PROGRAM EDUCATIONAL OBJECTIVES (PEO)

Graduates of this M. E. Multimedia will be able to

- Apply the necessary mathematical tools and fundamental & advanced knowledge of multimedia related applications.
- Develop computer/software/network systems understanding the importance of social, business, technical, environmental, and human context in which the systems would work.
- Articulate fundamental concepts, design underpinnings of computer/software/network systems, and research findings to train professionals or to educate engineering students.
- To mould the students to be ethically committed towards teamwork for producing quality output with the aim of developing our nation.
- Contribute effectively as a team member/leader, using common tools and environment, in multimedia projects, research, or education
- To engage in sustained learning for the career opportunities in industries, research divisions, and academics so that they can adapt to ever-changing technological and societal requirements.
- Pursue life-long learning and research in selected fields of Multimedia with animation and contribute to the growth of those fields and society at large.
- To be competent in the Multimedia segments and to bring out novel ideas by exploring the multiple solutions for the given problem

PROGRAM OUTCOMES

- 1. Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the conceptualization of engineering models.
- 2. Identify, formulate, research literature and solve complex engineering problems reaching substantiated conclusions using first principles of mathematics and engineering sciences.
- 3. An ability to design a Multimedia system with components and processes to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- 4. Conduct investigations of complex problems including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
- 5. Create, select and apply appropriate techniques, resources, and modern engineering tools, including animation, web based techniques, prediction and modeling, to *complex* engineering activities, with an understanding of the limitations.
- 6. An ability to apply Multimedia Engineering principles, techniques and tools in web based multimedia development..
- 7. Apply a systematic, disciplined, quantifiable approach to the cost-effective development, operation and maintenance of software systems to the satisfaction of their beneficiaries.
- 8. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
- 9. Understand and commit to professional ethics and responsibilities and norms of engineering practice.
- 10. Understand the impact of engineering solutions in a societal context and demonstrate knowledge of and need for sustainable development.
- 11. An ability to identify, formulates, and solves engineering problems.
- 12. An understanding of real-time, safety-critical, embedded computer systems.

AFFILIATED INSTITUTIONS

ANNA UNIVERSITY, CHENNAI

REGULATIONS - 2013

M.E. MULTIMEDIA TECHNOLOGY

I TO IV SEMESTERS CURRICULA AND SYLLABI (FULL TIME)

SEMESTER I

SL. NO	COURSE CODE	COURSE TITLE	L	Т	Р	С
THEO	RY					
1.	MA7155	Applied Probability and Statistics	3	1	0	4
2.	CP7102	Advanced Data Structures and Algorithms	3	0	0	3
3.	CP7103	Multicore Architectures	3	0	0	3
4.	MU7101	Multimedia Coding Techniques	3	0	0	3
5.	MU7102	Multimedia Communication Networks	3	0	0	3
6.	MU7103	Cryptography and Multimedia Data Hiding	3	0	0	3
PRAC	TICAL					
7.	MU7111	Advanced Data Structures Laboratory	0	0	3	2
8.	MU7112	Multimedia Tools Laboratory	0	0	3	2
9.	MU7113	Mini Project	0	0	2	1
		TOTAL	18	1	8	24

SEMESTER II

SL. NO	COURSE CODE	COURSE TITLE	L	Т	Р	С
THEO	RY					
1.	MU7201	Graphics Design and Multimedia Presentation	3	0	0	3
2.	MU7202	Image Processing and Pattern Recognition	3	0	0	3
3.	IF7203	Data Warehousing and Data Mining	3	0	0	3
4.	MU7203	Multimedia Databases	3	0	0	3
5.		Elective I	3	0	0	3
6.		Elective II	3	0	0	3
PRAC	TICAL					
7.	MU7211	Graphics and Imaging Laboratory	0	0	3	2
8.	MU7212	Multimedia Database Laboratory	0	0	3	2
9.	MU7213	Technical Seminar	0	0	2	1
		TOTAL	18	0	8	23

SEMESTER III

SL. NO	COURSE CODE	COURSE TITLE	L	Т	Р	С		
THEORY								
1.	MU7301	3D Modelling and Rendering	3	0	0	3		
2.		Elective III	3	0	0	3		
3.		Elective IV	3	0	0	3		
PRACTICAL								
4.	MU7311	Project Work (Phase I)	0	0	12	6		
	·	TOTAL	9	0	12	15		

SEMESTER IV

SL. NO.	COURSE CODE	COURSE TITLE	L	Т	Р	С
PRAC'	TICAL					
1.	MU7411	Project Work (Phase II)	0	0	24	12
		TOTAL	0	0	24	12

TOTAL NO OF CREDITS:74

LIST OF ELECTIVES ELECTIVE I

SL. NO	COURSE CODE	COURSE TITLE	L	Т	Р	С
1.	MU7001	Audio Video Broad Casting Systems	3	0	0	3
2.	MU7002	Web Programming Techniques	3	0	0	3
3.	MU7003	Creativity, Innovation and Product Development	3	0	0	3
4.	CP7018	Language Technologies	3	0	0	3
5.	MU7004	Service Oriented Architecture	3	0	0	3

ELECTIVE II

SL. NO	COURSE CODE	COURSE TITLE	L	T	Р	С
6.	MU7005	Non Linear Editing	3	0	0	3
7.	NE7071	Web Design and Management	3	0	0	3
8.	MU7006	Visualization Techniques	3	0	0	3
9.	CP7008	Speech Processing and Synthesis	3	0	0	3
10.	IF7202	Cloud Computing	3	0	0	3

ELECTIVE III

SL. NO	COURSE CODE	COURSE TITLE	L	Т	Р	С
11.	MU7007	Virtual Reality	3	0	0	3
12.	NE7002	Mobile and Pervasive Computing	3	0	0	3
13.	MU7008	User Interface Design	3	0	0	3
14.	IF7102	Object Oriented Software Engineering	3	0	0	3
15.	MU7009	Intelligent Agent Systems	3	0	0	3

ELECTIVE IV

SL. NO	COURSE CODE	COURSE TITLE	L	T	Р	С
16.	IF7301	Soft Computing	3	0	0	3
17.	IF7003	Video Analytics	3	0	0	3
18.	MU7010	Content Based Image Retrieval	3	0	0	3
19.	NE7012	Social Network Analysis	3	0	0	3
20.	MU7011	Video Compression	3	0	0	3

MA7155

APPLIED PROBABILITY AND STATISTICS

L T P C 3 1 0 4

OBJECTIVES:

- To introduce the basic concepts of one dimensional and two dimensional Random Variables.
- To provide information about Estimation theory, Correlation, Regression and Testing of hypothesis.
- To enable the students to use the concepts of multivariate normal distribution and principle components analysis.

UNIT I ONE DIMENSIONAL RANDOM VARIABLES

9+3

Random variables - Probability function - Moments - Moment generating functions and their properties - Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions - Functions of a Random Variable.

UNIT II TWO DIMENSIONAL RANDOM VARIABLES

9+3

Joint distributions – Marginal and Conditional distributions – Functions of two dimensional random variables – Regression Curve – Correlation.

