</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>
ANNA UNIVERSITY, CHENNAI

AFFILIATED INSTITUTIONS REGULATIONS 2017

B. TECH. CHEMICAL AND ELECTROCHEMICAL ENGINEERING

CHOICE BASED CREDIT SYSTEM

I TO VIII SEMESTERS (FULL TIME) CURRICULA AND SYLLABI

SEMESTER I

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>HS8151</td>
<td>Communicative English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>MA8151</td>
<td>Engineering Mathematics I</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>PH8151</td>
<td>Engineering Physics</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CY8151</td>
<td>Engineering Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>GE8151</td>
<td>Problem Solving and Python Programming</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>GE8152</td>
<td>Engineering Graphics</td>
<td>ES</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>GE8161</td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>BS8161</td>
<td>Physics and Chemistry Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td>19</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>HS8251</td>
<td>Technical English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>MA8251</td>
<td>Engineering Mathematics II</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>PH8254</td>
<td>Physics of Materials</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CY8292</td>
<td>Chemistry for Technologists</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>BE8251</td>
<td>Basic Electrical and Electronics Engineering</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>EL8201</td>
<td>Principles of Electrochemistry</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>GE8261</td>
<td>Engineering Practices Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>ME8261</td>
<td>Computer Aided Drafting and Modeling Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>20</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>
SEMESTER III

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MA8353</td>
<td>Transforms and Partial Differential Equations</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>EL8301</td>
<td>Molecular Physical Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>CY8291</td>
<td>Organic Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>EL8302</td>
<td>Inorganic Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>GE8291</td>
<td>Environmental Science and Engineering</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>EL8303</td>
<td>Chemical Process Calculations</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EL8311</td>
<td>Engineering Chemistry Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>EE8362</td>
<td>Basic Electrical and Electronics Engineering</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>27</td>
<td>19</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

SEMESTER IV

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MA8491</td>
<td>Numerical Methods</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>PM8391</td>
<td>Materials Technology</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EL8401</td>
<td>Fluid And Solid Operations</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>PE8491</td>
<td>Chemical Engineering Thermodynamics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>EL8402</td>
<td>Heat Transfer and its Applications</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>PE8091</td>
<td>Chemical Reaction Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CH8581</td>
<td>Mechanical Operations Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>CH8461</td>
<td>Fluid Mechanics Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>27</td>
<td>19</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>
SEMESTER V

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CH8491</td>
<td>Instrumental Methods of Analysis</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CH8551</td>
<td>Mass Transfer I</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>EL8501</td>
<td>Corrosion Science and Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>EL8502</td>
<td>Electrodics and Electrocatalysis</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EL8503</td>
<td>Electrochemical Reaction Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Open Elective I*</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>EL8511</td>
<td>Heat and Mass Transfer Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>EL8512</td>
<td>Chemical and Electrochemical Reaction Engineering Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>HS8581</td>
<td>Professional Communication</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>18</td>
<td>10</td>
<td>23</td>
</tr>
</tbody>
</table>

* - Course from the curriculum of the other UG Programmes

SEMESTER VI

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>EL8601</td>
<td>Electrochemical Materials Science</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CH8651</td>
<td>Mass Transfer II</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>EL8602</td>
<td>Instrumentation</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CH8091</td>
<td>Electrochemical Process Technology</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EL8603</td>
<td>Process Dynamics and Control</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CH8652</td>
<td>Process Engineering Economics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>EL8611</td>
<td>Equipment Design</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>EL8612</td>
<td>Computer Applications in Chemical Engineering Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>EL8613</td>
<td>Corrosion and Metal Finishing Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>18</td>
<td>12</td>
<td>25</td>
</tr>
</tbody>
</table>
SEMESTER VII

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EL8701</td>
<td>Process Synthesis and design</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CH8791</td>
<td>Transport Phenomena</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EL8702</td>
<td>Electrometallurgy and Thermics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Professional Elective I</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Professional Elective II</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Open Elective II*</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EL8711</td>
<td>Electrochemicals and Electro Metallurgy Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>EL8712</td>
<td>Process Dynamics and Control Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>EL8713</td>
<td>Internship</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>26</td>
<td>18</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* - Course from the curriculum of the other UG Programmes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEMESTER VIII

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EL8801</td>
<td>Electrochemical Energy Conversion and Storage</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>EL8802</td>
<td>Surface Science</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Professional Elective III</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EL8811</td>
<td>Project Work</td>
<td>EEC</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>29</td>
<td>9</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

PROFESSIONAL ELECTIVES (PE)

TOTAL CREDITS:186

PROFESSIONAL ELECTIVE I, SEMESTER VII

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH8074</td>
<td>Optimization of Chemical Processes</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>EL8001</td>
<td>Advanced Electrochemical Reaction Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EL8002</td>
<td>Functional Materials</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>GE8074</td>
<td>Human Rights</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>CH8077</td>
<td>Process Modeling and Simulation</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>EL8003</td>
<td>Nanomaterials Technology</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>GE8071</td>
<td>Disaster Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
PROFESSIONAL ELECTIVE II, SEMESTER VII

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>EL8004</td>
<td>Chemical Process Technology</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>EL8005</td>
<td>Industrial Metal Finishing</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CH8071</td>
<td>Environmental Engineering</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>EL8006</td>
<td>Total Quality Management and Engineering Economics</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CH8078</td>
<td>Process Plant Utilities</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CH8092</td>
<td>Energy Technology</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>GE8072</td>
<td>Foundation Skills in Integrated Product Development</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PROFESSIONAL ELECTIVE III, SEMESTER VIII

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>EL8007</td>
<td>Chlor – Alkali Technology</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>EL8008</td>
<td>Cathodic Protection and Electrophoretic Coatings</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>EL8009</td>
<td>Organic Electrochemistry</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>GE8075</td>
<td>Intellectual Property Rights</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CH8073</td>
<td>Industrial Process Plant Safety</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CH8093</td>
<td>Modern Separation Techniques</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CH8094</td>
<td>Polymer Technology</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>EL8010</td>
<td>Protective Paint Coatings</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>GE8076</td>
<td>Professional Ethics in Engineering</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

SUBJECT AREAWISE DETAILS

HUMANITIES AND SOCIAL SCIENCES (HS)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HS8151</td>
<td>Communicative English</td>
<td>HS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>HS8251</td>
<td>Technical English</td>
<td>HS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>GE8291</td>
<td>Environmental Science and Engineering</td>
<td>HS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

BASIC SCIENCES (BS)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MA8151</td>
<td>Engineering Mathematics I</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>PH8151</td>
<td>Engineering Physics</td>
<td>BS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CY8151</td>
<td>Engineering Chemistry</td>
<td>BS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>BS8161</td>
<td>Physics and Chemistry Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>MA8251</td>
<td>Engineering Mathematics II</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>S. No.</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>CONTACT PERIODS</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>----------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1.</td>
<td>GE8151</td>
<td>Problem Solving and Python Programming</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>GE8152</td>
<td>Engineering Graphics</td>
<td>ES</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>GE8161</td>
<td>Problem Solving and Python Programming</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>BE8251</td>
<td>Basic Electrical and Electronics Engineering</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE8261</td>
<td>Engineering Practices Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>ME8261</td>
<td>Computer Aided Drafting and Modeling Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>EE8362</td>
<td>Basic Electrical and Electronics Engineering</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

ENGINEERING SCIENCES (ES)

PROFESSIONAL CORE (PC)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>EL8201</td>
<td>Principles of Electrochemistry</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>EL8303</td>
<td>Chemical Process Calculations</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>EL8401</td>
<td>Fluid and Solid operations</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>PE8491</td>
<td>Chemical Engineering Thermodynamics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EL8402</td>
<td>Heat Transfer and its Applications</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>PE8091</td>
<td>Chemical Reaction Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CH8581</td>
<td>Mechanical Operations Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CH8461</td>
<td>Fluid Mechanics Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>CH8491</td>
<td>Instrumental Methods of Analysis</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>CH8551</td>
<td>Mass Transfer I</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>EL8501</td>
<td>Corrosion Science and Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>EL8502</td>
<td>Electrodics and Electrocatalysis</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>EL8503</td>
<td>Electrochemical Reaction Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>EL8511</td>
<td>Heat and Mass Transfer</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>S. No.</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>CONTACT PERIODS</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---</td>
<td>----------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.</td>
<td>EL8713</td>
<td>Internship</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>HS8581</td>
<td>Professional Communication</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>EL8811</td>
<td>Project Work</td>
<td>EEC</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

SUMMARY

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Area</th>
<th>Credits Per Semester</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>1</td>
<td>HS</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>BS</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>ES</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>PC</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>OE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>PE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>EEC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>24</td>
<td>23</td>
</tr>
</tbody>
</table>

EMPLOYABILITY ENHANCEMENT COURSES (EEC)
OBJECTIVES:

- To develop the basic reading and writing skills of first year engineering and technology students.
- To help learners develop their listening skills, which will enable them listen to lectures and comprehend them by asking questions; seeking clarifications.
- To help learners develop their speaking skills and speak fluently in real contexts.
- To help learners develop vocabulary of a general kind by developing their reading skills.

UNIT I SHARING INFORMATION RELATED TO ONESELF/FAMILY & FRIENDS 12
Reading - short comprehension passages, practice in skimming-scanning and predicting.
Language development - Wh- Questions - asking and answering - yes or no questions - parts of speech. Vocabulary development - prefixes - suffixes - articles - count/uncount nouns.

UNIT II GENERAL READING AND FREE WRITING 12
Reading - comprehension-pre-reading-post reading - comprehension questions (multiple choice questions and/or short questions/open-ended questions)-inductive reading - short narratives and descriptions from newspapers including dialogues and conversations (also used as short Listening texts) - register.
Writing - paragraph writing - topic sentence - main ideas - free writing, short narrative descriptions using some suggested vocabulary and structures.
Listening - telephonic conversations. Speaking - sharing information of a personal kind — greeting — taking leave.
Language development - prepositions, conjunctions. Vocabulary development - guessing meanings of words in context.

UNIT III GRAMMAR AND LANGUAGE DEVELOPMENT 12
Reading - short texts and longer passages (close reading). Writing - understanding text structure - use of reference words and discourse markers - coherence - jumbled sentences.
Listening - listening to longer texts and filling up the table - product description - narratives from different sources. Speaking - asking about routine actions and expressing opinions.
Language development - degrees of comparison - pronouns - direct vs indirect questions. Vocabulary development - single word substitutes - adverbs.

UNIT IV READING AND LANGUAGE DEVELOPMENT 12
Reading - comprehension-reading longer texts - reading different types of texts - magazines.
Writing - letter writing, informal or personal letters - e-mails - conventions of personal email.
Listening - listening to dialogues or conversations and completing exercises based on them.

UNIT V EXTENDED WRITING 12
Reading - longer texts - close reading. Writing - brainstorming - writing short essays - developing an outline - identifying main and subordinate ideas - dialogue writing.
Listening - listening to talks - conversations. Speaking - participating in conversations - short group.
conversations - Language development - modal verbs - present/ past perfect tense - Vocabulary development - collocations - fixed and semi-fixed expressions

TOTAL : 60 PERIODS

OUTCOMES:
At the end of the course, learners will be able to:

- Read articles of a general kind in magazines and newspapers.
- Participate effectively in informal conversations; introduce themselves and their friends and express opinions in English.
- Comprehend conversations and short talks delivered in English
- Write short essays of a general kind and personal letters and emails in English.

TEXT BOOKS:

REFERENCES

MA8151 ENGINEERING MATHEMATICS I

L T P C
4 0 0 4

OBJECTIVES:

- The goal of this course is to achieve conceptual understanding and to retain the best traditions of traditional calculus. The syllabus is designed to provide the basic tools of calculus mainly for the purpose of modelling the engineering problems mathematically and obtaining solutions. This is a foundation course which mainly deals with topics such as single variable and multivariable calculus and plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines.

UNIT I DIFFERENTIAL CALCULUS

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules - Maxima and Minima of functions of one variable.

UNIT II FUNCTIONS OF SEVERAL VARIABLES

Partial differentiation – Homogeneous functions and Euler’s theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor’s series
for functions of two variables – Maxima and minima of functions of two variables – Lagrange’s method of undetermined multipliers.

UNIT III INTEGRAL CALCULUS

12

Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT IV MULTIPLE INTEGRALS

12

UNIT V DIFFERENTIAL EQUATIONS

12

TOTAL : 60 PERIODS

OUTCOMES :

After completing this course, students should demonstrate competency in the following skills:

- Use both the limit definition and rules of differentiation to differentiate functions.
- Apply differentiation to solve maxima and minima problems.
- Evaluate integrals both by using Riemann sums and by using the Fundamental Theorem of Calculus.
- Apply integration to compute multiple integrals, area, volume, integrals in polar coordinates, in addition to change of order and change of variables.
- Evaluate integrals using techniques of integration, such as substitution, partial fractions and integration by parts.
- Determine convergence/divergence of improper integrals and evaluate convergent improper integrals.
- Apply various techniques in solving differential equations.

TEXT BOOKS :

2. James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 7th Edition, New Delhi, 2015. [For Units I & III - Sections 1.1, 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1(Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 - 7.4 and 7.8].

REFERENCES :

OBJECTIVES:
- To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.

UNIT I PROPERTIES OF MATTER

UNIT II WAVES AND FIBER OPTICS

UNIT III THERMAL PHYSICS

UNIT IV QUANTUM PHYSICS

UNIT V CRYSTAL PHYSICS
Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances - coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures - crystal imperfections: point defects, line defects – Burger vectors, stacking faults – role of imperfections in plastic deformation - growth of single crystals: solution and melt growth techniques.

TOTAL : 45 PERIODS

OUTCOMES:
Upon completion of this course,
- the students will gain knowledge on the basics of properties of matter and its applications,
• the students will acquire knowledge on the concepts of waves and optical devices and their applications in fibre optics,
• the students will have adequate knowledge on the concepts of thermal properties of materials and their applications in expansion joints and heat exchangers,
• the students will get knowledge on advanced physics concepts of quantum theory and its applications in tunneling microscopes, and
• the students will understand the basics of crystals, their structures and different crystal growth techniques.

TEXT BOOKS:

REFERENCES:

CY8151 ENGINEERING CHEMISTRY

OBJECTIVES:
• To make the students conversant with boiler feed water requirements, related problems and water treatment techniques.
• To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
• Preparation, properties and applications of engineering materials.
• Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.
• Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.

UNIT I WATER AND ITS TREATMENT

UNIT II SURFACE CHEMISTRY AND CATALYSIS
applications of adsorption on pollution abatement.

UNIT III ALLOYS AND PHASE RULE 9

UNIT IV FUELS AND COMBUSTION 9

UNIT V ENERGY SOURCES AND STORAGE DEVICES 9
Nuclear fission - controlled nuclear fission - nuclear fusion - differences between nuclear fission and fusion - nuclear chain reactions - nuclear energy - light water nuclear power plant - breeder reactor - solar energy conversion - solar cells - wind energy. Batteries, fuel cells and supercapacitors: Types of batteries – primary battery (dry cell) secondary battery (lead acid battery, lithium-ion-battery) fuel cells – H₂-O₂ fuel cell.

TOTAL: 45 PERIODS

OUTCOMES:
- The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:

REFERENCES:
COURSE OBJECTIVES:

- To know the basics of algorithmic problem solving
- To read and write simple Python programs.
- To develop Python programs with conditionals and loops.
- To define Python functions and call them.
- To use Python data structures — lists, tuples, dictionaries.
- To do input/output with files in Python.

UNIT I ALGORITHMIC PROBLEM SOLVING

Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT II DATA, EXPRESSIONS, STATEMENTS

Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; modules and functions, function definition and use, flow of execution, parameters and arguments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

UNIT III CONTROL FLOW, FUNCTIONS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, mergesort, histogram.

UNIT V FILES, MODULES, PACKAGES

Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file.

OUTCOMES:

Upon completion of the course, students will be able to

- Develop algorithmic solutions to simple computational problems
- Read, write, execute by hand simple Python programs.
• Structure simple Python programs for solving problems.
• Decompose a Python program into functions.
• Represent compound data using Python lists, tuples, dictionaries.
• Read and write data from/to files in Python Programs.