UNIT III ESTIMATION THEORY

9±3

Unbiased Estimators – Method of Moments – Maximum Likelihood Estimation - Curve fitting by Principle of least squares – Regression Lines.

UNIT IV TESTING OF HYPOTHESES

9+3

Sampling distributions - Type I and Type II errors - Tests based on Normal, t, Chi-Square and F distributions for testing of mean, variance and proportions - Tests for Independence of attributes and Goodness of fit.

UNIT V MULTIVARIATE ANALYSIS

9+3

Random Vectors and Matrices - Mean vectors and Covariance matrices - Multivariate Normal density and its properties - Principal components Population principal components - Principal components from standardized variables.

TOTAL 45+15=60 PERIODS

OUTCOME:

• The student will able to acquire the basic concepts of Probability and Statistical techniques for solving mathematical problems which will be useful in solving Engineering problems

REFERENCES:

- 1. Jay L. Devore, "Probability and Statistics For Engineering and the Sciences", Thomson and Duxbury, 2002.
- 2. Richard Johnson. "Miller & Freund's Probability and Statistics for Engineer", Prentice Hall, Seventh Edition, 2007.
- 3. Richard A. Johnson and Dean W. Wichern, "Applied Multivariate Statistical Analysis", Pearson Education, Asia, Fifth Edition, 2002.
- 4. Gupta S.C. and Kapoor V.K."Fundamentals of Mathematical Statistics", Sultan an Sons, 2001.
- 5. Dallas E Johnson, "Applied Multivariate Methods for Data Analysis", Thomson and Duxbury press,1998.

CP7102 ADVANCED DATA STRUCTURES AND ALGORITHMS

L T PC 3 0 0 3

OBJECTIVES:

- To understand the principles of iterative and recursive algorithms.
- To learn the graph search algorithms.
- To study network flow and linear programming problems.
- To learn the hill climbing and dynamic programming design techniques.
- To develop recursive backtracking algorithms.
- To get an awareness of NP completeness and randomized algorithms.
- To learn the principles of shared and concurrent objects.
- To learn concurrent data structures.

UNIT I ITERATIVE AND RECURSIVE ALGORITHMS

9

Iterative Algorithms: Measures of Progress and Loop Invariants-Paradigm Shift: Sequence of Actions versus Sequence of Assertions- Steps to Develop an Iterative Algorithm-Different Types of Iterative Algorithms--Typical Errors-Recursion-Forward versus Backward- Towers of Hanoi-Checklist for Recursive Algorithms-The Stack Frame-Proving Correctness with Strong Induction-Examples of Recursive Algorithms-Sorting and Selecting Algorithms-Operations on Integers-Ackermann's Function- Recursion on Trees-Tree Traversals- Examples- Generalizing the Problem - Heap Sort and Priority Queues-Representing Expressions.

UNIT II OPTIMISATION ALGORITHMS

9

Optimization Problems-Graph Search Algorithms-Generic Search-Breadth-First Search-Dijkstra's Shortest-Weighted-Path -Depth-First Search-Recursive Depth-First Search-Linear Ordering of a Partial Order- Network Flows and Linear Programming-Hill Climbing-Primal Dual Hill Climbing-Steepest Ascent Hill Climbing-Linear Programming-Recursive Backtracking-Developing Recursive Backtracking Algorithm- Pruning Branches-Satisfiability

UNIT III DYNAMIC PROGRAMMING ALGORITHMS

9

Developing a Dynamic Programming Algorithm-Subtle Points- Question for the Little Bird-Subinstances and Subsolutions-Set of Subinstances-Decreasing Time and Space-Number of Solutions-Code. Reductions and NP-Completeness-Satisfiability-Proving NP-Completeness- 3-Coloring- Bipartite Matching. Randomized Algorithms-Randomness to Hide Worst Cases-Optimization Problems with a Random Structure.

UNIT IV SHARED OBJECTS AND CONCURRENT OBJECTS

9

Shared Objects and Synchronization -Properties of Mutual Exclusion-The Moral-The Producer-Consumer Problem -The Readers-Writers Problem-Realities of Parallelization-Parallel Programming- Principles- Mutual Exclusion-Time- Critical Sections--Thread Solutions-The Filter Lock-Fairness-Lamport's Bakery Algorithm-Bounded Timestamps-Lower Bounds on the Number of Locations-Concurrent Objects- Concurrency and Correctness-Sequential Objects-Quiescent Consistency- Sequential Consistency-Linearizability- Formal Definitions- Progress Conditions- The Java Memory Model

UNIT V CONCURRENT DATA STRUCTURES

9

Practice-Linked Lists-The Role of Locking-List-Based Sets-Concurrent Reasoning- Coarse-Grained Synchronization-Fine-Grained Synchronization-Optimistic Synchronization- Lazy Synchronization-Non-Blocking Synchronization-Concurrent Queues and the ABA Problem-Queues-A Bounded Partial Queue-An Unbounded Total Queue-An Unbounded Lock-Free Queue-Memory Reclamation and the ABA Problem- Dual Data Structures- Concurrent Stacks and Elimination- An Unbounded Lock-Free Stack- Elimination-The Elimination Backoff Stack

Upon completion of the course, the students will be able to

- 1. Implement and apply concurrent linked lists, stacks, and queues
- 2. Implement advanced concurrent structures
- 3. Design and implement concurrent algorithms.
- 4. Design and implement algorithms using different techniques

REFERENCES:

- 1. Jeff Edmonds, "How to Think about Algorithms", Cambridge University Press, 2008.
- 2. M. Herlihy and N. Shavit, "The Art of Multiprocessor Programming", Morgan Kaufmann, 2008.
- 3. Steven S. Skiena, "The Algorithm Design Manual", Springer, 2008.
- 4. Peter Brass, "Advanced Data Structures", Cambridge University Press, 2008.
- 5. S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani, "Algorithms", McGrawHill, 2008.
- 6. J. Kleinberg and E. Tardos, "Algorithm Design", Pearson Education, 2006.
- 7. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, "Introduction to Algorithms", PHI Learning Private Limited, 2012.
- 8. Rajeev Motwani and Prabhakar Raghavan, "Randomized Algorithms", Cambridge University Press, 1995.
- 9. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, "The Design and Analysis of Computer Algorithms", Addison-Wesley, 1975.
- 10. A. V. Aho, J. E. Hopcroft, and J. D. Ullman,"Data Structures and Algorithms", Pearson, 2006.

CP7103

MULTICORE ARCHITECTURES

L T P C 3 0 0 3

OBJECTIVES:

- To understand the recent trends in the field of Computer Architecture and identify performance related parameters
- To appreciate the need for parallel processing
- To expose the students to the problems related to multiprocessing
- To understand the different types of multicore architectures
- To expose the students to warehouse-scale and embedded architectures

UNIT I FUNDAMENTALS OF QUANTITATIVE DESIGN AND ANALYSIS

Classes of Computers – Trends in Technology, Power, Energy and Cost – Dependability – Measuring, Reporting and Summarizing Performance – Quantitative Principles of Computer Design – Classes of Parallelism - ILP, DLP, TLP and RLP - Multithreading - SMT and CMP Architectures – Limitations of Single Core Processors - The Multicore era – Case Studies of Multicore Architectures.

UNIT II DLP IN VECTOR, SIMD AND GPU ARCHITECTURES

9

Vector Architecture - SIMD Instruction Set Extensions for Multimedia – Graphics Processing Units - Detecting and Enhancing Loop Level Parallelism - Case Studies.

UNIT III TLP AND MULTIPROCESSORS

9

Symmetric and Distributed Shared Memory Architectures – Cache Coherence Issues - Performance Issues – Synchronization Issues – Models of Memory Consistency - Interconnection Networks – Buses, Crossbar and Multi-stage Interconnection Networks.

UNIT IV RLP AND DLP IN WAREHOUSE-SCALE ARCHITECTURES

9

Programming Models and Workloads for Warehouse-Scale Computers – Architectures for Warehouse-Scale Computing – Physical Infrastructure and Costs – Cloud Computing – Case Studies.

UNIT V ARCHITECTURES FOR EMBEDDED SYSTEMS

9

Features and Requirements of Embedded Systems – Signal Processing and Embedded Applications – The Digital Signal Processor – Embedded Multiprocessors - Case Studies.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to

- Identify the limitations of ILP and the need for multicore architectures
- Discuss the issues related to multiprocessing and suggest solutions
- Point out the salient features of different multicore architectures and how they exploit parallelism
- Critically analyze the different types of inter connection networks
- Discuss the architecture of GPUs, warehouse-scale computers and embedded processors

REFERENCES:

- 1. John L. Hennessey and David A. Patterson, "Computer Architecture A Quantitative Approach", Morgan Kaufmann / Elsevier, 5th. edition, 2012.
- 2. Kai Hwang, "Advanced Computer Architecture", Tata McGraw-Hill Education, 2003
- 3. Richard Y. Kain, "Advanced Computer Architecture a Systems Design Approach", PHI, 2011.
- 4. David E. Culler, Jaswinder Pal Singh, "Parallel Computing Architecture : A Hardware/ Software Approach", Morgan Kaufmann / Elsevier, 1997.

MU7101

MULTIMEDIA CODING TECHNIQUES

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Understand the importance of multimedia in today's online and offline information sources and repositories.
- Understand how Text, Audio, Image and Video information can be represented digitally in a computer, so that it can be processed, transmitted and stored efficiently.
- Understand the possibility and limitations of multimedia data compression.
- Understand the basic audio coding techniques including predictive coding and more advanced techniques based around LPC and sub-band coding.
- Understand bi-level Image lossless coding techniques and how these can be extended to code grayscale images, and colour images.
- Understand GIF and JPEG lossless coding techniques.
- Understand lossy Image, video Coding techniques

UNIT I INTRODUCTION

9

Multimedia Representation - Text, Audio, Image and Video Representation - Input and Output Transducers -Human Vision and Audio Systems and their Limitations - Sampling, Quantization, Coding, Companding.

UNIT II BASIC CODING TECHNIQUES

ç

Introduction to Data Compression - Information Theory -Statistical Coding - Dictionary Based Coding - Audio Coding.

UNIT III LOSSLESS IMAGE CODING

9

Bi-Level -Reflected Gray Codes - Predictive Coding -GIF-Lossless JPEG

UNIT IV LOSSY IMAGE CODING

ç

Distortion Measures -Transform Coding -JPEG -Wavelet Coding -Sub-band Coding - JPEG2000 - Progressive Image Coding.

UNIT V VIDEO CODING (LOSSY)

9

Video Coding Concepts - The Hybrid DPCM/DCT algorithm-Motion Compensated Prediction-Motion Estimation-Standards: H.261, MPEG-1,2,4,7.

TOTAL: 45 PERIODS

REFERENCES:

- 1. Ze-Nian Li & Mark Drew, "Fundamentals of Multimedia", Prentice Hall, 2004.
- 2. Yun Q. Shi, Huifang Sun, "Image and Video Compression for Multimedia Engineering: Fundamentals, Algorithms, and Standards", CRC Press, Second edition, 2008
- 3. B.Prabhakaran, "Multimedia Database Management Systems", Springer International Edition, 2007.
- 4. Tay Vaughan, "Multimedia: Making it Work", McGraw Hill Publication, Eighth Edition, 2010.
- 5. Charles Marsh, David W.Guth, B.PShort, "Strategic Writing: Multimedia writing for Public Relations, Advertising and More", Pearson education, Second Edition, 2008.

MU7102

MULTIMEDIA COMMUNICATION NETWORKS

LT P C 3 0 0 3

OBJECTIVES:

- To understand the Multimedia Communication Models
- To analyze the Guaranteed Service Model
- To study the Multimedia Transport in Wireless Networks
- To solve the Security issues in multimedia networks
- To explore real-time multimedia network applications

UNIT I MULTIMEDIA COMMUNICATION MODELS

9

Architecture of Internet Multimedia Communication- Protocol Stack-Requirements and Design challenges of multimedia communications- Multimedia distribution models-Unicasting, Broadcasting and Multicasting.

UNIT II GUARANTEED SERVICE MODEL

9

Multicast routing-PIM- Best effort service model and its limitations- QoS and its metrics-Queuing techniques-WFQ and its variants-RED-QoS aware routing -Call Admission Control-RSVP- Policing and Traffic Shaping algorithms- QoS architectures.

UNIT III MULTIMEDIA TRANSPORT

9

End to end solutions-Multimedia over TCP-Significance of UDP- Multimedia Streaming- Audio and Video Streaming-Interactive and non Interactive Multimedia- RTSP- RTP/RTCP – SIP-H.263.

UNIT IV MULTIMEDIA OVER WIRELESS NETWORKS

9

End to end QoS Provisioning-QoS enhancements-Call Admission Control-QoS Management-Multimedia support in 3G & 4G networks- Location Based Multimedia Service System.

UNIT V MULTIMEDIA NETWORK SECURITY AND APPLICATIONS

9

TOTAL: 45 PERIODS

Security threats in Multimedia Communication- Digital Rights Management Architecture-DRM for Mobile Multimedia- Architectures, Requirements and Design Challenges of real time Multimedia Network Applications- Case Study-VoIP- Video Conferencing- Military Surveillance- Interactive TV-Video on Demand- Smart Phone.

OUTCOMES:

At the end of the course, the students will be able to

- deploy the right multimedia communication models
- apply QoS to multimedia network applications with efficient routing techniques
- solve the security threats in the multimedia networks
- develop the real-time multimedia network applications

- 1. K. R. Rao, Zoran S. Bojkovic, Dragorad A. Milovanovic, "Introduction to Multimedia Communications Applications, Middleware, Networking", John Wiley and Sons, 2006.
- 2. Jean Warland, Pravin Vareya, "High Performance Networks", Morgan Kauffman Publishers, 2002.
- 3. William Stallings, "High Speed Networks and Internets Performance and Quality of Service", 2nd Edition, Pearson Education, 2002.
- 4. Aura Ganz, Zvi Ganz, Kitti Wongthawaravat, 'Multimedia Wireless Networks Technologies, Standards and QoS', Prentice Hall, 2003.
- 5. Mahbub Hassan and Raj Jain, "High Performance TCP/IP Networking", Pearson Education, 2004
- 6. Shiguo Lian, "Multimedia Communication Security Recent Advances", Nova Science Publishers. 2008.