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:

GE8152 ENGINEERING GRAPHICS

OBJECTIVES:
• To develop in students, graphic skills for communication of concepts, ideas and design of Engineering products.
• To expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (Not for Examination) 1
Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREEHAND SKETCHING 7+12
Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves.
Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three Dimensional objects – Layout of views- Freehand sketching of multiple views from pictorial views of objects
UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6+12
Orthographic projection- principles-Principal planes-First angle projection-projection of points.
Projection of straight lines (only First angle projections) inclined to both the principal planes
- Determination of true lengths and true inclinations by rotating line method and traces
Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by
rotating object method.

UNIT III PROJECTION OF SOLIDS 5+12
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the
axis is inclined to one of the principal planes by rotating object method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF
SURFACES 5+12
Sectioning of above solids in simple vertical position when the cutting plane is inclined to the
one of the principal planes and perpendicular to the other – obtaining true shape of section.
Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and
cones.

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS 6+12
Principles of isometric projection – isometric scale –Isometric projections of simple solids and
truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in
simple vertical positions - Perspective projection of simple solids-Prisms, pyramids and
cylinders by visual ray method.

OUTCOMES:
On successful completion of this course, the student will be able to
• Familiarize with the fundamentals and standards of Engineering graphics
• Perform freehand sketching of basic geometrical constructions and multiple views of
objects.
• Project orthographic projections of lines and plane surfaces.
• Draw projections and solids and development of surfaces.
• Visualize and to project isometric and perspective sections of simple solids.

TOTAL: 90 PERIODS

TEXT BOOK:

REFERENCES:
Company Limited, New Delhi, 2008.
3. Gopalakrishna K.R., “Engineering Drawing” (Vol. I&II combined), Subhas Stores,
introduction to Interactive Computer Graphics for Design and Production, Eastern
5. N S Parthasarathy And Vela Murali, “Engineering Graphics”, Oxford University, Press,
New Delhi, 2015.
GE8161 PROGRAM SOLVING AND PYTHON PROGRAMMING
LABORATORY

OBJECTIVES:
- To write, test, and debug simple Python programs.
- To implement Python programs with conditionals and loops.
- Use functions for structuring Python programs.
- Represent compound data using Python lists, tuples, dictionaries.
- Read and write data from/to files in Python.

LIST OF PROGRAMS
1. Compute the GCD of two numbers.
2. Find the square root of a number (Newton’s method)
3. Exponentiation (power of a number)
4. Find the maximum of a list of numbers
5. Linear search and Binary search
6. Selection sort, Insertion sort
7. Merge sort
8. First n prime numbers
9. Multiply matrices
10. Programs that take command line arguments (word count)
11. Find the most frequent words in a text read from a file
12. Simulate elliptical orbits in Pygame
13. Simulate bouncing ball using Pygame

PLATFORM NEEDED
Python 3 interpreter for Windows/Linux

OUTCOMES:
Upon completion of the course, students will be able to
- Write, test, and debug simple Python programs.
- Implement Python programs with conditionals and loops.
- Develop Python programs step-wise by defining functions and calling them.
- Use Python lists, tuples, dictionaries for representing compound data.
• Read and write data from/to files in Python.

TOTAL :60 PERIODS

BS8161 PHYSICS AND CHEMISTRY LABORATORY
(Common to all branches of B.E. / B.Tech Programmes)

OBJECTIVES:
• To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics, properties of matter and liquids.

LIST OF EXPERIMENTS: PHYSICS LABORATORY (Any 5 Experiments)
1. Determination of rigidity modulus – Torsion pendulum
2. Determination of Young’s modulus by non-uniform bending method
3. (a) Determination of wavelength, and particle size using Laser
 (b) Determination of acceptance angle in an optical fiber.
5. Determination of velocity of sound and compressibility of liquid – Ultrasonic interferometer
6. Determination of wavelength of mercury spectrum – spectrometer grating
7. Determination of band gap of a semiconductor
8. Determination of thickness of a thin wire – Air wedge method

TOTAL: 30 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to
• apply principles of elasticity, optics and thermal properties for engineering applications.

CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

OBJECTIVES:
• To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
• To acquaint the students with the determination of molecular weight of a polymer by viscometry.

1. Estimation of HCl using Na₂CO₃ as primary standard and Determination of alkalinity in water sample.
2. Determination of total, temporary & permanent hardness of water by EDTA method.
3. Determination of DO content of water sample by Winkler’s method.
4. Determination of chloride content of water sample by argentometric method.
5. Estimation of copper content of the given solution by iodometry.
6. Determination of strength of given hydrochloric acid using pH meter.
7. Determination of strength of acids in a mixture of acids using conductivity meter.
8. Estimation of iron content of the given solution using potentiometer.
9. Estimation of iron content of the water sample using spectrophotometer (1, 10-Phenanthroline / thiocyanate method).
10. Estimation of sodium and potassium present in water using flame photometer.
12. Pseudo first order kinetics-ester hydrolysis.
14. Determination of CMC.
15. Phase change in a solid.
16. Conductometric titration of strong acid vs strong base.
OUTCOMES:
- The students will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters.

TOTAL: 30 PERIODS

TEXTBOOKS:

HS8251 TECHNICAL ENGLISH

OBJECTIVES: The Course prepares second semester engineering and Technology students to:
- Develop strategies and skills to enhance their ability to read and comprehend engineering and technology texts.
- Foster their ability to write convincing job applications and effective reports.
- Develop their speaking skills to make technical presentations, participate in group discussions.
- Strengthen their listening skill which will help them comprehend lectures and talks in their areas of specialisation.

UNIT I INTRODUCTION TECHNICAL ENGLISH

UNIT II READING AND STUDY SKILLS

Listening- Listening to longer technical talks and completing exercises based on them- Speaking – describing a process- Reading – reading longer technical texts- identifying the various transitions in a text- paragraphing- Writing- interpreting charts, graphs- Vocabulary Development-vocabulary used in formal letters/emails and reports Language Development- impersonal passive voice, numerical adjectives.

UNIT III TECHNICAL WRITING AND GRAMMAR

Listening- Listening to classroom lectures/ talks on engineering/technology - Speaking – introduction to technical presentations- Reading – longer texts both general and technical, practice in speed reading; Writing-Describing a process, use of sequence words- Vocabulary Development- sequence words- Misspelled words. Language Development- embedded sentences

UNIT IV REPORT WRITING

Listening- Listening to documentaries and making notes. Speaking – mechanics of presentations- Reading – reading for detailed comprehension- Writing- email etiquette- job application – cover letter –Résumé preparation(via email and hard copy)- analytical essays
and issue based essays-- **Vocabulary Development**- finding suitable synonyms- paraphrasing-. **Language Development**- clauses- if conditionals.

UNIT V GROUP DISCUSSION AND JOB APPLICATIONS

Listening: TED/Ink talks; **Speaking** –participating in a group discussion - **Reading**– reading and understanding technical articles **Writing**– Writing reports- minutes of a meeting- accident and survey- **Vocabulary Development**- verbal analogies **Language Development**- reported speech

TOTAL : 60 PERIODS

OUTCOMES:
At the end of the course learners will be able to:
- Read technical texts and write area- specific texts effortlessly.
- Listen and comprehend lectures and talks in their area of specialisation successfully.
- Speak appropriately and effectively in varied formal and informal contexts.
- Write reports and winning job applications.

TEXT BOOKS:

REFERENCES
2. Grussendorf, Marion, **English for Presentations**, Oxford University Press, Oxford: 2007
4. Means, L. Thomas and Elaine Langlois, **English & Communication For Colleges**. Cengage Learning, USA: 2007

MA8251 ENGINEERING MATHEMATICS II

OBJECTIVES :
- This course is designed to cover topics such as Matrix Algebra, Vector Calculus, Complex Analysis and Laplace Transform. Matrix Algebra is one of the powerful tools to handle practical problems arising in the field of engineering. Vector calculus can be widely used for modelling the various laws of physics. The various methods of complex analysis and Laplace transforms can be used for efficiently solving the problems that occur in various branches of engineering disciplines.

UNIT I MATRICES

UNIT II VECTOR CALCULUS
Gradient and directional derivative – Divergence and curl - Vector identities – Irrotational and Solenoidal vector fields – Line integral over a plane curve – Surface integral - Area of a curved surface - Volume integral - Green’s, Gauss divergence and Stoke’s theorems – Verification and application in evaluating line, surface and volume integrals.

UNIT III ANALYTIC FUNCTIONS 12
Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by functions \(w = z + c, \frac{1}{z}, \frac{1}{z^2} \) - Bilinear transformation.

UNIT IV COMPLEX INTEGRATION 12

UNIT V LAPLACE TRANSFORMS 12

TOTAL: 60 PERIODS

OUTCOMES:
After successfully completing the course, the student will have a good understanding of the following topics and their applications:

- Eigenvalues and eigenvectors, diagonalization of a matrix, Symmetric matrices, Positive definite matrices and similar matrices.
- Gradient, divergence and curl of a vector point function and related identities.
- Evaluation of line, surface and volume integrals using Gauss, Stokes and Green’s theorems and their verification.
- Analytic functions, conformal mapping and complex integration.
- Laplace transform and inverse transform of simple functions, properties, various related theorems and application to differential equations with constant coefficients.

TEXT BOOKS:

REFERENCES:

PH8254 PHYSICS OF MATERIALS
(Common to courses offered in Faculty of Technology except Fashion Technology) 3 0 0 3

OBJECTIVES:
• To introduce the physics of various materials relevant to different branches of technology

UNIT I PREPARATION OF MATERIALS

UNIT II CONDUCTING MATERIALS

UNIT III SEMICONDUCTING MATERIALS

UNIT IV DIELECTRIC AND MAGNETIC MATERIALS

UNIT V NEW MATERIALS AND APPLICATIONS

TOTAL : 45 PERIODS

OUTCOMES:
At the end of the course, the students will able to
• gain knowledge on phase diagrams and various material processing methods,
• acquire knowledge on basics of conducting materials, superconductors and their
applications
- get knowledge on the functioning of semiconducting materials and their applications in LED and solar cells,
- understand the functioning of various dielectric and magnetic materials,
- have the necessary understanding on various advanced materials.

TEXT BOOKS:

REFERENCES

CY8292 CHEMISTRY FOR TECHNOLOGISTS L T P C
3 0 0 3

UNIT I UNIT PROCESSES 9
Nitration, Sulphonation, Halogenation, Esterification, Amination, Saponification and Hydrogenation – Role of the above unit processes in such industries as petroleum, drugs, pharmaceuticals and organic synthesis.

UNIT II REACTION MECHANISMS 9
Free radical, substitutions, electrophilic, addition, aromatic electrophilic substitutions, nucleophilic additions, condensation reactions, nucleophilic substitutions in aliphatic and aromatic compounds, cyclo-additions, rearrangements-Beckmann and Fries rearrangement reactions.

UNIT III OILS, FATS, SOAPS & LUBRICANTS 9
Chemical constitution, Chemical analysis of oils and fats – acid, saponification and iodine values, Definitions, determinations and significance. Definition, mechanism of lubrication, preparation of petrolubes, desirable characteristics – viscosity, viscosity index, carbon residue, oxidation stability, flash and fire points, cloud and pour points, aniline point. Semisolid lubricant – greases, preparation of sodium, lithium, calcium and axle greases and uses, consistency test and drop point test. Solid lubricants – graphite and molybdenum disulphide.

UNIT IV CHEMICALS AND AUXILIARIES 9
Preparation, properties and uses of bleaching powder, sodium hypochlorite, hydrogen peroxide, chlorine dioxide. Estimation of available chlorine in hypochlorite bleach liquor. Determination of strength of hydrogen peroxide.

UNIT V COLORANTS 9
Theory of color and constitution: chromophore and auxochrome, classification of dyes based on application. Chemistry and synthesis of azo dye (Methyl red, Methyl orange and Congo red)

TOTAL: 45 PERIODS

TEXTBOOKS:

REFERENCES:

BE8251 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING L T P C
3 0 0 3

OBJECTIVES:
- To explain the basic theorems used in Electrical circuits and the different components and function of electrical machines.
- To explain the fundamentals of semiconductor and applications.
- To explain the principles of digital electronics
- To impart knowledge of communication.

UNIT I ELECTRICAL CIRCUITS & MEASURMENTS

UNIT II ELECTRICAL MACHINES

UNIT III SEMICONDUCTOR DEVICES AND APPLICATIONS

UNIT IV DIGITAL ELECTRONICS

UNIT V FUNDAMENTALS OF COMMUNICATION ENGINEERING 9

TOTAL: 45 PERIODS

OUTCOMES:
- Ability to identify the electrical components and explain the characteristics of electrical machines.
- Ability to identify electronics components and understand the characteristics

TEXT BOOKS:
2. S.K.Bhattacharya "Basic Electrical and Electronics Engineering", Pearson India, 2011

REFERENCES:

EL8201 PRINCIPLES OF ELECTROCHEMISTRY L T P C
3 0 0 3

OBJECTIVE:
- To import knowledge on basic principles of electrochemistry and its applications.

UNIT I ION-SOLVENT & ION-ION INTERACTIONS 9
ion-solvent interaction, ExperimentalΔH and Δion-solvent interaction – Expression for verification of Born Model, Ion-dipole model of ion-solvent interaction and expression for heat of solvation, Ion-Ion Interaction – True and Potential electrolytes, Debye-Huckel (ion-cloud) theory of ion-ion interactions, Activity coefficients and ion-ion interaction

UNIT II ION TRANSPORT IN SOLUTION 9
Diffusion & Diffusion coefficient, Einstein-Smoluchowski equation, Conduction, Molar & Equivalent conductivity, Kohlrausch’s Law, Ionic mobility, Stokes-Einstein relation, NernstEinstein equation, Transport numbers – determination by Hittorf’s & Moving Boundary methods – Walden’s rule - Debye Huckel-Onsager equation, Non-aqueous solutions

UNIT III POLARISATION AND OVER POTENTIAL 9
Electrolytic polarization, Dissolution and Decomposition potential, Overvoltage – hydrogen and oxygen overvoltage, applications, Polarography – principles, diffusion layer, limiting current density, polarographic circuit, dropping mercury electrode, merits & demerits, supporting electrolyte, current maxima, polarograms, half wave potential, diffusion current, applications

UNIT IV COLLOIDAL ELECTROCHEMISTRY

Electrochemical properties of colloids – Charge on colloidal particles, Electrical Double Layer, Cogulation of colloidal sols, Electrokinetic phenomena - Electro-Osmosis – Determination of zeta potential, Electrophoresis – sedimentation potential (Dorn effect), Determination of colloidal particle size, Surfactant, Emulsion, Emulsifiers, gels - Applications

UNIT V ELECTROACTIVE LAYERS AND MODIFIED ELECTRODES

Chemically modified electrodes, Types and methods of modification – chemisorption, covalent bond formation, polymer film coatings, inorganic materials, Langmuir-Blodgett (LB) methods, properties of the modified electrodes, electrochemistry at monolayer and multilayer modified electrodes, characterisation of modified electrodes

TOTAL : 45 PERIODS

OUTCOME:
- Upon completion of this course, the students would have knowledge of electrode potentials & Nernst equation, electrode reactions, voltammetry, amperometry, and electrochemical sensors.

TEXT BOOKS:

REFERENCES:

GE8261 ENGINEERING PRACTICES LABORATORY

OBJECTIVES:
- To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP A (CIVIL & MECHANICAL)

CIVIL ENGINEERING PRACTICE

Buildings:
- (a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:
(a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
(b) Study of pipe connections requirements for pumps and turbines.
(c) Preparation of plumbing line sketches for water supply and sewage works.
(d) Hands-on-exercise:
 Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.
(e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:
(a) Study of the joints in roofs, doors, windows and furniture.
(b) Hands-on-exercise:
 Wood work, joints by sawing, planing and cutting.

II MECHANICAL ENGINEERING PRACTICE 18

Welding:
(a) Preparation of butt joints, lap joints and T-joints by Shielded metal arc welding.
(b) Gas welding practice

Basic Machining:
(a) Simple Turning and Taper turning
(b) Drilling Practice

Sheet Metal Work:
(a) Forming & Bending:
(b) Model making – Trays and funnels.
(c) Different type of joints.

Machine assembly practice:
(a) Study of centrifugal pump
(b) Study of air conditioner

Demonstration on:
(a) Smithy operations, upsetting, swaging, setting down and bending. Example – Exercise – Production of hexagonal headed bolt.
(b) Foundry operations like mould preparation for gear and step cone pulley.
(c) Fitting – Exercises – Preparation of square fitting and V-fitting models.

GROUP B (ELECTRICAL & ELECTRONICS)

III ELECTRICAL ENGINEERING PRACTICE 13

1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
2. Fluorescent lamp wiring.
3. Stair case wiring
5. Measurement of energy using single phase energy meter.

IV ELECTRONICS ENGINEERING PRACTICE 16

1. Study of Electronic components and equipments – Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.
2. Study of logic gates AND, OR, EX-OR and NOT.
4. Soldering practice – Components Devices and Circuits – Using general purpose PCB.
5. Measurement of ripple factor of HWR and FWR.

OUTCOMES:
On successful completion of this course, the student will be able to
- fabricate carpentry components and pipe connections including plumbing works.
- use welding equipments to join the structures.
- Carry out the basic machining operations
- Make the models using sheet metal works
- Illustrate on centrifugal pump, Air conditioner, operations of smithy, foundary and fittings
- Carry out basic home electrical works and appliances
- Measure the electrical quantities
- Elaborate on the components, gates, soldering practices.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CIVIL
1. Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. 15 Sets.
2. Carpentry vice (fitted to work bench) 15 Nos.
4. Models of industrial trusses, door joints, furniture joints 5 each
5. Power Tools: (a) Rotary Hammer 2 Nos
 (b) Demolition Hammer 2 Nos
 (c) Circular Saw 2 Nos
 (d) Planer 2 Nos
 (e) Hand Drilling Machine 2 Nos
 (f) Jigsaw 2 Nos

MECHANICAL
1. Arc welding transformer with cables and holders 5 Nos.
2. Welding booth with exhaust facility 5 Nos.
3. Welding accessories like welding shield, chipping hammer, wire brush, etc. 5 Sets.
4. Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. 2 Nos.
5. Centre lathe 2 Nos.
6. Hearth furnace, anvil and smithy tools 2 Sets.
7. Moulding table, foundry tools 2 Sets.
8. Power Tool: Angle Grinder 2 Nos
9. Study-purpose items: centrifugal pump, air-conditioner One each.

ELECTRICAL
1. Assorted electrical components for house wiring 15 Sets
2. Electrical measuring instruments 10 Sets
3. Study purpose items: Iron box, fan and regulator, emergency lamp 1 each
4. Megger (250V/500V) 1 No.
5. Power Tools: (a) Range Finder 2 Nos
(b) Digital Live-wire detector 2 Nos

ELECTRONICS
1. Soldering guns 10 Nos.
2. Assorted electronic components for making circuits 50 Nos.
3. Small PCBs 10 Nos.
5. Study purpose items: Telephone, FM radio, low-voltage power supply

ME8261 COMPUTER AIDED DRAFTING AND MODELING L T P C
LABORATORY 0 0 4 2

OBJECTIVES:
- To develop skill to use software to create 2D and 3D models.

List of Exercises using software capable of Drafting and Modeling
1. Study of capabilities of software for Drafting and Modeling – Coordinate systems (absolute, relative, polar, etc.) – Creation of simple figures like polygon and general multi-line figures.
2. Drawing of a Title Block with necessary text and projection symbol.
3. Drawing of curves like parabola, spiral, involute using Bspline or cubic spline.
4. Drawing of front view and top view of simple solids like prism, pyramid, cylinder, cone, etc, and dimensioning.
5. Drawing front view, top view and side view of objects from the given pictorial views (eg.V-block, Base of a mixie, Simple stool, Objects with hole and curves).
6. Drawing of a plan of residential building (Two bed rooms, kitchen, hall, etc.)
7. Drawing of a simple steel truss.
8. Drawing sectional views of prism, pyramid, cylinder, cone, etc.
10. Creation of 3-D models of simple objects and obtaining 2-D multi-view drawings from 3-D model.

Note: Plotting of drawings must be made for each exercise and attached to the records written by students.

OUTCOMES:
- ability to use the software packers for drafting and modeling
- ability to create 2D and 3D models of Engineering Components

TOTAL: 60 PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

<table>
<thead>
<tr>
<th>SL.N</th>
<th>Description of Equipment</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pentium IV computer or better hardware, with suitable graphics facility</td>
<td>30 No.</td>
</tr>
<tr>
<td>2</td>
<td>Licensed software for Drafting and Modeling</td>
<td>30</td>
</tr>
</tbody>
</table>
MA8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

OBJECTIVE:

- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations – Singular integrals - Solutions of standard types of first order partial differential equations - Lagrange’s linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of PDE – Method of separation of variables - Fourier Series Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction.

UNIT IV FOURIER TRANSFORMS

UNIT V Z-TRANSFORMS AND DIFFERENCE EQUATIONS

TOTAL: 60 PERIODS

OUTCOMES:

Upon successful completion of the course, students should be able to:

- Understand how to solve the given standard partial differential equations.
- Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.
- Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.

- Understand the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.

- Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems.

TEXT BOOKS:

REFERENCES:

EL8301 MOLECULAR PHYSICAL CHEMISTRY

OBJECTIVE:

- To impart knowledge in the field of electrochemistry, solubility behaviour, chemical reaction kinetics, photochemical reactions and colloidal chemistry towards different applications.

UNIT I QUALITATIVE INTRODUCTION TO QUANTUM THEORY

UNIT II ATOMIC STRUCTURE AND SPECTRA

UNIT III MOLECULAR STRUCTURE AND QUALITATIVE INTRODUCTION TO MOLECULAR SPECTROSCOPY 9

UNIT IV INTRODUCTION TO STATISTICAL THERMODYNAMICS 9

UNIT V APPLICATIONS OF STATISTICAL THERMODYNAMICS 9
Relationship between macro thermodynamic expressions and partition functions. Applications with respect to heat capacities, equations of state, molecular interaction in liquids. Residual entropies. Equilibrium constants.

TOTAL: 45 PERIODS

OUTCOME:
• Upon completion of this course, the student would be able to define and to explain how thermodynamic laws are applied and incorporated to further our understanding of chemical equilibria, phase equilibria, electrochemical equilibria and biochemical reactions equilibria.

TEXT BOOKS:

REFERENCES:

CY8291 ORGANIC CHEMISTRY L T P C 3 0 0 3

OBJECTIVE:
• To enable the students to learn the type of components in which organic reactions take place and also to know the preparation of the essential organic compounds.

UNIT I ORGANIC REACTION MECHANISM 9
Electrophilic reactions-Friedel crafts reaction, Riemer Tiemenn reaction, Beckmann rearrangements; nucleophilic reactions- aldol condensation, perkin reaction, benzoain condensation; free radical reaction-halogenation of alkane, addition of HBr on alkene in presence of peroxide; allylic halogenation - using N-Bromo Succinamide (NBS), thermal halogenation of alkene CH₃ – CH = CH₂.

UNIT II CARBOHYDRATES 9
Introduction – mono and disaccharides – important reactions – polysaccarides – starch and cellulose – derivatives of cellulose – carboxy methyl cellulose and gun cotton – structural aspects of cellulose
UNIT III POLYNUCLEAR AROMATICS AND HETEROCYCLES 9
Classification of polynuclear aromatics. naphthalene preparation, properties and uses.
Classification of heterocyclic compounds. Furan, thiophene, pyrrole, pyridine, quinoline, isoquinoline - preparation, properties and uses.

UNIT IV AMINO ACIDS AND PROTEINS 9
Classification, preparation (Strecker, Skraup, Gabriel phthalimide) and properties of Amino acids.

UNIT V DRUGS & DYES 9
Classification and properties of drugs. Penicillin sulpha drugs, mode of action, synthesis of sulphanilamide, chloroquine and chloroamphenicol.

TOTAL: 45 PERIODS

OUTCOMES:
• At the end of the course students will have knowledge on various reaction mechanism, preparation of organic compounds and their properties.

TEXTBOOKS:

REFERENCES:

EL8302 INORGANIC CHEMISTRY L T P C
3 0 0 3

OBJECTIVE:
• To introduce certain key aspects of inorganic chemistry, including solid state structures, the chemistry of phosphorus and hydrogen and transition metal chemistry.

UNIT I STRUCTURE AND BONDING IN INORGANIC CHEMISTRY 9

UNIT II CHEMISTRY IN AQUEOUS AND NON AQUEOUS SOLUTIONS 9

UNIT III COORDINATION CHEMISTRY 9
UNIT IV CHEMISTRY OF TRANSITION METALS 9

UNIT V ORGANOMETALLIC AND BIOINORGANIC CHEMISTRY 9

TOTAL: 45 PERIODS

OUTCOME:
- At the end of this course, the students will be able to use these concepts in problem solving, describe and place in context the chemistry of main group elements and transition metals.

TEXT BOOKS:

REFERENCE:

GE8291 ENVIRONMENTAL SCIENCE AND ENGINEERING L T P C
3 0 0 3

OBJECTIVES:
- To study the nature and facts about environment.
- To finding and implementing scientific, technological, economic and political solutions to environmental problems.
- To study the interrelationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- To study the dynamic processes and understand the features of the earth’s interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY 14
Definition, scope and importance of environment – need for public awareness - concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers – energy flow in the ecosystem – ecological succession – food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of
the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds; Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION
Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – solid waste management: causes, effects and control measures of municipal solid wastes – role of an individual in prevention of pollution – pollution case studies – disaster management: floods, earthquake, cyclone and landslides. Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES
Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

OUTCOMES:

TOTAL: 45 PERIODS
• Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.
• Public awareness of environmental is at infant stage.
• Ignorance and incomplete knowledge has lead to misconceptions
• Development and improvement in std. of living has lead to serious environmental disasters

TEXT BOOKS:

REFERENCES:

EL8303 CHEMICAL PROCESS CALCULATIONS

OBJECTIVE:
• To teach concept of degree of freedom and its application to solution of mass and energy balance equations for single and network of units and introduce to process simulators.

UNIT I BASIC CONCEPTS
Review of basic concepts. Methods of expressing composition of mixtures and solutions. Use of molal units, partial pressure and pure component volume in calculations. Material balance for non reacting systems like distillation, evaporation, drying etc.

UNIT II MATERIAL BALANCE

UNIT III PSYCHROMETRY & CRYSTALLISATION

UNIT IV ENERGY BALANCE
UNIT V FUELS AND COMBUSTION

TOTAL: 45 PERIODS

OUTCOME:
- The students would be able to understand chemical engineering calculations, establish mathematical methodologies for the computation of material balances, energy balances.

TEXT BOOKS:

REFERENCES:

EL8311 ENGINEERING CHEMISTRY LABORATORY

OBJECTIVE:
- To improve the practical knowledge on the analysis of inorganic/organic compounds, properties and characteristics of solvents and mixtures.

INORGANIC & ORGANIC CHEMISTRY (LIST OF EXPERIMENTS)
1. Analysis of sugars
2. Analysis of soap
3. Preparation of organic compounds:
 i. Hydrolysis – benzoic acid from benzamide
 ii. Acetylation – acetyl salicylic acid from salicylic acid
 iii. Bromination – tribromo aniline from aniline
 iv. Nitration – meta dinitrobenzene from nitrobenzene
 v. Benzoylation – phenyl benzoate from phenol
 vi. Oxidation – benzoic acid from benzaldehyde

OUTCOME:
- The students would be able to prepare organic compounds and analyze the inorganic / organic compounds.

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Silica Crucible
2. Heating Mantle
3. Muffle Furnace
4. Hot air oven
5. Desiccators
6. Vacuum pump
7. Condensers

REFERENCE:
1. Laboratory Manual prepared by Faculty

PHYSICAL CHEMISTRY (LIST OF EXPERIMENTS)
1. Determination of partition co-efficient of iodine between two immiscible solvents
2. Determination of partition coefficient of benzoic acid between two immiscible solvents
3. Phase diagram for binary system
4. Verification of Oswald’s dilution law
5. Heat of solution
6. Determination of acid value in the given oils
7. Adsorption isotherm
8. Equilibrium constant of $\text{KI} + \text{I}_2 \rightarrow \text{KI}_3$

OUTCOME:
• The student would be able to determine the properties and characteristics of solvents and mixtures.

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Mechanical Shaker
2. Conducting meter
3. Mantle Heater
4. Hot Plate
5. Bunsen Burners
6. Thermometer
7. Electronic Weighing balance

REFERENCE:

TOTAL: 60 PERIODS

EE8362 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY L T P C 0 0 4 2

OBJECTIVES:
• To determine characteristics of electrical apparatus and electronic devices by conducting suitable experiments.

LIST OF EXPERIMENTS
1. Verification of Ohm’s law and Kirchhoff’s laws.
2. Measurement of three phase power
3. Load test on DC shunt motor.
4. Load test on single-phase Transformer
5. Load test on separately excited DC generator
6. Study of half wave and full wave rectifiers.
7. RC coupled transistor amplifier.
8. Study of logic gates and implementation of Boolean functions.
10. Study of modulation and demodulation principles
11. Study of communication systems
12. Study of ADC and DAC circuits

Minimum of 10 Experiments to be carried out:

TOTAL : 60 PERIODS

OUTCOMES:
- Understanding the relation between electrical voltage, current and resistance.
- Ability to measure the performance of electrical machine like DC and AC motors.
- Visualizing the usage of logic gates and Microprocessor in motor control systems.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

<table>
<thead>
<tr>
<th>S. No.</th>
<th>NAME OF THE EQUIPMENT</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>D. C. Motor Generator Set</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>D.C. Shunt Motor</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>Single Phase Induction Motor</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>Ammeter A.C and D.C</td>
<td>20</td>
</tr>
<tr>
<td>5.</td>
<td>Voltmeters A.C and D.C</td>
<td>20</td>
</tr>
<tr>
<td>6.</td>
<td>Watt meters LPF and UPF</td>
<td>12</td>
</tr>
<tr>
<td>7.</td>
<td>Resistors & Breadboards</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>Cathode Ray Oscilloscopes</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>Dual Regulated power supplies</td>
<td>6</td>
</tr>
<tr>
<td>10.</td>
<td>A.C. Signal Generators</td>
<td>4</td>
</tr>
<tr>
<td>11.</td>
<td>Communication system demonstration kits</td>
<td>2</td>
</tr>
<tr>
<td>12.</td>
<td>Modulation and demodulation demo kits</td>
<td>2</td>
</tr>
<tr>
<td>13.</td>
<td>ADC and DAC circuit demo kits</td>
<td>2</td>
</tr>
</tbody>
</table>

MA8491 NUMERICAL METHODS L T P C 4 0 0 4

OBJECTIVE:
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals in real life situations.
- To acquaint the student with understanding of numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.
- To understand the knowledge of various techniques and methods of solving various types of partial differential equations.

UNIT I SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS 12

UNIT II INTERPOLATION AND APPROXIMATION 12
Interpolation with unequal intervals - Lagrange’s interpolation – Newton’s divided difference interpolation – Cubic Splines - Difference operators and relations - Interpolation with equal intervals - Newton’s forward and backward difference formulae.

UNIT III NUMERICAL DIFFERENTIATION AND INTEGRATION 12

UNIT IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS 12

UNIT V BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS 12
Finite difference methods for solving second order two - point linear boundary value problems - Finite difference techniques for the solution of two dimensional Laplace’s and Poisson’s equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

TOTAL: 60 PERIODS

OUTCOMES:
Upon successful completion of the course, students should be able to:
- Understand the basic concepts and techniques of solving algebraic and transcendental equations.
- Appreciate the numerical techniques of interpolation and error approximations in various intervals in real life situations.
- Apply the numerical techniques of differentiation and integration for engineering problems.
- Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
- Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications.

TEXT BOOKS:

REFERENCES:
PM8391 MATERIALS TECHNOLOGY L T P C
3 0 0 3

OBJECTIVE:

- To provide students with a strong foundation in materials science with emphasis on the fundamental scientific and engineering principles which underlie the knowledge and implementation of material structure, processing, properties, and performance of all classes of materials used in engineering systems.

UNIT I STRUCTURE OF MATERIALS
Introduction-classification of materials, selection of materials, properties of materials, x-ray crystallography, Bragg's law, x-ray diffraction, electron diffraction, neutron diffraction, structure of NaCl and diamond, Crystal defects - point, line, surface and volume defects, alloy formation, solid solution types, solidification of castings, structural examination using microscopy.