MU7103 CRYPTOGRAPHY AND MULTIMEDIA DATA HIDING

LTPC 3 0 0 3

OBJECTIVES:

- To understand the standard algorithms used to provide confidentiality, integrity and authenticity.
- To understand security issues those arise in communication systems and web services.
- To bring the knowledge about the data hiding for image and video with countermeasures for attacks.

UNIT I CLASSICAL TECHNIQUES AND ENCRYPTION STANDARDS 9

Classical Cryptography-The Shift Cipher, The Substitution Cipher, The Affine Cipher Cryptanalysis-Cryptanalysis of the Affine Cipher, Cryptanalysis of the Substitution Cipher, Cryptanalysis of the Vigenere Cipher, Shannon's Theory- Block Cipher and the Advanced Encryption Standard-Substitution —Permutation Networks, Linear Cryptanalysis, Differential Cryptanalysis, The Data Encryption Standard- The Advanced Encryption Standard.

UNIT II AUTHENTICATION

9

The RSA Cryptosystem and Factoring Integer - Introduction to Public –key Cryptography, Number theory, The RSA Cryptosystem, Other Attacks on RSA, The ELGamal Cryptosystem, Shanks' Algorithm, Finite Fields, Elliptic Curves over the Reals, Elliptical Curves Modulo a Prime, Signature Scheme – Digital Signature Algorithm.

UNIT III MULTIMEDIA DATA HIDING INTRODUCTION

9

Overview of Multimedia Data Hiding – Data hiding framework-Key elements -Basic embedding mechanisms-Techniques for Embedding multiple bits-Quantitative model for Uneven embedding Capacity-Constant embedding Rate (CER)-Variable embedding Rate(VER).

UNIT IV DATA HIDING FOR IMAGE AND VIDEO

9

Data Hiding in Binary Image: Proposed Scheme – Applications-Robustness and Security considerations-Multilevel embedding- Multilevel image data hiding: Spectrum Partition-System Design-Refined Human visual model- Multilevel video data hiding: Embedding Domain-System Design.

UNIT V AUTHENTICATION AND ATTACKS WITH COUNTERMEASURES

9

Data Hiding for Image Authentication- Data Hiding for Video Communication-Attacks on known Data Hiding Algorithms-Countermeasures against Geometric attacks- Attacks on unknown Data Hiding Algorithms.

- The students would have understood the basic security algorithms required by any computing system.
- The students may be now aware of the security challenges and issues that may arise in any system.
- The students may have idea about the data hiding for image and video with supporting algorithms.
- Students may be now aware of developing data hiding algorithms for the specialized applications.

REFERENCES:

- 1. Douglas R. Stinson , "Cryptography Theory and Practice", Third Edition, Chapman & Hall/CRC, 2006
- 2. Kaufman, R. Perlman, and M. Speciner, Network Security: Private Communication in a Public World, 2nd ed., Prentice Hall, ISBN 0-13-0460192.
- 3. Min Wu, Bede Liu, "Multimedia Data Hiding", Springer-Verlag NewYork Inc., 2002.
- 4. I. Cox, M. Miller, J. Bloom: Digital Watermarking, Morgan Kaufman Publishers, 2001.
- 5. L.C. Washington, W. Trappe: Introduction to Cryptography with Coding Theory, Prentice Hall, 2001.
- 6. Bruce Schneier, "Applied Cryptography", John Wiley & Sons Inc, 2001.
- 7. Wenbo Mao, "Modern Cryptography Theory and Practice", Pearson Education, First Edition, 2006.
- 8. Wade Trappe and Lawrence C. Washington, "Intrduction to Cryptography with Coding Theory" Second Edition, Pearson Education, 2007.

MU7111

ADVANCED DATA STRUCTURES LABORATORY

LTPC 0 032

OBJECTIVES:

- To learn to implement iterative and recursive algorithms.
- To learn to design and implement algorithms using hill climbing and dynamic programming techniques.
- To learn to implement shared and concurrent objects.
- To learn to implement concurrent data structures.

LAB EXERCISES:

Each student has to work individually on assigned lab exercises. Lab sessions could be scheduled as one contiguous four-hour session per week or two two-hour sessions per week. There will be about 15 exercises in a semester. It is recommended that all implementations are carried out in Java. If C or C++ has to be used, then the threads library will be required for concurrency. Exercises should be designed to cover the following topics:

- Implementation of graph search algorithms.
- Implementation and application of network flow and linear programming problems.
- Implementation of algorithms using the hill climbing and dynamic programming design techniques.
- Implementation of recursive backtracking algorithms.
- Implementation of randomized algorithms.
- Implementation of various locking and synchronization mechanisms for concurrent linked lists, concurrent queues, and concurrent stacks.
- Developing applications involving concurrency.

Upon completion of the course, the students will be able to

- 1. Design and apply iterative and recursive algorithms.
- 2. Design and implement algorithms using the hill climbing and dynamic programming and recursive backtracking techniques.
- 3. Design and implement optimisation algorithms for specific applications.
- 4. Design and implement randomized algorithms.
- 5. Design appropriate shared objects and concurrent objects for applications.
- 6. Implement and apply concurrent linked lists, stacks, and gueues.

REFERENCES:

- 1. Jeff Edmonds, "How to Think about Algorithms", Cambridge University Press, 2008.
- 2. M. Herlihy and N. Shavit, "The Art of Multiprocessor Programming", Morgan Kaufmann, 2008.
- 3. Steven S. Skiena, "The Algorithm Design Manual", Springer, 2008.
- 4. Peter Brass, "Advanced Data Structures", Cambridge University Press, 2008.
- 5. S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani, "Algorithms", McGrawHill, 2008.
- 6. J. Kleinberg and E. Tardos, "Algorithm Design", Pearson Education, 2006.
- 7. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, "Introduction to Algorithms", PHI Learning Private Limited, 2012.
- 8. Rajeev Motwani and Prabhakar Raghavan, "Randomized Algorithms", Cambridge University Press, 1995.
- 9. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, "The Design and Analysis of Computer Algorithms", Addison-Wesley, 1975.
- 10. A. V. Aho, J. E. Hopcroft, and J. D. Ullman,"Data Structures and Algorithms", Pearson, 2006.

MU7112

MULTIMEDIA TOOLS LABORATORY

L T P C 0 0 3 2

OBJECTIVES:

- To explore the various multimedia editing tools like Photoshop/EQV/MATLAB, audacity, Garageband, iMovie and Open CV.
- To explore media processing tools.