UNIT II METALLURGICAL PROPERTIES OF MATERIALS

UNIT III TYPES OF MATERIALS

UNIT IV PHYSICAL CHARACTERISTICS OF MATERIALS

UNIT V NON-METALLIC MATERIALS

TOTAL: 45 PERIODS

OUTCOME:

- At the end of this course, the students will be able to understand various material and its properties and manufacturing methods.

TEXT BOOKS:

EL8401 FLUID AND SOLID OPERATIONS L T P C

3 0 0 3

OBJECTIVE:

- To impart to the student knowledge on fluid properties, fluid static and dynamic characteristics, flow metering and transport, particle mechanics, techniques of solid–fluid separation

UNIT I PROPERTIES OF FLUID

UNIT II FLOW THROUGH PIPES & BOUNDARY LAYER CONCEPTS

Reynolds number regimes, Flow through pipes – pressure drop under laminar and turbulent flow conditions; boundary layer concepts; Friction factor, Moody Chart, Flow meters; different types of flowmeters; Valves, pumps, compressors – characteristics and sizing; Agitation and Mixing;

UNIT III SIZE ANALYSIS

General characteristics of solids, techniques of size analysis; Laws of size reduction, quipments for size reduction

UNIT IV FLOW THROUGH FLUIDIZED BEDS

Flow over a sphere – friction and pressure drag - flow through fixed and fluidized beds. Filtration – batch and continuous, filtration equipments - selection, operation

UNIT V CLASSIFIERS

Screening, gravity separation - sedimentation, thickening, elutriation, classifiers - Centrifugal separation - continuous centrifuges, cyclones and hydro cyclones, electrostatic and magnetic separators

TOTAL: 45 PERIODS

OUTCOME:

- At the end of this course, the students will be able to understand the principles of fluid mechanics and applications of mechanical operations in process industries.

TEXT BOOKS:

REFERENCES:

PE8491 CHEMICAL ENGINEERING THERMODYNAMICS L T P C
3 0 0 3

OBJECTIVE:

- Students will learn PVT behaviour of fluids, laws of thermodynamics, thermodynamic property relations and their application to fluid flow, power generation and refrigeration processes.

UNIT I

UNIT II

UNIT III

Refrigeration and liquefaction process, Thermodynamic Potentials, thermodynamic correlation, Maxwell relations, criteria for Equilibria and stability. Clapeyron equation

UNIT IV

Partial molar properties, ideal and non-ideal solutions, standard states definition and choice, Gibbs-Duhem equation, activity and property change of mixing, excess properties of mixtures.

UNIT V

Activity coefficient-composition models, thermodynamic consistency of phase equilibria, ChemicalReaction equilibria, Extent of reaction, equilibrium constant and standard free energy change

TOTAL: 45 PERIODS

OUTCOME:

- The course will help the students to know about engineering thermodynamics and understand the practical implications of thermodynamic law in engineering design.

TEXT BOOKS:

REFERENCES:

EL8402 HEAT TRANSFER AND ITS APPLICATIONS

OBJECTIVE:
- To enable the students to learn heat transfer by conduction, convection and radiation and heat transfer equipments like evaporator and heat exchanger

UNIT I CONDUCTION

UNIT II CONVECTION

UNIT III CONDENSATION & BOILING

UNIT IV HEAT EXCHANGE EQUIPMENTS

UNIT V RADIATION & EVAPORATION

TOTAL: 45 PERIODS
OUTCOME:
- Upon completion of this course, the students will have knowledge in various heat transfer methodology in process engineering and to design heat transfer equipments such as furnace, boilers, heat exchangers evaporation

TEXT BOOKS:

REFERENCES:

PE8091 CHEMICAL REACTION ENGINEERING L T P C
3 0 0 3

OBJECTIVE:
- To enable the students to gain knowledge on different types of chemical reactors, the design of chemical reactors under isothermal and non-isothermal conditions

UNIT I 9
Rate equation, elementary, non-elementary reactions, theories of reaction rate and Prediction; Design equation for constant and variable volume batch reactors, analysis of experimental kinetics data, integral and differential analysis.

UNIT II 9
Design of continuous reactors - stirred tank and tubular flow reactor, recycle reactors, Equal sized CSTRs in series and parallel, Equal sized PFRs in series and parallel, size comparison of reactors.

UNIT III 9
Design of reactors for multiple reactions - consecutive, parallel and mixed reactions - factors affecting choice, optimum yield and conversion, selectivity, reactivity and yield.

UNIT IV 9
Non-isothermal homogeneous reactor systems, adiabatic reactors, rates of heat exchanges for different reactors, design for constant rate input and constant heat transfer coefficient, operation of batch and continuous reactors, optimum temperature progression.

UNIT V 9
The residence time distribution as a factor of performance; residence time functions and relationship between them in reactor; basic models for non-ideal flow; conversion in non-ideal reactors

TOTAL: 45 PERIODS

OUTCOME:
- At the end of this course, the students would gain knowledge on the selection of reactor for the required reaction.

TEXT BOOKS:
OBJECTIVE:

- To enable the students to develop a sound working knowledge on different types of crushing equipments and separation characteristics of different mechanical operation separators.

LIST OF EXPERIMENTS

1. Sieve analysis
2. Batch filtration studies using a Leaf filter
3. Batch filtration studies using a Plate and Frame Filter press
4. Characteristics of batch Sedimentation
5. Reduction ratio in Jaw Crusher / Pulverizer/ Hammer Mill
6. Reduction ratio in Ball mill
7. Separation characteristics of Cyclone separator
8. Reduction ratio of Roll Crusher
9. Separation characteristics of Elutriator
10. Reduction ratio of Drop weight crusher
11. Size separation using Sub-Sieving
12. Determination of specific surface area using air permeability set up

TOTAL: 60 PERIODS

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS

1. Sieve shaker 1 No.
2. Leaf filter 1 No.
3. Plate and Frame Filter Press 1 No.
4. Sedimentation Jar 1 No.
5. Jaw Crusher 1 No.
6. Ball Mill / Pulverizer / Hammer Mill Any one mill
7. Cyclone Separator 1 No.
8. Roll Crusher 1 No.
9. Elutriator 1 No.
10. Drop Weight Crusher 1 No.
11. Test Sieves. 1 No.
12. Air Permeability apparatus 1 No.

Minimum 10 equipment

OUTCOME:
Students would gain the practical knowledge and hands on various separation techniques like filtration, sedimentation, screening, elutriation, and centrifugation.

OBJECTIVE:
- To learn experimentally to calibrate flow meters, find pressure loss for fluid flows and determine pump characteristics.

LIST OF EXPERIMENTS
1. Viscosity measurement of non Newtonian fluids
2. Calibration of constant and variable head meters
3. Calibration of weirs and notches
4. Open drum orifice and draining time
5. Flow through straight pipe
6. Flow through annular pipe
7. Flow through helical coil and spiral coil
8. Losses in pipe fittings and valves
9. Characteristic curves of pumps (Centrifugal / Gear / Reciprocating)
10. Pressure drop studies in packed column
11. Hydrodynamics of fluidized bed
12. Drag coefficient of solid particle

Minimum 10 experiments shall be offered

EQUIPMENT REQUIRED
1. Viscometer 1 No.
2. Venturi meter 1 No.
3. Orifice meter 1 No.
4. Rotameter 1 No.
5. Weir and Notches 1 No.
6. Open drum with orifice 1 No.
7. Pipes and fittings 1 No.
8. Helical and spiral coils 1 No.
9. Centrifugal pump / Gear pump / Reciprocating 1 No
10. Packed column 1 No.
11. Fluidized bed 1 No.

Minimum 10 equipment

OUTCOMES:
- Use variable area flow meters and variable head flow meters
- Analyze the flow of fluids through closed conduits, open channels and flow past immersed bodies
- Select pumps for the transportation of fluids based on process conditions/requirements and fluid properties

TOTAL: 60 PERIODS
• To know the principle and importance of various analytical instruments used for the characterization of various materials

UNIT I INTRODUCTION TO SPECTROSCOPICAL METHODS OF ANALYSIS 9
Electromagnetic radiation: various ranges, dual properties, various energy levels, interaction of photons with matter, absorbance & transmittance and their relationship, permitted energy levels for the electrons of an atom and simple molecules, various electronic transitions in organic and inorganic compounds effected by UV, and visible radiations, various energy level diagrams of saturated, unsaturated and carbonyl compounds, excitation by UV and visible radiations, choice of solvents, cut off wavelengths for solvents

UNIT II QUALITATIVE ANALYSIS BY UV AND VISIBLE SPECTROCOPY 9
Lamda max and epsilon max rules, Woodward -Fieser rules for the calculation of absorption maxima (Lamda max) for dienes and carbonyl compounds, Effects of auxochromes and effects of conjugation on the absorption maxima, Different shifts of absorption peaks(Bathochromic, hypsochromic, hypochromic), Instrumentation for UV and Visible spectrophotometers (source, optical parts and detectors), Applications of UV and Visible spectroscopy.

UNIT III QUANTITATIVE ANALYSIS BY UV AND VISIBLE SPECTROCOPY 9
Beer-Lambert's law, limitations, deviations (real, chemical, instrumental), estimation of inorganic ions such as Fe, Ni and estimation of nitrite using Beer -Lambert's law, multicomponent analysis (no overlap, single way overlap and two way overlap), photometric titration(experimental set -up and various types of titrations and their corresponding curves).

UNIT IV IR SPECTROSCOPY 9
Theory of IR spectroscopy, various stretching and vibration modes for diatomic and triatomic molecules (both linear and nonlinear), various ranges of IR (near, mid, finger print and far) and their usefulness, Instrumentation (only the sources and detectors used in different regions), sample preparation techniques, qualitative analysis of alkanes, alkenes and carbonyl compounds.

UNIT V CHROMATOGRAPHIC METHODS 9
Classification of chromatographic methods, column, thin layer, paper, gas, High Performance Liquid Chromatographical methods (principle, mode of separation and technique).

TOTAL: 45 PERIODS

OUTCOME:
• To have thorough understanding of theory, instrumentation and applications of analytical equipments used in industries for testing quality of raw materials, intermediates and finished products. To know the importance of analytical instrumentation during the purification, compounding and formulating the finished product.

TEXT BOOKS:

REFERENCES:

CH8551 MASS TRANSFER I

OBJECTIVE:
- Students will learn to determine mass transfer rates under laminar and turbulent conditions.

UNIT I
Introduction to mass transfer operations; Molecular diffusion in gases, liquids and solids; diffusivity measurement and prediction; multi-component diffusion.

UNIT II
Eddy diffusion, concept of mass transfer coefficients, theories of mass transfer, different transport analogies, application of correlations for mass transfer coefficients, inter phase mass transfer, relationship between individual and overall mass transfer coefficients. NTU and NTP concepts, Stage-wise and differential contractors.

UNIT III
Humidification – Equilibrium, humidity chart, adiabatic and wet bulb temperatures; humidification operations; theory and design of cooling towers, dehumidifiers and humidifiers using enthalpy transfer unit concept.

UNIT IV
Drying– Equilibrium; classification of dryers; batch drying – Mechanism and time of cross through circulation drying, continuous dryers – material and energy balance; determination of length of rotary dryer using rate concept.

UNIT V
Crystallization - Equilibrium, classification of crystallizers, mass and energy balance; kinetics of crystallization – nucleation and growth; design of batch crystallizers; population balance model and design of continuous crystallizers.

TOTAL: 45 PERIODS

OUTCOMES:
- At the end of the course,
 - Students would have knowledge in diffusion and its application in laminar and turbulent conditions.
 - Students would apply the mass transfer concepts in the design of humidification columns, dryers and crystallizers.

TEXT BOOKS:

REFERENCES:

EL8501 CORROSION SCIENCE AND ENGINEERING L T P C 3 0 0 3

OBJECTIVE:
- To provide fundamental understanding on aspects of electrochemistry and materials science relevant to corrosion phenomena and identify practices for the prevention and remediation of corrosion.

UNIT I BASIC ASPECTS OF CORROSION

UNIT II FORMS OF CORROSION
Definition, factors and control methods of various forms of corrosion: uniform, galvanic, pitting, inter granular, crevice, dezincification, stress corrosion, corrosion fatigue, hydrogen embrittlement.

UNIT III ATMOSPHERIC CORROSION AND PROTECTIVE COATINGS

UNIT IV IMMERSION CORROSION AND ELECTROCHEMICAL PROTECTION

UNIT V CORROSION MONITORING
Laboratory corrosion tests, accelerated chemical tests for studying different forms of corrosion. Electrochemical methods of corrosion rate measurements by Gravimetric, Tafel polarization, linear polarization, cyclic polarization, impedance spectroscopy, harmonics and NDT techniques- ultrasonics, radiography eddy current.

TOTAL: 45 PERIODS

OUTCOME:
- Upon completion of this course, the student would understand the causes of and the mechanisms of various types of corrosion, including uniform corrosion, galvanic
corrosion, crevice corrosion, pitting corrosion, intergranular corrosion, and various modes of environmentally assisted cracking.

TEXT BOOKS:

REFERENCES:

EL8502 ELECTRODICS AND ELECTROCATALYSIS L T P C
3 0 0 3

OBJECTIVE:
- To impart necessary basic knowledge in order to understand, analyze and solve problems related to electrochemical processes.

UNIT I ELECTRICAL DOUBLE LAYER
Thermodynamics of ideally polarizable and non-polarizable interfaces- Lipman equation-determination of interfacial tension, charge density, surface excess and double layer capacitance by electro capillary & bridge methods- Helmholtz, Gouy-Chapman and stern models of the double layer with discussion of potential and charge distribution inside the double layer-contact adsorption and its determination.

UNIT II ELECTRODE KINETICS
Concepts of equilibrium potential, Nernst equation, overpotential and its different types, equilibrium exchange current density-derivation of Butler-Volmer equation – high field and low field approximations – charge transfer resistance and polarizability of the interface – concepts of rate determining step, Stoichiometric number, reaction order – Determination of kinetics parameters [i, k, β(α)] by Tafel and linear polarization methods.

UNIT III ELECTROCATALYSIS

UNIT IV ELECTROCHEMICAL TECHNIQUES I
Ion selective electrodes – Principles of potentiometry and amperometry- determination of dissolved oxygen. Linear sweep voltammetry and cyclic voltammetry derivation of Randles-Sevciks equation – effect of sweep rate-analysis of cyclic voltammograms.

UNIT V ELECTROCHEMICAL TECHNIQUES II
Potential step method (chronoamperometry) under diffusion control derivation of Cottrell equation for a planar and spherical electrode- significance of spherical diffusion – derivation of Ilkovic equation.- Chronopotentiometry and analysis of chronopotentiograms-derivation of
sands equation for constant current input under linear diffusion—concepts of Faradaic impedance—derivation of kinetic parameters from impedance measurements—Nyquist and bode plots for simple redox reactions—principles of scanning probe techniques—STM-AFM and SECM—working principles of electrochemistry.

TOTAL: 45 PERIODS

OUTCOME:
- Student will have the knowledge on electrical double layer, Electrocatalysis and different types of Electrochemical techniques.

TEXT BOOKS:

REFERENCES:

EL8503 ELECTROCHEMICAL REACTION ENGINEERING L T P C
3 0 0 3

OBJECTIVE:
- To familiarize in the aspects of current-voltage relationships & estimation of mass transfer co-efficient, PFR & CSTR systems model

UNIT I CURRENT-VOLTAGE RELATIONSHIPS & ESTIMATION OF MASS TRANSFER CO-EFFICIENT
A general view of electrolytic processes; current-voltage relationships in electrolytic reactors; the limiting current plateau; mass & energy balance, and efficiency in electrochemical reactors.
The estimation of mass transport coefficients at commonly occurring electrodes. The estimation of mass transport coefficients under enhanced convection conditions.

UNIT II PLUG FLOW& CSTER SYSTEMS MODEL
A general view of plug flow model of electrolytic reactors: plug flow model of electrochemical reactors employing parallel plate reactor; Plug flow model under constant mass flux conditions; PFM analysis with electrolyte recycling PFM and real electrochemical reactors. General view of simple CSTER systems; CSTER in cascades; CSTER analysis of batch electrochemical reactors, CSTER analysis of semi-continuous electrochemical reactors; CSTER analysis of electrolyte recycling; Batch reactor combined with electrolyte recycling.

UNIT III THERMAL BEHAVIOR OF REACTORS
General aspects of thermal behavior in electrochemical reactor. Thermal behavior under CSTER conditions. The estimation of heat losses; the thermal behavior under PFR conditions; Thermal behavior of batch electrochemical reactors.

UNIT IV CONVECTIVE DIFFUSION EQUATION & CURRENT DISTRIBUTION
Convective diffusion equation and migration effects – derivation of convective diffusion equation theory – scope and limitation – migration effects – Electroneutrality conditions – supporting electrolyte effect – fundamental of Nernst layer model – Estimation of true limiting current

UNIT V DISPERSION MODELS & OPTIMIZATION OF ELECTROCHEMICAL REACTOR

TOTAL :45 PERIODS

OUTCOME:
- The students will have a practical ability to analyze electrochemical design models, thermal behavior of reactors and electrochemical reactors.

TEXT BOOK:

REFERENCE:

EL8511 HEAT AND MASS TRANSFER LABORATORY L T P C
(Any Ten experiments) 0 0 4 2

OBJECTIVE:
- Enable the students to develop a sound working knowledge on different types of heat transfer equipments and mass transfer equipments.

LIST OF EXPERIMENTS
1. Transient state heat conduction
2. Solvent extraction
3. Batch drying
4. Temperature profile of a rod
5. Natural convection
6. Thermal conductivity of composite wall
7. Emissivity measurement
8. Measurement of diffusion coefficient
9. Simple distillation
10. Leaching
11. Adsorption
12. Double pipe heat exchanger

TOTAL: 60 PERIODS

OUTCOME:
- Student would be able to calculate heat transfer by conduction, different types of convection using classical models for these phenomena. Students would demonstrate knowledge on the determination of important data for the design and operation of the process equipment’s like distillation, extraction, diffusivity, drying principles which are having wide applications in various industries

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Data Logger
2. Heat Exchanger
3. Condenser
4. Thermal conductivity measurement apparatus
5. Soxlet Extractor
6. Rotating Disc Contact
7. Controllers of Temperature
8. Convection Apparatus
9. Emissivity measurement apparatus
10. Distillation Apparatus
11. Double pipe heat exchanger
12. Diffusion Apparatus

REFERENCE:
1. Laboratory Manual prepared by Faculty

EL8512
CHEMICAL AND ELECTROCHEMICAL REACTION ENGINEERING
LABORATORY

CHEMICAL REACTION ENGINEERING

OBJECTIVE:
- Students develop a sound working knowledge on different types of reactors. It also students to experimentally determine the kinetic constant and conversion of a given electrochemical reactor in a batch reactor, tubular reactor, and mixed flow reactor and compare with the theoretically predicted conversions.

LIST OF EXPERIMENTS
1. Kinetic studies in a Batch reactor
2. Kinetic studies in a Plug flow reactor
3. Kinetic studies in a CSTR
4. Kinetic studies in a PFR followed by a CSTR
5. RTD studies in a PFR
6. RTD studies in a CSTR
7. Study of temperature dependence of rate constant using CSTR.

EQUIPMENT REQUIRED
1. BATCH REACTOR
2. Plug flow reactor
3. CSTR

OUTCOMES:
- Understand rate equation for different types of reactors.
- Design experiments in kinetics to determine conversion and effect of temperature on rate constant.
- Assess the performance of Plug flow Mixed flow and Packed bed by studying the residence time distribution.
Students would develop a sound working knowledge of electrochemical reaction on different types of reactors

ELECTROCHEMICAL REACTION ENGINEERING

OBJECTIVE:
- To make the students to experimentally determine the kinetic constant and conversion of a given electrochemical, reaction in a batch reactor, tubular reactor and mixed flow reactor and compare with the theoretically predicted conversions

LIST OF EXPERIMENTS
1. Electrochemical batch reactor-constant current operation / constant potential operation.
2. Factorial design for investigating the current efficiency of copper deposition.
3. Monopolar and bipolar cells.
4. Electrochemical batch reactor – Constant current operations for Copper/Titanium/Stainless steel electrode.
5. Continuous flow stirred tank electrochemical reactor (CSTER)
6. Axial flow electrochemical reactor (PFER) – Single outlet
7. Packed bed reactor – Flow through configuration (Copper bed)

TOTAL: 60 PERIODS

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Electrochemical batch reactor
2. Chemical Bath
3. CSTER
4. PFER
5. Packed bed reactor

REFERENCE:
1. Laboratory Manual prepared by Faculty

HS8581

PROFESSIONAL COMMUNICATION

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

OBJECTIVES:
The course aims to:
- Enhance the Employability and Career Skills of students
- Orient the students towards grooming as a professional
- Make them Employable Graduates
- Develop their confidence and help them attend interviews successfully

UNIT I
Introduction to Soft Skills-- Hard skills & soft skills - employability and career Skills—Grooming as a professional with values—Time Management—General awareness of Current Affairs

UNIT II
Self-Introduction-organizing the material - Introducing oneself to the audience – introducing the topic – answering questions – individual presentation practice— presenting the visuals effectively – 5 minute presentations

UNIT III
Introduction to Group Discussion— Participating in group discussions – understanding group dynamics - brainstorming the topic — questioning and clarifying –GD strategies- activities to improve GD skills

UNIT IV
Interview etiquette – dress code – body language – attending job interviews– telephone/skype interview -one to one interview &panel interview – FAQs related to job interviews

UNIT V
Recognizing differences between groups and teams- managing time-managing stress-networking professionally- respecting social protocols-understanding career management-developing a long-term career plan-making career changes

OUTCOMES:
At the end of the course Learners will be able to:
• Make effective presentations
• Participate confidently in Group Discussions.
• Attend job interviews and be successful in them.
• Develop adequate Soft Skills required for the workplace

Recommended Software
1. Globearena
2. Win English

REFERENCES:

EL8601 ELECTROCHEMICAL MATERIALS SCIENCE

OBJECTIVE:
• This course will give an introduction to basic electrochemistry, principles of electrochemical devices, electroactive materials used in such devices, and case studies of batteries and sensors.

UNIT I THIN FILMS: PHYSICAL METHODS OF PREPARATION

UNIT II THIN FILMS: CHEMICAL METHODS OF PREPARATION
UNIT III PROPERTIES OF THIN FILMS

Thickness measurements-multiple beam interference-quartz crystal-ellipsometric-stylus techniques-optical-reflection-absorbance-transmittance-band gap measurement- electrical (hot probe and four probe techniques) and dielectric behavior of thin films-mechanical properties-testing methods-adhesion-surface and tribological coatings-electrochemical characterization-potentiodynamic polarization-electrochemical impedance spectroscopy.

UNIT IV ADVANCED FUNCTIONAL MATERIALS

UNIT V BIOMATERIALS

OUTCOME:

- At the end of this course, the students would develop a sound knowledge on the integration of electrochemical principles and material science for innovating in the area of modern electrochemical devices.

TEXT BOOKS:

REFERENCES:

CH8651 MASS TRANSFER II

OBJECTIVE:
To provide introduction to physical and thermodynamic principles of mass transfer with an emphasis on how these principles affect the design of equipment and result in specific requirements for quality and capacity.

UNIT I ABSORPTION 12
Gas Absorption and Stripping – Equilibrium; material balance; limiting gas-liquid ratio; tray tower absorber - calculation of number of theoretical stages, tray efficiency, tower diameter; packed tower absorber – rate based approach; determination of height of packing using HTU and NTU calculations.

UNIT II DISTILLATION 18
Vapour liquid equilibria - Raoult’s law, vapor-liquid equilibrium diagrams for ideal and non-ideal systems, enthalpy concentration diagrams. Principle of distillation - flash distillation, differential distillation, steam distillation, multistage continuous rectification, Number of ideal stages by Mc.Cabe - Thiele method and Ponchan - Savarit method, Total reflux, minimum reflux ratio, optimum reflux ratio. Introduction to multi-component distillation, azeotropic and extractive distillation

UNIT III LIQUID-LIQUID EXTRACTION 15
Liquid - liquid extraction - solvent characteristics-equilibrium stage wise contact calculations for batch and continuous extractors- differential contact equipment-spray, packed and mechanically agitated contactors and their design calculations-packed bed extraction with reflux. Pulsed extractors, centrifugal extractors-Supercritical extraction

UNIT IV LEACHING 12
Solid-liquid equilibria- leaching equipment for batch and continuous operations- calculation of number of stages - Leaching - Leaching by percolation through stationary solid beds, moving bed leaching, counter current multiple contact (shank’s system), equipments for leaching operation, multi stage continuous cross current and counter current leaching, stage calculations, stage efficiency.

UNIT V ADSORPTION AND ION EXCHANGE & MEMBRANE SEPARATION PROCESS 18
Adsorption - Types of adsorption, nature of adsorbents, adsorption equilibria, effect of pressure and temperature on adsorption isotherms. Adsorption operations - stage wise operations, steady state moving bed and unsteady state fixed bed adsorbers, break through curves. Principle of Ion exchange, techniques and applications. Solid and liquid membranes; concept of osmosis; reverse osmosis; electro dialysis; ultrafiltration.

TOTAL:75 PERIODS

OUTCOME:
After completion of the curse, students will be able to
- Design absorber and stripper, distillation column.
- Design extraction, leaching equipments and adsorber.

TEXT BOOKS:

REFERENCES:
EL8602 INSTRUMENTATION L T P C
3 0 0 3

OBJECTIVE:

- To enable the students to get knowledge on how to measure process variables, analytical instrumentation, automatic process controls.

UNIT I MEASUREMENTS AND MEASUREMENT SYSTEMS 9

UNIT II OPERATIONAL AMPLIFIER/SIGNAL CONDITIONING UNIT 9

UNIT III INSTRUMENT CONTROL UNIT AND INPUT/OUTPUT UNIT 9

UNIT IV PROCESS INSTRUMENTATION 9
Process control principles and system elements - Pressure measurement using bellows and LVDT – Electrical conductivity measurement of solution – pH measurement using glass electrodes – temperature measurement – monitoring and control (RTD, Thermister and Thermocouple only).

UNIT V ELECTROCHEMICAL INSTRUMENTATION 9
Basic configuration and applications of constant voltage and anodic stripping voltammetry, potentiostat, galvanostat and zero resistance ammeter - computer/microprocessor based instruments, battery life cycle testing – computerized (SCADA) supervisory control systems for anodic / cathodic protection of steel structure.

TOTAL: 45 PERIODS

OUTCOME:

- The students would have knowledge on control equipments used to control the production process of a chemical factory and the mechanism of control through automation and computers.

TEXT BOOKS:
4. Ramesh S Gaonkar, “Microprocessor Architecture, programming and applications with 8085” Prentice Hall of India, New Delhi, 2002. (Unit III)

REFERENCES:

CH8091 ELECTROCHEMICAL PROCESS TECHNOLOGY L T P C
3 0 0 3

OBJECTIVE:
- To provide an adequate mastery in the principles involved in the electrochemical process and its applications.

UNIT I ELECTRODES AND SEPARATORS
Electrodes and separators for the electrolytic production of chemicals – preparation, characteristics and applications of graphite, magnetite, lead dioxide coated anodes, noble metal coated anodes, noble metal oxide coated anodes, spinal anodes, Perovskite platinum and nickel anodes, steel cathodes, coated cathodes, diaphragms and ion exchange membranes.

UNIT II ELECTROLYTIC PRODUCTION OF IN-ORGANIC CHEMICALS
Electrolytic production of sodium hypochlorite, sodium and potassium chlorates, bromates and iodates. Sodium, potassium and ammonium perchlorates, perchloric acid. Potassium, and ammonium persulphates, hydrogen peroxide, potassium permanganate, cuprous oxide and manganese dioxide – Basic principles, reaction mechanisms, effect of operating variables, cell design and operating characteristics of industrial cells.

UNIT III ELECTRO ORGANIC CHEMISTRY AND ELECTRODIALYSIS
Production of hydrogen by water electrolysis. Electrodialysis and its application to desalination of water electrolysis and waste recovery. Basic principles of Electro organic chemistry, constant current electrolysis, controlled potential electrolysis, material yield, current efficiency, selectivity and energy consumption for electro organic synthesis. Paired synthesis with example.

UNIT IV ELECTROCHEMICAL REDUCTION AND OXIDATION OF FUNCTIONAL GROUPS
UNIT V ELECTRO POLYMERIZATION AND ELECTRO ORGANIC PROCESSES 9

OUTCOME:
- Students would have knowledge on basic electrochemical concepts, electrodes and electrodialysis and electropolymerization.

TEXT BOOKS:

REFERENCES:

EL8603 PROCESS DYNAMICS AND CONTROL L T P C
3 0 0 3

OBJECTIVE:
- To introduce open and closed loop systems and its responses, control loop components and stability of control systems along with instrumentation.

UNIT I MATHEMATICAL TOOLS FOR PROCESS DYNAMICS MODELING 9
Laplace transformation and its application in process control, solution of differential equations by laplace transform techniques, development of transfer functions, state variables, state space methods, transfer function matrix.

UNIT II OPEN LOOP SYSTEMS 9
First order systems and their transient response for standard input functions, first order systems in series, linearization and its application in process control, second order systems and their dynamics; transportation lag.

UNIT III CLOSED LOOP SYSTEMS 9
Closed loop control systems, development of block diagram for feed-back control systems, servo and regulatory problems, transfer function for controllers and final control element, principles of pneumatic and electronic controllers, transient response of closed-loop control systems and their stability.

UNIT IV FREQUENCY RESPONSE 9
Introduction to frequency response of closed-loop systems, control system design by frequency response techniques, Bode diagram, stability criterion, tuning of controllers Z-N tuning rules, C-C tuning rules.

UNIT V ADVANCED CONTROL SYSTEMS 9
Introduction to advanced control systems, cascade control, feed forward control, smith predictor, internal model control, model predictive control, control of distillation towers, introduction to computer control of chemical processes.

TOTAL : 45 PERIODS

OUTCOME:
- Upon completion of this course, the students will understand and discuss the importance of process control in process operation and the role of process control engineers. They also understand, develop models and design the modern hardware and instrumentation needed to implement process control.

TEXT BOOKS:

REFERENCES:

CH8652 PROCESS ENGINEERING ECONOMICS L T P C
3 0 0 3

OBJECTIVE:
- To enable the students to understand the various concepts of economics, process development, design consideration and cost estimation in chemical industry.

UNIT I INTEREST AND PLANT COST
Time value of money - equivalence, Depreciation, Depletion, estimation of capital cost, Capital requirement for complete plant, cost indices, capital recovery.

UNIT II PROJECT PROFITABILITY AND FINANCIAL RATIOS

UNIT III ECONOMIC BALANCE IN EQUIPMENTS
Essentials of economic balance, economic balance in batch operations, cyclic operations, economic balance for insulation, evaporation, heat transfer equipments.

UNIT IV PRINCIPLES OF MANAGEMENT
Principles of management, planning, organizing, staffing, coordinating, directing, controlling and communicating. Types of organizations, Management information systems (MIS).

UNIT V PRODUCTION PLANNING CONTROL
Work measurement techniques, motion study, principles of time study, elements of production control, forecasting, planning, routing, scheduling, dispatching, inventory and control, role of control charts in production and quality control.

TOTAL: 45 PERIODS
OUTCOMES:
- Students will be able to understand the theory behind Inventory Control, Organization Types and PPC.
- Provides the student with an ability to integrate knowledge about financial statements, Depreciation Accounting and other areas.

TEXT BOOKS:

REFERENCE:

EL8611 EQUIPMENT DESIGN

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

(All Tables/Chemical Engineers' Handbook/Data Books are permitted during the Examination.)

OBJECTIVE:
- To develop skill to design and install process equipments used widely in a chemical industry.

UNIT I
Fundamental principles, equations, general design and drawing considerations of cooling towers, evaporators and driers.

UNIT II
Heat exchangers, condensers and reboilers.

UNIT III
Distillation columns- sieve tray, and bubble cap tray columns and packed column.

UNIT IV
Equipments for absorption and adsorption of gases.

UNIT V
Equipments for liquid-liquid extraction and solid-liquid extraction.