The following experiments should be practiced

- 1. Audi and video editing
- 2. Image editing
- 3. 2D and 3D animation

(Tools such as HTML/Frontpage/Dreamweaver, Multimedia application enabling software, System software support for multimedia, Performance measurement tools for multimedia, Multimedia authoring tools, Web tools and applications). The case studies are:

- Video on-demand
- Interactive TV
- Home shopping
- Remote home care
- Electronic album
- Personalized electronic journals

TOTAL: 45 PERIODS

OUTCOMES:

Upon Completion of the course, the students should be able to

- Process media elements using various multimedia tools
- Create 2D and 3D animations
- Build multimedia applications

MU7113 MINI PROJECT L T P C 0 0 2 1

The Mini project on multimedia network application software development

- Must use multimedia coding techniques.
- · Must provide security
- Must prepare a Document in the form of report

TOTAL:30 PERIODS

MU7201 GRAPHICS DESIGN AND MULTIMEDIA PRESENTATION

L T P C 3 0 0 3

OBJECTIVES:

- To develop skills in 2D and 3D Graphics concepts and Multimedia presentation with their applications.
- To learn and implement 2D and 3D Transformation drawing lines, circle, curve etc.,
- To learn about various color models with their features.
- To study about concepts of Multimedia and its applications.

UNIT I INTRODUCTION

6

I/O devices – I/O primitives –Attributes of output primitives – DDA – Bresenham technique – Circle drawing algorithms – Interactive input methods.

UNIT II 2D GRAPHICS

2D Transformations – Window View port mapping – Clipping algorithms – polygons – Splines – Bezier carves – Basics.

UNIT III 3D GRAPHICS

12

3D concepts – Representations – 3D transformation - Projections – Hidden surface removal – Visualization and rendering – Color models – Textures.

UNIT IV OVERVIEW OF MULTIMEDIA

9

Introduction to Multimedia - Multimedia Hardware & Software - Components of multimedia - Multimedia Authoring and tools - Multimedia Project development.

UNIT V MULTIMEDIA SYSTEMS AND APPLICATIONS

9

TOTAL: 45 PERIODS

Multimedia Communication Systems – Database Systems – Synchronization issues – Presentation requirements – Applications – Video conferencing – Virtual reality – Interactive Video – Media on Demand.

OUTCOMES:

Upon Completion of the course, the students should be able to

- Implement Transformations in 2Dimensional and 3Dimensional.
- Develop algorithms for drawing Line, polygon clipping, projection etc.,
- Apply and explore new techniques in the areas of Multimedia applications.
- Critically analyze different approaches to implement mini projects related with Multimedia applications.
- Explore the possibility of applying Multimedia concepts in various domains

- 1. Donald Hearn, M. Pauline Baker, "Computer Graphics C Version", second edition, Pearson Education, 2006.
- 2. Ralf Steinmetz, Klara Steinmetz, "Multimedia Computing, Communications & Applications" Pearson Education, 2004.
- 3. Tay Vaughan, "Multimedia Making It Work", McGraw Hill, 7 th edition, 2006.
- 4. J. D. Foley, A. VanDam, S. K. Feiner, J. F. Hughes, "Computer Graphics Principles and Practice", Addison and Wesley Publications, 2002.
- 5. Ze-Nian Li, Mark S. Drew, "Fundamentals Of Multimedia", PHI, 2004.

MU7202 IMAGE PROCESSING AND PATTERN RECOGNITION

L T P C 3 0 0 3

OBJECTIVES:

To introduce the student to various Image processing and Pattern recognition techniques.

- To study the Image fundamentals.
- To study the mathematical morphology necessary for Image processing and Image segmentation.
- To study the Image Representation and description and feature extraction.
- To study the principles of Pattern Recognition.
- To know the various applications of Image processing.

UNIT I INTRODUCTION

9

Elements of an Image Processing System- Mathematical Preliminaries-Image Enhancement-Grayscale Transformation- Piecewise Linear Transformation-Bit Plane Slicing- Histogram Equalization--Histogram Specification- Enhancement by Arithmetic Operations- Smoothing Filter-Sharpening Filter- Image Blur Types and Quality Measures.

UNIT II MATHEMATICAL MORPHOLOGY and IMAGE SEGMENTATION

Binary Morphology-Opening and Closing- Hit-or-Miss Transform- Grayscale Morphology- Basic morphological Algorithms- Morphological Filters-Thresholding-Object (Component) Labeling-Locating Object Contours by the Snake Model- Edge Operators-Edge Linking by Adaptive Mathematical morphology- Automatic Seeded Region Growing- A Top-Down Region Dividing Approach.

UNIT III IMAGE REPRESENTATION AND DESCRIPTION AND FEATURE EXTRACTION.

9

Run-Length Coding- Binary Tree and Quadtree- Contour Representation-Skeletonization by Thinning- Medial Axis Transformation-Object Representation and Tolerance- Fourier Descriptor and Moment Invariants-Shape Number and Hierarchical Features-Corner Detection- Hough Transform-Principal Component Analysis-Linear Discriminate Analysis- Feature Reduction in Input and Feature Spaces.

UNIT IV PATTERN RECOGNITION

9

The Unsupervised Clustering Algorithm - Bayes Classifier- Support Vector Machine- Neural Networks-The Adaptive Resonance Theory Network-Fuzzy Sets in Image Analysis-Document image processing and classification-Block Segmentation and Classification- Rule-Based Character Recognition system- Logo Identification-Fuzzy Typographical Analysis for Character Pre classification-Fuzzy Model for Character Classification.

UNIT V APPLICATIONS:

9

Face and Facial Feature Extraction-Extraction of Head and Face Boundaries and Facial Features-Recognizing Facial Action Units-Facial Expression Recognition in JAFFE Database-Image Steganography- Types of Steganography- Applications of Steganography- Embedding Security and Imperceptibility- Examples of Steganography Software-Genetic Algorithm Based Steganography.

TOTAL: 45 PERIODS

OUTCOMES:

Upon Completion of the course, the students will be able

- To know the basic concepts in Image Processing.
- To segment the various types of Images.
- To represent the images in different forms
- To develop algorithms for Pattern Recognition
- To implement the features of Image processing in applications

REFERENCES:

- 1. Frank Y Shih, Image Processing and Pattern Recognition: Fundamentals and Techniques-, Willey IEEE Press, April 2010.
- 2. Rafael C. Gonzalez, Richard E. Woods, Steven Eddins," Digital Image Processing using MATLAB", Pearson Education, Inc., 2004.
- 3. D.E. Dudgeon and R.M. Mersereau, "Multidimensional Digital Signal Processing", Prentice Hall Professional Technical Reference, 1990.
- 4. William K. Pratt, "Digital Image Processing", John Wiley, New York, 2002.
- 5. Milan Sonka et al, "Image Processing, Analysis and Machine Vision", Brookes/Cole, Vikas Publishing House, 2nd edition, 1999;
- 6. Sid Ahmed, M.A., "Image Processing Theory, Algorithms and Architectures", McGrawHill, 1995

IF7203

DATA WAREHOUSING AND DATA MINING

LTPC 3003

OBJECTIVES:

- To expose the students to the concepts of Data warehousing Architecture and Implementation
- To Understand Data mining principles and techniques and Introduce DM as a cutting edge business intelligence
- To learn to use association rule mining for handling large data
- To understand the concept of classification for the retrieval purposes
- To know the clustering techniques in details for better organization and retrieval of data
- To identify Business applications and Trends of Data mining

UNIT I DATA WAREHOUSE

- 8

Data Warehousing - Operational Database Systems vs. Data Warehouses - Multidimensional Data Model - Schemas for Multidimensional Databases - OLAP Operations - Data Warehouse Architecture - Indexing - OLAP queries & Tools.