TOTAL: 45 PERIODS

OUTCOME:
- Students would gain knowledge to develop key concepts and techniques to design the process equipment in a process plant. These key concepts would be utilized to make design and operating decisions.

TEXT BOOKS:

REFERENCES:

EL8612 COMPUTER APPLICATIONS IN CHEMICAL ENGINEERING L T P C 0 0 4 2
LABORATORY
(Any Ten experiments)

OBJECTIVE:
• To give the students an understanding the fundamentals concepts in mathematics, problems solving and computer programming.

Software Required:
MS Office (EXCEL) 10 user license
MATLAB, Five user license
ASPEN PLUS/HYSYS 10 user license

Suggested Exercises
1. Equations of state using Newton’s method
2. Regression for parameter estimation using a set of data points
3. Equilibrium flash distillation (Multicomponent Ideal)
4. Batch Reactor
5. CSTR in Series Stage wise contacting equipment
6. Solving a simple flow sheet by simultaneous approach
7. Simulation of batch Distillation (binary ideal).
8. Gravity Flow Tank
9. Heat Exchanger
10. Plug Flow Reactor
11. Absorber

Specific examples in ASPEN/HYSYS/MATLAB/EXCEL
1. Solving equation of state, regression of parameters using EXCEL/MATLAB
2. Calculation of Reynolds number, friction factor and pressure drop using EXCEL/MATLAB
3. Calculation of heat transfer coefficient in a Heat Exchanger using EXCEL/MATLAB
4. Calculation of minimum Re reflux ratio for binary/tertiary system in a fractionator using EXCEL/MATLAB
5. Calculation of HTU and NTU in a Absorber using EXCEL/MATLAB
6. Calculation of Antoine’s coefficient using EXCEL/MATLAB
7. Estimation of settling velocity of solids in liquids using Stoke’s law using EXCEL/MATLAB
8. Calculation of minimum number of stages in a distillation column using EXCEL/MATLAB
9. Solving mass and energy balance problems using EXCEL/MATLAB
10. Calculation of Power in Reciprocating compressor using EXCEL/MATLAB
11. Steady state simulation of Heat Exchanger using ASPEN PLUS/ HYSYS
12. Steady state simulation of a CSTR using ASPEN PLUS/ HYSYS
13. Steady state simulation of Flash vessel using ASPEN PLUS/ HYSYS
14. Steady state simulation of Distillation Column using ASPEN PLUS/ HYSYS
15. Steady state simulation of an Absorption column using ASPEN PLUS/ HYSYS
17. Dynamic simulation of a CSTR using ASPEN PLUS/HYSYS
18. Dynamic simulation of Flash vessel using ASPEN PLUS/ HYSYS
19. Dynamic simulation of Distillation Column using ASPEN PLUS/ HYSYS
20. Dynamic simulation of an Absorption column using ASPEN PLUS/ HYSYS

TOTAL: 60 PERIODS

OUTCOME:
- Students will be equipped with the software applications and the numerical solutions of chemical engineering problems.

Minimum 10 experiments to be offered

TEXT BOOKS:

EL8613
CORROSION AND METAL FINISHING LABORATORY

OBJECTIVE:
- To train the students to understand the techniques to measure the corrosion rate and hands-on experience in metal finishing.

LIST OF EXPERIMENTS

CORROSION
1. Determination of efficiency of the given inhibitor by gravimetric method
2. Efficiency of cathodic protection by impressed current method
3. Determination of anode efficiency in sacrificial anode system
4. Standard Test Methods for specific gravity of pigments (3 pigments)
5. Determination of corrosion rate by galvanostatic polarization method [Tafel and linear Polarization methods]

METAL FINISHING
(Any Five experiments)

1. Anodizing of Aluminium
2. Electroforming of Metal Foil
3. Hull Cell Studies in Electroplating Bath
4. Throwing Power Studies in Electroplating Bath
5. Nickel Plating & Analysis of nickel plating solution
6. Electrophoretic deposition
7. Electroless Plating

TOTAL: 60 PERIODS

OUTCOME:
- Students would have knowledge on the determination of corrosion rate and techniques for metal finishing
LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Electroplating Bath
2. Hull Cell Electroplating Bath
3. Sacrificial anode system
4. Rectifier
5. Galvanostatic polarization apparatus

REFERENCE:
1. Laboratory Manual prepared by Faculty.

EL8701 PROCESS SYNTHESIS AND DESIGN L T P C
3 0 0 3

OBJECTIVES:
- To enable the students to understand the process creation, heuristics and economics.
- To give exposure in the process scheduling, optimization and plant wide control.

UNIT I PROCESS CREATION, HEURISTICS AND ECONOMICS 9
Introduction to process design and process creation, role of process simulation in design, heuristics for process synthesis, introduction to process intensification, cost accounting and capital cost estimation, annual costs, earning and profitability analysis

UNIT II HEAT AND POWER INTEGRATION, SEPARATION TRAIN SYNTHESIS 9
Minimum utility targets, networks for maximum energy recovery, minimum number of heat exchangers, threshold and optimal approach temperature, superstructure for minimization of annual costs, multiple utilities and heat-integrated distillation trains, heat engines and heat pumps, Criteria for selection of separation methods, Sequencying of ordinary distillation columns for separation of nearly ideal and non-ideal fluid mixtures, Separation systems for gas mixtures, Separation sequencing for solid-fluid systems

UNIT III ALGORITHMIC METHODS 9
Reactor design and reactor network synthesis, Principles of attainable regions, Locating the separation section with respect to the reactor section, Tradeoffs in processes involving recycle, Optimal reactor conversion, Recycle to extinction, Snowball effect and control of processes involving recycle

UNIT IV DESIGN, EQUIPMENT SIZING AND OPTIMIZATION 9
Review of heat exchanger design, heat transfer coefficients and pressure drop, Design of Shell-Tube heat exchanger, Overview of separation tower design Fenske-Underwood-Gilliland Shortcut method for ordinary distillation, Kemser method for absorption and stripping, Plate efficiency and HETP, Tower diameter, Pressure drop and Weeping, Design of pumps, compressors and expanders

UNIT V PROCESS SCHEDULING, OPTIMIZATION, PLANTWIDE CONTROL 9
Optimal design and scheduling of batch processes, Design of reactor-Separator Processes, Design of single and multiproduct processing sequence, general formulation and classification of the process optimization problem, Linear and non-linear programming with a single variable, Conditions for Non-linear programming by gradient methods with two or more design variables, Introduction to optimization algorithm, Introduction to plant-wide control.

TOTAL: 45 PERIODS
OUTCOME:

- Students should have learnt the process synthesis, algorithm methods and be able to design the chemical process.

TEXT BOOK:

1. W. D. Seider, J. D. Seader and D. R. Lewin, "Product and process design principles", 3rd edition, Wiley - India, New Delhi, 2005

REFERENCES:

CH8791 TRANSPORT PHENOMENA L T P C 3 0 0 3

OBJECTIVE:

- To develop a fundamental knowledge of the physical principles that govern the transport of momentum, energy and mass, with emphasis on the mathematical formulation of the conservation principles.

UNIT I TRANSPORT PHENOMENA BY MOLECULAR MOTION

UNIT II ONE DIMENSIONAL MOMENTUM TRANSPORT

Shell Momentum balances, boundary conditions, velocity profiles, average velocity, momentum flux at the surfaces, of Newtonian and non-Newtonian for flow of a falling film, flow through circular tube, slits, flow through an Annulus, Adjacent flow of two Immiscible fluids. Equations of Change (Isothermal), equation of continuity, equation of motion, equation of energy (isothermal) their applications in fluid flow problems.

UNIT III ONE DIMENSIONAL HEAT TRANSPORT

Shell energy balances, boundary conditions, temperature profiles, average temperature, energy fluxes at surfaces for different types of heat sources such as electrical, nuclear viscous and chemical, Equations of change (non-isothermal), equation of motion for forced and free convection, equation of energy (non-isothermal).

UNIT IV ONE DIMENSIONAL MASS TRANSPORT

Shell mass balances, boundary conditions, concentration profiles, average concentration, mass flux at surfaces for Diffusion through stagnant gas film, Diffusion with homogeneous and heterogeneous chemical reaction, Diffusion in to a falling liquid film, Diffusion and chemical reaction in porous catalyst and the effectiveness factor, equation of continuity for binary mixtures, equation of change to set up diffusion problems for simultaneous heat and mass transfer.
UNITIV

TRANSPORT IN TURBULENT AND BOUNDARY LAYER FLOW

Turbulence phenomena; phenomenological relations for transfer fluxes; time smoothed equations of change and their applications for turbulent flow in pipes; boundary layer theory; laminar and turbulent hydrodynamics thermal and concentration boundary layer and their thicknesses; analysis of flow over flat surface. Introduction to macroscopic balances for isothermal flow systems, non-isothermal systems and multicomponent systems.

OUTCOME:

- Students would gain the knowledge of fundamental connections between the conservation laws in heat, mass, and momentum in terms of vector and tensor fluxes. The students would be able to understand the mechanism of fluids in motion under different conditions.

TEXT BOOKS:

REFERENCES:

EL8702

ELECTROMETALLURGY AND THERMICS

OBJECTIVE:

- This course aims to provide the basics of hydrometallurgy and electrometallurgy techniques that are used in the processing of minerals.

UNIT I

INTRODUCTION

Metallurgical industries in India with special reference to electrometallurgical industries. Preparation of cell feed for copper, zinc, aluminium, magnesium and electrolytic cells. Principles of solvent extraction/ ion exchange for the recovery of metallic values. Pollution and control measures adopted/recommended in electrometallurgical Industries like Al, Cr.

UNIT II

ELECTROCHEMICAL PRINCIPLES

Cell voltage and its components- types of anodes and cathodes-necessity of diaphragms. Physicochemical properties of molten & aqueous electrolytes like conductivity, decomposition potential, density etc. Current and energy efficiency- features of aqueous and molten salt electrolysis distinction between electro winning and refining. Anode effect.

UNIT III

AQUEOUS SYSTEM

Electro winning of zinc, copper and nickel. Operating conditions for electro winning of copper and Nickel. Electro refining of silver, lead and copper- periodic current reversal technique.
Electrolytic metal powders—principles, preparation and characterization. Secondary recovery of metals—Importance and approaches with examples of lead and silver.

UNIT IV MOLTEN SALT ELECTROLYSIS 9

UNIT V THERMICS 9
Modes of electrical heating. Design criteria of arc furnaces. Description of furnaces used and the process for production of calcium carbide. Calcium silicide, Calcium cyanamide, fused alumina, ferroalloys, phosphorous, graphite and Silicon carbide.

OUTCOME:
- Upon completion of this course, the students would understand the electrometallurgy techniques that are used in the various Industries.

TEXT BOOKS:

REFERENCES:

EL8711 ELECTROCHEMICALS AND ELECTRO METALLURGY L T P C
LABORATORY 0 0 4 2

OBJECTIVE:
- To train the students on methodology of the preparation of electrochemicals

LIST OF EXPERIMENTS

ELECTROCHEMICALS (Any Five experiments)
1. Electrochemical preparation of sodium hypochlorite from sodium chloride
2. Electrochemical preparation of potassium chlorate from potassium chloride
3. Electrochemical preparation of potassium permanganate
4. Electrochemical preparation of ammonium persulphate
5. Calcium gluconate from glucose
6. Succinic acid from maleic acid
7. Manganic sulphate from manganese sulphate

ELECTROMETALLURGY (Any Five experiments)
1. Electrowinning of zinc.
2. Recovery of metals from solid wastes / industrial effluents
3. Recovery of metals by ion exchange resins.
4. Cementation reaction between Zn plate and copper sulfate solution
5. Stripping and extraction efficiency of D2EHPA for zinc ion.
6. Electrochemical separation of metals
7. Determination of rate of etching for copper etchant
8. Electorefining of metals
9. Optimization of potential / current density for electrochemical recovery of metals

TOTAL: 60 PERIODS

OUTCOME:
- Students would have knowledge on the preparation of electrochemicals and electrometallurgy techniques that are used in the various Industries.

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Ion exchange apparatus
2. Electrochemical bath
3. Membrane Cell
4. Electrolytic Cell
5. Etching apparatus
6. Hull Cell
7. Packed bed resin column

REFERENCE:
1. Laboratory Manual prepared by Faculty.

EL8712

PROCESS DYNAMICS AND CONTROL

LABORATORY

OBJECTIVE:
- To train the students to determine experimentally the methods of controlling the processes including measurements using process simulation techniques.

LIST OF EXPERIMENTS
1. Response of first order system
2. Response of second order system
3. Response of Non-Interacting level System
4. Response of Interacting level System
5. Open loop study on a thermal system
6. Closed loop study on a level system
7. Closed loop study on a flow system
8. Closed loop study on a thermal system
9. Tuning of a level system
10. Tuning of a pressure system
11. Tuning of a thermal system
12. Flow co-efficient of control valves
13. Characteristics of different types of control valves
14. Closed loop study on a pressure system
15. Tuning of pressure system
16. Closed loop response of cascade control system

Minimum 10 experiments shall be offered.
OUTCOME:

- Upon completion of this practical course, the students would know development and use of right type of control dynamics for process control under different operative conditions.

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS:
1. U tube manometer with controller
2. Interacting Tank
3. Non Interacting Tank
4. Open loop control system
5. Closed loop control system
6. ON/OFF controller
7. Control valve characteristics
8. Pressure Tuner
9. Temperature Tuner
10. Proportional Controller
11. Flow Transmitter
12. Level Transmitter
13. Cascade control system

EL8713 INTERNSHIP

Students shall undergo training in R&D institutions / Academics / Industries for a minimum period of 15 days. At the end of internship students must submit a report for internal evaluation.

EL8801 ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE

OBJECTIVE:

- To enable the students to gain the knowledge of principle and applications of batteries and fuel cells.

UNIT I FUNDAMENTALS
EMF, reversible and irreversible cells, free energy, effect of cell temperature, thermodynamic calculation of the capacity of a battery, calculations of energy density of cells.

UNIT II FACTORS AFFECTING BATTERY PERFORMANCE
Factors affecting battery capacity, voltage level, current drain of discharge, types of discharge: continuous, intermittent, constant current, constant load, constant power, service life, voltage regulation, charging methods, battery age & storage condition.

UNIT III STORAGE BATTERIES
Principle, design, construction, performance characteristics, advantage and disadvantages. Primary batteries - Zn-MnO₂ carbon-zinc, carbon-zinc chlorides, and zinc-silver oxide. Secondary batteries – lead-acid, nickel-cadmium, nickel-metal hydride, silver oxide-zinc system, lithium-ion, lithium-polymer.
Batteries for electric vehicle applications, Micro batteries.

UNIT IV TESTING & EVALUATION

UNIT V FUEL CELLS & SUPERCAPACITOR

TOTAL: 45 PERIODS

OUTCOME:

- Upon completion of this course, the students would know designing of batteries and fuel cells for various applications.

TEXT BOOKS:

REFERENCES:

EL8802 SURFACE SCIENCE

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

OBJECTIVE:

- To enable the students to analyze properties of a surfaces and correlate them to structure, chemistry, and physics and surface modification technique.

UNIT I SURFACE STRUCTURE AND EXPERIMENTAL PROBES

Relevance of surface science to Chemical and Electrochemical Engineering, Heterogeneous Catalysis and Nanoscience; Surface structure and reconstructions, absorbate structure, Band and Vibrational structure, Importance of UHV techniques, Electronic probes and molecular beams, Scanning probes and diffraction, Qualitative introduction to electronic and vibrational spectroscopy

UNIT II ADSORPTION, DYNAMICS, THERMODYNAMICS AND KINETICS AT SURFACES

Interactions at the surface, Physisorption, Chemisorption, Diffusion, dynamics and reactions of atoms/molecules on surfaces, Generic reaction mechanism on surfaces, Adsorption isotherms, Kinetics of adsorption, Use of temperature desorption methods

UNIT III LIQUID INTERFACES

9
Structure and Thermodynamics of liquid-solid interface, Self-assembled monolayers, Electrified interfaces, Charge transfer at the liquid-solid interfaces, Photoelectrochemical processes, Gratzel cells

UNIT IV HETEROGENEOUS CATALYSIS
Characterization of heterogeneous catalytic processes, Microscopic kinetics to catalysis, Overview of important heterogeneous catalytic processes: Haber-Bosch, Fishcher-Tropsch and Automotive catalysis, Role of promoters and poisons, Bimetallic surfaces, surface functionalization and clusters in catalysis, Role of Sabatier principle in catalyst design, Rate oscillations and spatiotemporal pattern formation

UNIT V EPITAXIAL GROWTH AND NANO SURFACE-STRUCTURES

TOTAL: 45 PERIODS

OUTCOME:
- Upon completion of this course, the students can understand, predict and design surface properties based on surface structure. Students would understand the physics and chemistry behind surface phenomena

TEXT BOOK:

REFERENCE:

PROJECT WORK
Each student is required to submit a project report on the research/design and development of Industrial plant selecting the best process with optimum equipment sizes and operating conditions. The project report will be treated as test of ability of the student to tackle a practical problem in the same way as might be expected of him if he were required to report as an Electrochemical Engineer on a new manufacturing proposal.

OBJECTIVE:
- Students will gain knowledge about process modeling and optimization

UNIT I INTRODUCTION
Introduction to optimization; applications of optimization in chemical engineering; classification of optimization problems.

UNIT II SINGLE VARIABLE OPTIMIZATION
Necessary and sufficient conditions for optimum; region elimination methods; interpolation methods; direct root methods.

UNIT III MULTIVARIABLE OPTIMIZATION WITHOUT AND WITH CONSTRAINTS 9
Necessary and sufficient conditions for optimum; direct search methods; indirect search methods.

UNIT IV OTHER OPTIMIZATION METHODS 9
Introduction to geometric, dynamic and integer programming and genetic algorithms.

UNIT V APPLICATIONS OF OPTIMIZATION 13
Formulation of objective functions; fitting models to data; applications in fluid mechanics, heat transfer, mass transfer, reaction engineering, equipment design, resource allocation and inventory control.

TOTAL: 45 PERIODS

OUTCOMES:
- Design experiments and formulate models of chemical processes/equipment. Understand different search methods and linear programming methods for solution of chemical process problems like optimization of process variables to get maximum yield/conversion, product mix pattern product distribution etc.,
- Understand the non-linear programming methods for application in R & D work.

TEXT BOOKS:

EL8001 ADVANCED ELECTROCHEMICAL REACTION ENGINEERING L T P C 3 0 0 3

OBJECTIVE:
- To make the students learn the kinetics of electrochemical engineering

UNIT I FUNDAMENTALS OF ELECTROCHEMICAL REACTION KINETICS 9
Fundamentals of reaction kinetics, rate of electrochemical reaction, thermodynamics-heat of reaction and reaction equilibria, electrochemical thermodynamics, practical cell voltage requirements and polarization. Reactor classification, configuration and production capacity, Basic electrode kinetics, Ideal isothermal reactors: single electrochemical reactions, potentiostatic operations of first order reaction and galvanostatic operation of first order reactions. CSTR with general order reactions, Effect of mass transport and side reaction.

UNIT II PLUG FLOW REACTORS WITH AND WITHOUT MASS TRANSPORT 9
Plug flow and recycle reactors, Kinetics of electrochemical reactions: multistep electrochemical reactions, p electrode processes with mass transport, series and parallel reactions, interaction of chemical reaction, electrochemical reactions involving adsorption, electro analytical methods.

UNIT III MULTIPLE ELECTROCHEMICAL REACTIONS 9
Multiple electrochemical reactions with inter-phase mass transport-reaction classification, consecutive reactions, parallel reaction and complex reaction. Potentiostatic and galvanostatic operation of series and parallel electrochemical reactions, reversible reaction. RTD analysis, dispersed plug flow, tank in series model, multi parameter models, reactor dynamics of isothermal CSTR and PFR.

UNIT IV SIMULTANEOUS MASS TRANSFER AND ELECTROCHEMICAL REACTION
Simultaneous mass transfer and chemical reaction; mathematical model of interphase mass transport-film model, penetration model, regimes of operation, fast and intermediate chemical reaction. Multiple chemical reaction, multiple electrochemicals and chemical reaction. Batch recycle and continuous recycle operation, multiple fluid phases at the electrode surface and in the electrolyte phase. Reactor for multiple phase reactions.

UNIT V MIGRATION AND CURRENT DISTRIBUTION
Migration effects on mass transport, influence of migration in the reactor design, current and potential distribution, primary current distribution, current and potential distribution arising from polarization, three dimensional electrodes, diaphragm cell reactor models, energy balance, heat transfer and technical optimizations.

OUTCOME:
- At the end of this course, the student would be in a position to understand advanced electrochemical reaction, plug flow reactors and migration & current distribution in reactors.

TEXT BOOKS:

REFERENCES:

EL8002 FUNCTIONAL MATERIALS

OBJECTIVE:
- The course emphasis on the molecular safe assembly and materials for polymer electronics

UNIT I INTRODUCTION

UNIT II MOLECULAR SELF ASSEMBLY

UNIT III BIO-INSPIRED MATERIALS 9

UNIT IV SMART OR INTELLIGENT MATERIALS 9
Criteria for Smartness, Significance of Smart Materials, Representative Examples like Smart Gels and Polymers, Electro/Magneto Rheological Fluids, Smart Electroceramics, Technical Limitations and Challenges, Functional Nanocomposites, Polymer-carbon nanotube composites.

UNIT V MATERIALS FOR POLYMER ELECTRONICS 9
Polymers for Electronics, Organic Light Emitting Diodes, Working Principle of OLEDs, Illustrated Examples, Organic Field-Effect Transistors Operating Principle, Design Considerations, Polymer FETs vs Inorganic FETs, Liquid Crystal Displays, Engineering Aspects of Flat Panel Displays, Intelligent Polymers for Data Storage, Polymer-based Data Storage- Principle, Magnetic Vs. Polymer-based Data Storage.

TOTAL: 45 PERIODS

OUTCOME:
- Students will be able to differentiate among various functional properties and select appropriate material for certain functional applications, analyze the nature and potential of functional material.

TEXT BOOK:

REFERENCE:

GE8074 HUMAN RIGHTS L T P C
3 0 0 3

OBJECTIVE:
- To sensitize the Engineering students to various aspects of Human Rights.

UNIT I 9

UNIT II 9
UNIT III
Theories and perspectives of UN Laws – UN Agencies to monitor and compliance.

UNIT IV
Human Rights in India – Constitutional Provisions / Guarantees.

UNIT V

TOTAL: 45 PERIODS

OUTCOME:
• Engineering students will acquire the basic knowledge of human rights.

REFERENCES:

CH8077 PROCESS MODELING AND SIMULATION L T P C
3 0 0 3

OBJECTIVE:
• To give an overview of various methods of process modeling, different computational techniques for simulation.

UNIT I INTRODUCTION
Introduction to modeling and simulation, classification of mathematical models, conservation equations and auxiliary relations.

UNIT II STEADY STATE LUMPED SYSTEMS
Degree of freedom analysis, single and network of process units, systems yielding linear and non-linear algebraic equations, flow sheeting – sequential modular and equation oriented approach, tearing, partitioning and precedence ordering, solution of linear and non-linear algebraic equations.

UNIT III UNSTEADY STATE LUMPED SYSTEMS
Analysis of liquid level tank, gravity flow tank, jacketed stirred tank heater, reactors, flash and distillation column, solution of ODE initial value problems, matrix differential equations, simulation of closed loop systems.

UNIT IV STEADY STATE DISTRIBUTED SYSTEM
Analysis of compressible flow, heat exchanger, packed columns, plug flow reactor, solution of ODE boundary value problems.

UNIT V UNSTEADY STATE DISTRIBUTED SYSTEM & OTHER MODELLING APPROACHES
Analysis laminar flow in pipe, sedimentation, boundary layer flow, conduction, heat exchanger, heat transfer in packed bed, diffusion, packed bed adsorption, plug flow reactor, hierarchy in

TOTAL: 45 PERIODS

OUTCOME:
- Upon completing the course, the student should have understood the development of process models based on conservation principles and process data and computational techniques to solve the process models.

TEXT BOOKS:

REFERENCES:

EL8003 NANOMATERIALS TECHNOLOGY

OBJECTIVE:
- To provide students with a solid foundation in synthesis and characterization of novel nanomaterials with multiple application.

UNIT I PROPERTIES OF MATTER

UNIT II METHODS OF CHARACTERIZATION
Nanoparticle characterization: X-ray Diffraction (XRD), Small Angle X-ray scattering (SAXS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive Spectrum (EDS), Scanning Probe Microscopy (SPM), and other spectroscopy techniques (UV-Vis, IR and Raman)

UNIT III TYPES OF NANOSTRUCTURES
Nanostructures in zeolites cages, quantum wells, wires and dots. Preparation of quantum nanostructures, size and dimensionality effects, single electron tunneling

UNIT IV MAGNETIC PROPERTIES
Nanostructured ferromagnetism – basics of ferromagnetism, effect of nanostructuring of bulk magnetic materials, dynamics ofnanomagnets, nanopore containment of magnetic particles, nanocarbonferromagnets, giant and colossal magneto-resistance, ferrofluids

UNIT V NANOPARTICLE SYNTHESIS

OUTCOME:
- Students will demonstrate an ability to synthesis and characterize the nanomaterials.

TEXT BOOKS:
1. Catherine Brechignac, PhilipeHoudy, Marcel Lahmani “Nanomaterials and Nanochemistry”, Springer.

REFERENCES:

GE8071 DISASTER MANAGEMENT

OBJECTIVES:
- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction.
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR).
- To enhance awareness of institutional processes in the country and
- To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity.

UNIT I INTRODUCTION TO DISASTERS
- Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don’ts during various types of Disasters.

UNIT II APPROACHES TO DISASTER RISK REDUCTION (DRR)
- Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Processes and Framework at State and Central Level- State Disaster Management Authority(SDMA) – Early Warning System – Advisories from Appropriate Agencies.

UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT
- Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario
UNIT IV DISASTER RISK MANAGEMENT IN INDIA 9
Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.

UNIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS 9
Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

TOTAL: 45 PERIODS

OUTCOMES:
The students will be able to
- Differentiate the types of disasters, causes and their impact on environment and society
- Assess vulnerability and various methods of risk reduction measures as well as mitigation.
- Draw the hazard and vulnerability profile of India, Scenarios in the Indian context, Disaster damage assessment and management.

TEXT BOOKS:

REFERENCES:
1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005

EL8004 CHEMICAL PROCESS TECHNOLOGY L T P C 3 0 0 3

OBJECTIVE:
- To impart knowledge on various aspects of production engineering and make the student understand the practical methods of production in a chemical factory.
UNIT I SULFUR, SULFURIC ACID AND CEMENT

Sulfur, Raw materials Sources, Mining and production of Sulfur – Sulfuric acid, Methods of production of Sulfuric acid – Contact process – Chamber process. Cement – properties of Cement – Methods of production – Overall factors for Cement industry.

UNIT II FERTILIZER INDUSTRY, FUEL AND INDUSTRIAL GASES

UNIT III PULP, PAPER, SUGAR AND STARCH INDUSTRIES

UNIT IV PETROLEUM AND PETRO CHEMICAL INDUSTRIES

UNIT V RUBBERS, POLYMERS AND SYNTHETIC FIBRE

TOTAL: 45 PERIODS

OUTCOME:

- At the end of this course, the student can classify the chemical process industry into industrial categories of base, intermediate end-products and specialty chemicals manufacturers.

TEXT BOOKS:

REFERENCES:

2. SrikumarKoyikkal, “Chemical Process Technology and Simulation”, PHI Learning Ltd

EL8005 INDUSTRIAL METAL FINISHING

OBJECTIVE:

To enable the students
To differentiate between the electroplating and anodizing process and
To compare the various engineering aspects and electroplating process.

UNIT I ELECTROPLATING OF METALS 9
Fundamental principles – Faradays laws, mechanism of deposition, surface preparation for electroplating, electroplating of copper, nickel, chromium, zinc, tin and precious metals (gold and silver)

UNIT II EVALUATION & TESTING 9

UNIT III ELECTROPLATING OF ALLOYS AND OTHER PLATING METHODS 9
Principles of alloy deposition, barrel finishing and plating, electroforming of copper and nickel, electroless deposition of copper and nickel, brush plating, continuous plating, PCB plating.

UNIT IV ENGINEERING ASPECTS 9
Equipment selection, rectifier, pre-treatment equipment-mechanical - chemical, automation, flooring, materials for tanks and linings, ventilation, bus bar, filtration and purification, agitation, heating and cooling arrangement for electrolytes.

UNIT V ANODIZING 9
Anodizing of aluminium, principles, pre-treatment, jiggling. Sulphuric acid process, operating conditions for decorative and protective anodizing, effect of impurities, analysis for free acid and aluminium content, chromic acid process, operating conditions, effect of impurities, coloring of anodized aluminium with organic dyes. Sealing in hot water and dichromate solution. Testing of anodic film thickness by Eddy current method and stripping method, coating weight – coating ratio.

OUTCOME:
• Upon completion of this course, the students will understand the importance and applications of electroplating techniques and anodizing concepts.

TEXT BOOKS:

REFERENCES:

CH8071 ENVIRONMENTAL ENGINEERING L T P C
3 0 0 3

OBJECTIVE:
• To provide technical expertise in Environmental Engineering which will enable them to have a career and professional accomplishment in the public or private sector

UNIT I ENVIRONMENT AWARENESS 9
Environment – friendly chemical Process; Hazard and risk analysis; Environmental Audit.
UNIT II CHEMICAL ENGINEERING PROCESSES
Unit Operations – application of - Abatement of water pollution; Current strategies to control air pollution; Disposal of solid wastes

UNIT III RECYCLING METHODOLOGY
Economic recovery and recycling of waste; Transport fuel- Bio-diesel for a cleaner environment.

UNIT IV CLEAN TECHNOLOGY
Towards Eco- friendly products of chemical industry; Pesticides –Their transfer and Transformation in the environment, Biological and electrochemical technology for effluent treatments

UNIT V POLLUTION PREVENTION
Mass exchange network synthesis for pollution control and minimization Implications of environmental constraints for process design, policies for regulation of environmental impacts, Concept of common effluent treatment; Environmental legislations, Role of Government and Industries

TOTAL: 45 PERIODS

OUTCOME:
• Upon completion of this course, the students would understand the importance of environmental audit, concepts behind the methodologies to control pollution, the importance of recycling and concepts behind pollution prevention.

TEXT BOOKS:

REFERENCES:

EL8006 TOTAL QUALITY MANAGEMENT AND ENGINEERING
ECONOMICS
OBJECTIVE:
• To provide the student with the underlying principles and techniques of Total Quality Management (TQM) with emphasis on their application to technical organizations.

UNIT I QUALITY AND CUSTOMER CONCEPTS 9
Introduction - definitions of quality, dimensions of quality, historical review of total quality management, customer satisfaction - customer perception of quality, customer complaints, service. Quality, customer retention, continuous process improvement, PDSA cycle, Performance measures:- basic concepts, strategy. The seven tools of quality, concept of six sigma.

UNIT II QUALITY MANAGEMENT TOOLS AND QUALITY SYSTEMS
TQM tools - benchmarking - reasons to benchmark, benchmarking process, Quality function deployment - house of quality, Taguchi quality loss function, total productive maintenance - concept, improvement needs, Quality systems - Need for ISO 9000 and QS 9000: elements, implementation, documentation, Quality auditing- concept, requirements and benefits.

UNIT III VALUE OF MONEY, AMORTIZATION, CAPITAL REQUIREMENTS, COSTS, EARNINGS, PROFITS
Value of money – equivalence, equations for economic studies, Amortization - capital recovery, depreciation, interest in depreciation calculations, depreciation accounting, Capital requirements for process plants - cost indices, the Williams six-tenths factor, capital requirements for complete plants, balance sheet, sources of capital, earnings, profits and returns - variable costs, fixed costs.

UNIT IV ECONOMICS OF SELECTING ALTERNATES, RATE OF RETURN & PAYOUT TIME
Economics of selecting alternates - annual cost method, present worth method, equivalent alternates, rate-of return method, payout-time method, replacement of existing facilities, irreducible factors in economic analyses.