UNIT II DATA MINING & DATA PREPROCESSING

C

Introduction to KDD process – Knowledge Discovery from Databases - Need for Data Preprocessing – Data Cleaning – Data Integration and Transformation – Data Reduction – Data Discretization and Concept Hierarchy Generation.

UNIT III ASSOCIATION RULE MINING

8

Introduction - Data Mining Functionalities - Association Rule Mining - Mining Frequent Itemsets with and without Candidate Generation - Mining Various Kinds of Association Rules - Constraint-Based Association Mining.

UNIT IV CLASSIFICATION & PREDICTION

10

Classification vs. Prediction – Data preparation for Classification and Prediction – Classification by Decision Tree Introduction – Bayesian Classification – Rule Based Classification – Classification by Back Propagation – Support Vector Machines – Associative Classification – Lazy Learners – Other Classification Methods – Prediction – Accuracy and Error Measures – Evaluating the Accuracy of a Classifier or Predictor – Ensemble Methods – Model Section.

UNIT V CLUSTERING

10

Cluster Analysis: - Types of Data in Cluster Analysis - A Categorization of Major Clustering Methods - Partitioning Methods - Hierarchical methods - Density-Based Methods - Grid-Based Methods - Model-Based Clustering Methods - Clustering High- Dimensional Data - Constraint-Based Cluster Analysis - Outlier Analysis.

TOTAL: 45 PERIODS

OUTCOMES:

Upon Completion of the course, the students will be able to

- Store voluminous data for online processing
- Preprocess the data for mining applications
- Apply the association rules for mining the data
- Design and deploy appropriate classification techniques
- Cluster the high dimensional data for better organization of the data
- Discover the knowledge imbibed in the high dimensional system
- Evolve Multidimensional Intelligent model from typical system
- Evaluate various mining techniques on complex data objects

REFERENCES:

- 1. Jiawei Han and Micheline Kamber, "Data Mining Concepts and Techniques" Second Edition, Elsevier, Reprinted 2008.
- 2. K.P. Soman, Shyam Diwakar and V. Ajay, "Insight into Data mining Theory and Practice", Easter Economy Edition, Prentice Hall of India, 2006.
- 3. G. K. Gupta, "Introduction to Data Mining with Case Studies", Easter Economy Edition, Prentice Hall of India, 2006.
- 4. BERSON, ALEX & SMITH, STEPHEN J, Data Warehousing, Data Mining, and OLAP, TMH Pub. Co. Ltd, New Delhi, 2012
- 5. Pang-Ning Tan, Michael Steinbach and Vipin Kumar, "Introduction to Data Mining", Pearson Education, 2007
- 6. PRABHU Data Warehousing, PHI Learning Private Limited, New Delhi, 2012, ,
- 7. PONNIAH, PAULRAJ, Data Warehousing Fundamentals, John Wiley & Sons, New Delhi, 2011
- 8. MARAKAS, GEORGE M, Modern Data Warehousing, Mining, and Visualization, Pearson Education, 2011

MU7203

MULTIMEDIA DATABASES

LTPC 3 0 0 3

OBJECTIVES:

- To study issues concerning both the traditional and modern database systems and technologies for multimedia data management.
- To understand the basic concepts and techniques pertinent to multimedia databases.
- To learn about Image databases and Text/Document databases, Audio and Video databases.
- To study and use advanced technologies to develop web-based multimedia applications.

UNIT I INTRODUCTION

9

An introduction to Object-oriented Databases; Multidimensional Data Structures k-d Trees, Point Quadtrees, The MX-Quadtree, R-Trees, comparison of Different Data Structures

UNIT II IMAGE DATABASES AND TEXT/DOCUMENT DATABASES

9

Raw Images, Compressed Image Representations, Image Processing Segmentation, Similarity-Based Retrieval, Alternative Image DB Paradigms, Representing Image DBs with Relations, Representing Image DBs with R-Trees, Retrieving Images By Spatial Layout, Implementations Text/Document Databases Precision and Recall, Stop Lists, Word Stems, and Frequency Tables, Latent Semantic Indexing, TV-Trees, Other Retrieval Techniques

UNIT III VIDEO DATABASES & AUDIO DATABASES

9

Video Databases Organizing Content of a Single Video, Querying Content of Video Libraries, Video Segmentation, video Standards Audio Databases A General Model of Audio Data, Capturing Audio Content through Discrete Transformation, Indexing Audio Data

UNIT IV MULTIMEDIA DATABASES

9

Design and Architecture of a Multimedia Database, Organizing Multimedia Data Based on The Principle of Uniformity, Media Abstractions, Query Languages for Retrieving Multimedia Data, Indexing SMDSs with Enhanced Inverted Indices, Query Relaxation/Expansion, Web-based multimedia applications.

UNIT V OBJECT MODEL & SPATIAL DATABASES

9

Creating Distributed Multimedia Presentations Objects in Multimedia Presentations, Specifying Multimedia Documents with Temporal Constraints, Efficient Solution of Temporal Presentation Constraints, Spatial Constraints. Introduction to Spatial Databases-Spatial Concepts and Data Models - Spatial Query Language - Spatial Storage and Indexing.

TOTAL: 45 PERIODS

OUTCOMES:

- Provides a basic study of the development of fundamental database systems.
- Understand the most fundamental MDBMS concepts and techniques
- Acquire knowledge of Image databases, Text/Document databases, Audio and Video databases.
- Grasp the modern database technologies suitable for multimedia data management, and
- Apply some of the advanced technologies such as spatial databases to develop web-based multimedia applications.

REFERENCES:

- 1. V.S. Subrahmanian," Principles of Multimedia Database Systems", Morgan Kauffman, 2nd Edition,2013.
- 2. Shashi Shekhar, Sanjiv Chawla ,"Spatial Databases", Pearson Education, 2002.
- 3. Lynne Dunckley,"Multimedia Databases An object relational approach", Pearson Education, 2003.
- 4. B.Prabhakaran, Multimedia Database Systems, Kluwer Academic, 1997

MU7211

GRAPHICS AND IMAGING LABORATORY

L T P C 0 0 3 2

OBJECTIVES:

- To understand the basics of different 2D and 3D transformations
- To get an understanding of animation and authoring tools
- To understand the concepts of 2D and 3D viewing and clipping
- To gain the knowledge of interactive multimedia applications.
- 1. Line drawing algorithm, Circle drawing algorithms, Ellipse drawing algorithm
- 2. 2D transformations
- 3. Clipping algorithms
- 4. 3D Graphics using OpenGL, 3D viewing, 3D transformations
- 5. Developing interactive multimedia applications:

The case studies are

- Authoring a 2D presentation: (storyboard, design layout, collect the content, Presentation)
- Mini project using any of the popular authoring tools (say, flash, director, dreamweaver)
- Creating simple 3D animations and visualizations
- Multimedia encyclopaedia
- Multimedia security systems
- Multimedia mail and documents
- Visual Information Systems.