UNIT V ECONOMIC BALANCE: CYCLIC OPERATIONS – YIELD AND RECOVERY
Economic balance - economic balance in evaporation, economic vessel design, economic balance in fluid flow, Economic balance in combined operations – economic balance with one variable and two variable. Economic balance in cyclic operation, batch operations (fixed cycle time), batch operations (variable cycle time), Economic balance in yield and recovery - economic analysis for variable feed and product grades, Economic analysis of a complete process - operating plants, proposed plants, evaluation.

TOTAL: 45 PERIODS

OUTCOME:
- Students will learn to view quality from a variety of functional perspectives and in the process, gain a better understanding of the problems associated with improving quality, also quality tools utilized in service and international/environment.

TEXT BOOKS:

REFERENCES:
OBJECTIVE:
- To enable the students to understand the process plant utilities and optimization techniques to optimize various parameters in chemical industries.

UNIT I IMPORTANT OF UTILITIES 9
Hard and Soft water, Requisites of Industrial Water and its uses. Methods of water Treatment such as Chemical Softening and Demineralization, Resins used for Water Softening and Reverse Osmosis. Effects of impure Boiler Feed Water.

UNIT II STEAM AND STEAM GENERATION 9
Properties of Steam, problems based on Steam, Types of Steam Generator such as Solid Fuel Fired Boiler, Waste Gas Fired Boiler and Fluidized Bed Boiler. Scaling and Trouble Shooting. Steam Traps and Accessories.

UNIT III REFRIGERATION 9
Refrigeration Cycles, Methods of Refrigeration used in Industry and Different Types of Refrigerants such as Monochlorodifluoro Methane, Chlorofluoro Carbons and Brins. Refrigerating Effects and Liquefaction Processes.

UNIT IV COMPRESSED AIR 9

UNIT V FUEL AND WASTE DISPOSAL 9

TOTAL: 45 PERIODS

OUTCOME:
- At the end of this course, the students will understand the importance of health, safety and the environment in process industries. Steam, power, water, air are extensively used in process industries and their efficient operation is imperative for economic and safe operation is essential for the survival of industries

TEXT BOOKS:

REFERENCE:
OBJECTIVE:
- Students will gain knowledge about different energy sources

UNIT I ENERGY 8
Introduction to energy – Global energy scene – Indian energy scene - Units of energy, conversion factors, general classification of energy, energy crisis, energy alternatives.

UNIT II CONVENTIONAL ENERGY 8
Conventional energy resources, Thermal, hydel and nuclear reactors, thermal, hydel and nuclear power plants, efficiency, merits and demerits of the above power plants, combustion processes, fluidized bed combustion.

UNIT III NON-CONVENTIONAL ENERGY 10
Solar energy, solar thermal systems, flat plate collectors, focusing collectors, solar water heating, solar cooling, solar distillation, solar refrigeration, solar dryers, solar pond, solar thermal power generation, solar energy application in India, energy plantations. Wind energy, types of windmills, types of wind rotors, Darrieus rotor and Gravian rotor, wind electric power generation, wind power in India, economics of wind farm, ocean wave energy conversion, ocean thermal energy conversion, tidal energy conversion, geothermal energy.

UNIT IV BIOMASS ENERGY 10
Biomass origin - Resources – Biomass estimation. Thermochemical conversion – Biological conversion, Chemical conversion – Hydrolysis & hydrogenation, solvolysis, biocrude, biodiesel power generation gasifier, biogas, integrated gasification.

UNIT V ENERGY CONSERVATION 9
Energy conservation - Act; Energy management importance, duties and responsibilities; Energy audit – Types methodology, reports, instruments. Benchmarking and energy performance, material and energy balance, thermal energy management.

TOTAL: 45 PERIODS

OUTCOME:
- Understand conventional Energy sources, Non-conventional Energy sources, biomass sources and develop design parameters for equipment to be used in Chemical process industries. Understand energy conservation in process industries

TEXT BOOKS:

REFERENCES:
OBJECTIVES:

- To understand the global trends and development methodologies of various types of products and services
- To conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics and mechanical systems
- To understand requirement engineering and know how to collect, analyze and arrive at requirements for new product development and convert them into design specification
- To understand system modeling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics
- To develop documentation, test specifications and coordinate with various teams to validate and sustain up to the EoL (End of Life) support activities for engineering customer

UNIT I FUNDAMENTALS OF PRODUCT DEVELOPMENT 9

UNIT II REQUIREMENTS AND SYSTEM DESIGN 9

UNIT III DESIGN AND TESTING 9

UNIT IV SUSTENANCE ENGINEERING AND END-OF-LIFE (EOL) SUPPORT 9

UNIT V BUSINESS DYNAMICS – ENGINEERING SERVICES INDUSTRY 9

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
• Define, formulate and analyze a problem
• Solve specific problems independently or as part of a team
• Gain knowledge of the Innovation & Product Development process in the Business Context
• Work independently as well as in teams
• Manage a project from start to finish

TEXTBOOKS:
1. Book specially prepared by NASSCOM as per the MoU.

REFERENCES:

EL8007 CHLOR - ALKALI TECHNOLOGY L T P C
3 0 0 3

OBJECTIVE:
• To enable the students to understand the process of Chlor alkali technology and the unit operations involved in the process.

UNIT I ELECTRODES AND SEPARATORS

UNIT II CONVENTIONAL PROCESSES

UNIT III MODERN PROCESS
Membrane cell process, Different designs of membrane cell, mono polar and bipolar cells. Conversion of mercury and diaphragm cells to membrane cells. Factors affecting the performance of the membrane cells.

UNIT IV UNIT OPERATIONS
UNIT V GENERAL TOPICS

TOTAL: 45 PERIODS

OUTCOME:
- Students would be able to explain the material requirements, chemical reactions and operations carried out in production of Chlor-Alkali industry

TEXT BOOKS:

REFERENCES:

EL8008 CATHODIC PROTECTION AND ELECTROPHORETIC COATINGS

OBJECTIVE:
- To familiarize the students with the basics of cathodic protection and electrophoretic coatings.

UNIT I BASICS OF CATHODIC PROTECTION

UNIT II SACRIFICIAL ANODE SYSTEM & IMPRESSED CURRENT SYSTEM
Cathodic protection system, components of galvanic systems, galvanic anodes, fields of application and backfills for sacrificial anodes. Advantages and disadvantages of sacrificial anode system. Impressed current system, impressed current anodes, fields of application and backfills for impressed current anodes.

UNIT III DESIGNING OF CP SYSTEM
Design parameters in cathodic protection, soil resistivity measurement, pipe to soil potential data, pH determination, redox potential measurement, coating resistance, stray current measurement and cathodic protection interferences designing of sacrificial anode system - designing of impressed current system - designing of cathodic protection to ship hull

UNIT IV BASIC CONCEPTS OF ELECTROPHORETIC COATINGS
UNIT V APPLIED ASPECTS OF ELECTRO PHORETIC COATINGS 9

TOTAL: 45 PERIODS

OUTCOME:
- Students would be able to design the cathodic protection systems and applied aspects of electrophoretic coatings.

TEXT BOOKS:

REFERENCE:

EL8009 ORGANIC ELECTROCHEMISTRY L T P C
3 0 0 3

OBJECTIVE:
- To impart the knowledge of fundamental aspects of electrochemistry, as well as techniques for characterizing surfaces under electrochemical conditions.

UNIT I CATHODIC REACTIONS OF ORGANIC COMPOUNDS 9
Principles and methods, synthetic and mechanistic aspects of cathodic reactions of organic compounds classified by electrophores, hydrocarbons, halogenated organic compounds, nitro and related compounds, carbonyl compounds, azomethine compounds.

UNIT II ANODIC REACTIONS OF ORGANIC COMPOUNDS 9
Synthetic and mechanistic aspects of anodic reactions of organic compounds classified by electrophores, anodic oxidation of hydrocarbon, carboxylic acids, nitrogen-containing compounds, oxygen-containing compounds, sulphur-containing compounds, electrochemistry of certain comprehensive classes of compounds, electrolysis of heterocyclic compounds, natural products and pharmaceuticals, biomass, organoelemental and coordination compounds.

UNIT III CLASSIFICATIONS OF ELECTRODE REACTIONS 9
Electrode reactions classified by reaction type, reductive coupling, oxidative coupling, cleavages and deprotection, anodic substitution, anodic fluorination.

UNIT IV STEREOCHEMISTRY OF ELECTROCHEMICAL PROCESSES 9
Stereochemistry of organic electrode processes, amalgam and related reductions, electrogogenerated reagents, electrogenerated acids and bases.

UNIT V INDUSTRIAL APPLICATIONS OF ELECTRO ORGANIC CHEMISTRY 9
Present and future applications, industrial electroorganic chemistry, electrochemical polymerization, chemically modified electrodes and conducting polymers, photoelectron chemistry, paired electro synthesis.
OUTCOME:

- Upon completion of this course, the students will be able to analyse and answer questions on a number of electrochemical reactions such as metal deposition and electroorganic reactions.

TEXT BOOK:

REFERENCES:

TEXT BOOKS

OBJECTIVE:

- To give an idea about IPR, registration and its enforcement.

UNIT I INTRODUCTION

Introduction to IPRs, Basic concepts and need for Intellectual Property - Patents, Copyrights, Geographical Indications, IPR in India and Abroad – Genesis and Development – the way from WTO to WIPO –TRIPS, Nature of Intellectual Property, Industrial Property, technological Research, Inventions and Innovations – Important examples of IPR.

UNIT II REGISTRATION OF IPRs

Meaning and practical aspects of registration of Copy Rights, Trademarks, Patents, Geographical Indications, Trade Secrets and Industrial Design registration in India and Abroad

UNIT III AGREEMENTS AND LEGISLATIONS

UNIT IV DIGITAL PRODUCTS AND LAW

UNIT V ENFORCEMENT OF IPRs

Infringement of IPRs, Enforcement Measures, Emerging issues – Case Studies.

OUTCOME:

- Ability to manage Intellectual Property portfolio to enhance the value of the firm.

TEXT BOOKS

REFERENCES:

CH8073 INDUSTRIAL PROCESS PLANT SAFETY L T P C
 3 0 0 3

OBJECTIVE:
- Students learn about implementation of safety procedures, risk analysis and assessment, hazard identification

UNIT I
Need for safety in industries; Safety Programmes – components and realization; Potential hazards – extreme operating conditions, toxic chemicals; safe handling

UNIT II
Implementation of safety procedures – periodic inspection and replacement; Accidents – identification and prevention; promotion of industrial safety

UNIT III
Overall risk analysis--emergency planning-on site & off site emergency planning, risk management ISO 14000, EMS models case studies. Quantitative risk assessment - rapid and comprehensive risk analysis; Risk due to Radiation, explosion due to over pressure, jet fire-fire ball.

UNIT IV
Hazard identification safety audits, checklist, what if analysis, vulnerability models event tree analysis fault tree analysis, Hazan past accident analysis Fixborough-Mexico-Madras-Vizag-Bopal analysis

UNIT V
Hazop-guide words, parameters, derivation-causes-consequences-recommendation-coarse Hazop study-case studies-pumping system-reactor-mass transfer system.

TOTAL: 45 PERIODS

OUTCOMES:
- Demonstrate the awareness of plant safety in selection and layout of chemical plants and the usage of safety codes.
- Exhibit the skill in classifying chemical, fire, explosion hazards and to understand the occupational diseases
- Analyze the bio medical and engineering response to health hazards and to implement the effective process control and instrumentation.

TEXT BOOKS:
CH8093 MODERN SEPARATION TECHNIQUES L T P C 3 0 0 3

OBJECTIVE:
- Students will gain knowledge about recent separation methods

UNIT I BASICS OF SEPARATION PROCESS
Review of Conventional Processes, Recent advances in Separation Techniques based on size, surface properties, ionic properties and other special characteristics of substances, Process concept, Theory and Equipment used in cross flow Filtration, cross flow Electro Filtration, Surface based solid – liquid separations involving a second liquid.

UNIT II MEMBRANE SEPARATIONS
Types and choice of Membranes, Plate and Frame, tubular, spiral wound and hollow fiber Membrane Reactors and their relative merits, commercial, Pilot Plant and Laboratory Membrane permeators involving Dialysis, Reverse Osmosis, Nanofiltration, Ultra filtration and Micro filtration, Ceramic- Hybrid process and Biological Membranes.

UNIT III SEPARATION BY ADSORPTION
Types and choice of Adsorbents, Adsorption Techniques, Dehumidification Techniques, Affinity Chromatography and Immuno Chromatography, Recent Trends in Adsorption.

UNIT IV INORGANIC SEPARATIONS
Controlling factors, Applications, Types of Equipment employed for Electrophoresis, Dielectrophoresis, Ion Exchange Chromatography and Eletrodialysis, EDR, Bipolar Membranes.

UNIT V OTHER TECHNIQUES
Separation involving Lyophilisation, Pervaporation and Permeation Techniques for solids, liquids and gases, zone melting, Adductive Crystallization, other Separation Processes, Supercritical fluid Extraction, Oil spill Management, Industrial Effluent Treatment by Modern Techniques.

TOTAL: 45 PERIODS
OUTCOMES:

- Create the understanding of separation processes for selecting optimal process for new and innovative applications. Ability to exhibit the skill to develop membrane processes, adsorption process and inorganic separation process.
- Apply the latest concepts like super critical fluid extraction, pervaporation, lyophilisation etc., in Chemical process industries.
- Understand Innovative techniques of controlling and managing oil spills.

REFERENCES:

CH8094 POLYMER TECHNOLOGY L T P C
3 0 0 3

OBJECTIVE:

- To enable the students to compute molecular weight averages from the molecular weight distribution, Condensation polymerization and transition in polymers.

UNIT I INTRODUCTION 6
History of Macromolecules – structure of natural products like cellulose, rubber, proteins – concepts of macro molecules – Staudinger’s theory of macromolecules – difference between simple organic molecules and macromolecules.

UNIT II ADDITION POLYMERIZATION 12

UNIT III CONDENSATION POLYMERIZATION 9

UNIT IV MOLECULAR WEIGHTS OF POLYMERS 9

UNIT V TRANSITIONS IN POLYMERS 9
OUTCOME:
• At the end of this course, the student would be able to demonstrate knowledge and understanding on the principles related to the synthesis and characterization of polymers.

TEXT BOOKS:

REFERENCES:

EL8010 PROTECTIVE PAINT COATINGS L T P C
3 0 0 3

OBJECTIVE:
• Students learn about the introduction of paint chemistry, testing and evaluation of paints.

UNIT I BINDERS, PIGMENTS AND OTHER RAW MATERIALS FOR PAINTS
Variable types of binders used in paint making – natural resins – shellac, rosin, oils and rubber-chemistry and properties; preparation and properties of synthetic resins – alkyds, phenolics, vinyls, amino resins, acrylics, epoxies, urethanes and silicones - Pigments and Extenders – Inorganic, organic and metallic pigments and extenders-corrosion inhibiting pigments-properties and functions.

UNIT II SOLVENTS
Solvents, additives, plasticizers and driers used in paints – solvency power, toxicity, auributanol and aniline point values for solvents-various additives and purpose of each considerations in formulation of a paint – concept of Pigment Volume Concentration and volume solids – rheological characteristics of paint – water based paints – composition and properties – factors affecting water dispersibility-Manufacture of paints – ball and pebble mills, attritors, sand and bead mills, three roller mills.

UNIT III TESTING AND EVALUATION OF PAINTS

UNIT IV SURFACE PREPARATION AND APPLICATION OF PAINTS
UNIT V PAINTS FOR FUNCTIONAL APPLICATION

Paints for rural atmospheres, industrially polluted atmospheres, marine atmospheres offshore applications, chemical paints, automobiles and air crafts. Coating for pipelines – coatings for concrete, wood and plastics. ceramic coatings , powder coating- principle, basics and applications.

TOTAL: 45 PERIODS

OUTCOME:

- Upon complete of this course, the student will be able to developed of paint for typical end applications.

TEXT BOOKS:

REFERENCES:

GE8076 PROFESSIONAL ETHICS IN ENGINEERING

OBJECTIVE:

- To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I HUMAN VALUES

UNIT II ENGINEERING ETHICS

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

UNIT V GLOBAL ISSUES

TOTAL: 45 PERIODS

OUTCOME:
- Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society.

TEXT BOOKS:

REFERENCES:

Web sources:
1. www.onlineethics.org
2. www.nspe.org
3. www.globalethics.org
4. www.ethics.org