TOTAL: 45 PERIODS

OUTCOMES:

Upon Completion of the course, the students should be able to

- Implement various transformations on 2D and 3D
- Develop algorithms for viewing, clipping
- Build multimedia interactive applications.

MU7212

MUTIMEDIA DATABASE LABORATORY

LT PC 00 3 2

OBJECTIVES:

- To study the design of databases for applications.
- To practice DBMS query language SQL and embedded programming.
- 1. Database Querying Nested queries, Sub queries and Joins
- 2. Triggers & Transaction Control
- 3. Embedded SQL & Database Connectivity with Front End Tools
- 4. PL/SQL Procedures and Functions
- 5. Developing Multimedia Database Applications like case studies such as:
 - Interactive image and Video retrieval system
 - Executive information systems
 - Remote consulting systems
 - Video conferencing
 - Image and Video Indexing
 - Searching Image Documents

TOTAL: 45 PERIODS

OUTCOMES:

• To design databases for various applications such as Image and Video Retrieval, Indexing.

TECHNICAL SEMINAR

L T P C 0 0 2 1

Presentation of seminar on any one topic of the following areas from Journals like ACM/Elsevier/IETE/IEEE Transactions.

- Multimedia compression
- Multimedia Data structures and Indexing
- Image segmentation techniques
- Feature Extraction and Classification
- Protocols for routing techniques for multimedia data.
- Techniques for Multimedia security.
- Multimedia Databases Queries and Transactions.

TOTAL:30 PERIODS

MU7301

3D MODELING AND RENDERING

L T P C 3 0 0 3

OBJECTIVES:

- To understand the basics of different geometrical shapes modeling
- To appreciate the different aspects of visibility of an objects
- To get an understanding of rendering real natural scene
- To understand the concepts of radiocity and kinematics in animation

UNIT I MATHEMATICS FOR MODELING

9

Vector tools and polar co-ordinates — Vectors fundamentals-Representations of key geometric objects — Intersection of lines, planes and polygons, clipping algorithms — 2D and 3D Affine transformation — 3D Viewing — 3D rendering pipeline - Camera movements - Introduction to OpenGL programming — Geometric transformation & viewing — projection & perspective transformation

UNIT II MODELING SHAPES

Q

Introduction – solid modeling – polyhedra – Extruded shapes – tessellation - Mesh approximation of smooth objects – Bezier Curves – B-splines – NURBS – Interpolation - Hierarchical and physical modeling – Hidden surface removal algorithms- Opengl - curve & surface – Interactive graphics

UNIT III SHADING & ILLUMINATION MODELS

9

Shading models – Flat shading – smooth shading – Reflections – Diffuse and secular reflection - Adding color - Antialiasing techniques – Dithering techniques - creating more shades and color – Opengl – specular highlights – spotlight – blending – reflections – applying colors- real world lights

UNIT IV TEXTURE AND RENDERING

9

Procedural and bitmaps textures - texture mapping or image - bump mapping - Environmental mapping - Magnification and minification, Minmapped textures - Ray tracing techniques - adding textures on to curved surfaces - tiling - fractals - Opengl - texture mapping

UNIT V COMPUTER ANIMATION

9

Raster methods – Design of animation sequences – animation techniques – Key-frame systems – motion specification – direct, kinematics, dynamics – rigid body animation – radiosity – collision detection – Graphics file format – Opengl animation procedures

Upon completion of the course, the students will be able to

- Design different polygons and real world objects
- Apply rendering techniques to make objects more realistic
- Apply lighting techniques to objects realism
- Analyze and Design an animation game

REFERENCES:

- 1. F.S. Hill Jr., Stephen Kelly, "Computer Graphics Using OpenGL", 3rd Edition, Persons Education/PHI Learing, 2007.
- 2. Donald Hearn , M. Pauline Baker, "Computer Graphics with OpenGL", 3rd Edition, Pearson Education, 2012.

MU7001

AUDIO VIDEO BROAD CASTING SYSTEMS

L T PC 3 0 0 3

OBJECTIVES:

- To gain knowledge about the Standards in the real world service creations.
- To know about new generation set-top boxes, hand-held devices, and PC add-in cards.
- Understand MPEG-2 System Standards.

UNIT I INTRODUCTION TO BROADCASTING

q

Frequency bands – Propagation and Modulation- Radio and Television Transmission System-Transmitting Antennas and Systems - RF System Maintenance – Test Equipments – Audio Test and Measurements – Video Signal Measurement and Analysis.

UNIT II DATA BROADCASTING

9

Introduction to data Broadcasting- Data Broadcasting system overview and Architecture- Mpeg 2 Transport Basics- Data Categorization- Service Description Frame work – Synchronized Streaming Encapsulation – Data Piping Protocol.

UNIT III DESIGN AND INSTALLATION OF VIDEO AND AUDIO SYSTEMS

9

Basics Of Television - Analog Video Fundamentals – Digital Video Fundamentals – Analog Audio fundamentals - Digital Audio Fundamentals – Data Multiplexing – Transition to DTD.

UNIT IV AUDIO VIDEO STREAMING

9

Introduction to streaming media – Video Encoding – Audio Encoding – Preprocessing –Stream Serving – Web Casting –Media Players- Applications for Streaming Media – Content Distribution.

UNIT V ALGORITHMS AND INTERFACES

C

Color Introduction to Luma and Chroma – Introduction to Component SDTV – Introduction to HDTV – Digital Video Interfaces – Filtering And Sampling – Image Digitization and Reconstructions – Perceptions and Visual Activity – DeInterlacing – DV Compressions - Digital television Standards.

- To Implement the Standards in the real world service creations.
- To work with new generation set-top boxes, hand-held devices, and PC add-in cards.
- To design various video streaming techniques.

REFERENCES:

- 1. David Austerberry, "The technology of video and audio streaming", Elsevier, 2nd edition, 2005
- 2. Richards.S Chernock, Regis J.cainon, Micheal A. Dolan, John R.Mick JR," Data
- 3. Broadcasting Understanding the ATCS Data Broadcasting Standerds", Tata Mcgraw Hill , 2001
- 4. Charles Poynton Morgan Kaufman Publishers,"Digital Video And HDTV Algorith and Interfaces" Charles Poynton Morgan Kaufman Publishers,2007
- 5. Jerry C. Whitaker, "Standard Handbook of Broadcast Engineering", Mcgraw Hill
- 6. Publications, 2005
- 7. Michael Robin and Michel Poulin, "Digital Television Fundamentals Design and
- 8. Installation of Video And Audio Systems" Tata Mcgraw Hill, Second Edition, 2000.

MU7002

WEB PROGRAMMING TECHNIQUES

L T PC 3 0 0 3

OBJECTIVES:

- To understand the issues in the design of web application development
- To learn the concepts of client side and server side technologies
- To understand and learn the importance of java based security solutions
- To learn the concept of other framework

UNIT I INTRODUCTION

Ş

Internet Principles – Basic Web Concepts – Client/Server model – Retrieving data from Internet – Scripting Languages – Perl Programming – Next Generation Internet – Protocols and applications.

UNIT II COMMON GATEWAY INTERFACE PROGRAMMING

a

HTML forms – CGI Concepts – HTML tags Emulation – Server–Browser communication – E-mail generation – CGI Client side Applets – CGI Server Side Applets – Authorization and Security – CGI programs using Perl.

UNIT III XML 9

Creating Markup with XML – Document Type Definition – Schemas – Document Object Model – Simple API for XML – Extensible Stylesheet languages – Formatting Objects –Xpath – XLink and XPointer – Introduction to SOAP – Case Studies – Custom markup languages.

UNIT IV SERVER SIDE PROGRAMMING

9

Dynamic Web Content – Server Side – Communication – Active and Java Server Pages – Firewalls – Proxy Servers – Web Service Implementation.

UNIT V ONLINE APPLICATIONS

Ś

Simple applications – On–line Databases – Monitoring User Events – Plug–ins – Database connectivity – Internet Information Systems – EDI application in business –Internet commerce – Customization of Internet commerce.

The student should be able to work with

- Design and development of web applications using various models
- Web application development using HTML and scripting technologies
- Web application development using advanced features
- Security features supported in java
- Design and development of applications using other frameworks

REFERENCES:

- 1. Deitel and Deitel, Nieto, Sadhu, "XML How to Program", Pearson Education publishers, 2001.
- 2. Eric Ladd, Jim O' Donnel, "Using HTML 4, XML and Java", Prentice Hall of India QUE, 1999.
- 3. Jeffy Dwight, Michael Erwin and Robert Niles, "Using CGI", prentice Hall of India QUE, 1999
- 4. Scot Johnson, Keith Ballinger, Davis Chapman, "Using Active Server Pages", Prentice Hall of India, 1999.
- 5. Gustavo Rossi, Oscar Pastor, Daniel Schwabe, Luis Olsina, "Web Engineering Modelling and Implementing web Applications", Springer, 2008.

MU7003 CREATIVITY, INNOVATION AND PRODUCT DEVELOPMENT

LT PC 3003

OBJECTIVES:

- To understand the issues in the need of creativity and innovation.
- To learn the concepts of project selection and its purpose.
- To understand and learn the importance of new product development.
- To learn and design of creative application in different domain.

INTRODUCTION UNIT I

8

The process of technological innovation - factors contributing to successful technological innovation - the need for creativity and innovation - creativity and problem solving - brain storming different techniques.

UNIT II PROJECT SELECTION AND EVALUATION

8

Collection of ideas and purpose of project – Selection criteria – screening ideas for new products (evaluation techniques).

UNIT III **NEW PRODUCT DEVELOPMENT**

Research and new product development - Patents - patent search - Patent laws - International code for patents – Intellectual property rights (IPR).

NEW PRODUCT PLANNING

Design of proto type - testing - quality standards - marketing research - introducing new products.

UNIT V LABORATORY

15

Creative design – Model Preparation – Testing – cost evaluation – Patent application

TOTAL: 45 PERIODS

OUTCOMES:

Students should be able to work with

- Comparison of different technological innovation
- Analysis and design of Project selection and evaluation.
- Implementation of new product development.
- Design and implementation of creative applications in different domain areas.

- 1. Harry Nystrom, "Creativity and Innovation", John Wiley & Sons, 1979.
- 2. Brain Twiss, "Managing Technological Innovation", Pitman Publishing Ltd., 1992.
- 3. Harry B.Watton, "New Product Planning", Prentice-Hall Inc., 1992.
- 4. P.N.Khandwalla, "Fourth Eye (Excellence through Creativity), Wheeler Publishing, Allahabad, 1992.
- 5. I.P.R. Bulletins, TIFAC, New Delhi, 1997.

CP7018

LANGUAGE TECHNOLOGIES

LT PC 3 00 3

COURSE OBJECTIVES:

- To understand the mathematical foundations needed for language processing
- To understand the representation and processing of Morphology and Part-of Speech Taggers
- To understand different aspects of natural language syntax and the various methods used for processing syntax
- To understand different methods of disambiguating word senses
- To know about various applications of natural language processing
- To learn the indexing and searching processes of a typical information retrieval system and to study NLP based retrieval systems
- To gain knowledge about typical text categorization and clustering techniques

UNIT I INTRODUCTION

g

Natural Language Processing – Mathematical Foundations – Elementary Probability Theory – Essential information Theory - Linguistics Essentials - Parts of Speech and Morphology – Phrase Structure – Semantics – Corpus Based Work.

UNIT II WORDS 9

Collocations – Statistical Inference – n-gram Models – Word Sense Disambiguation – Lexical Acquisition.

UNIT III GRAMMAR

Markov Models - Part-of-Speech Tagging - Probabilistic Context Free Grammars - Parsing.

UNIT IV INFORMATION RETRIEVAL

9

9

Information Retrieval Architecture – Indexing - Storage – Compression Techniques – Retrieval Approaches – Evaluation - Search Engines - Commercial Search Engine Features – Comparison - Performance Measures – Document Processing - NLP based Information Retrieval – Information Extraction.

UNIT V TEXT MINING

9

TOTAL: 45 PERIODS

Categorization – Extraction Based Categorization – Clustering - Hierarchical Clustering - Document Classification and Routing - Finding and Organizing Answers from Text Search – Text Categorization and Efficient Summarization using Lexical Chains – Machine Translation - Transfer Metaphor - Interlingual and Statistical Approaches.

OUTCOMES:

Upon completion of the course. the students will be able to

- Identify the different linguistic components of given sentences
- Design a morphological analyser for a language of your choice using finite state automata concepts

- Implement a parser by providing suitable grammar and words
- Discuss algorithms for word sense disambiguation
- Build a tagger to semantically tag words using WordNet
- Design an application that uses different aspects of language processing.

- 1. Christopher D. Manning and Hinrich Schutze, "Foundations of Statistical Natural Language Processing", MIT Press, 1999.
- 2. Daniel Jurafsky and James H. Martin, "Speech and Language Processing", Pearson, 2008.
- 3. Ron Cole, J. Mariani, et al., "Survey of the State of the Art in Human Language Technology", Cambridge University Press, 1997.
- 4. Michael W. Berry, "Survey of Text Mining: Clustering, Classification and Retrieval", Springer Verlag, 2003.

MU7004

SERVICE ORIENTED ARCHITECTURE

L T PC 3 0 0 3

COURSE OBJECTIVES:

- To understand various architecture for application development
- To learn the importance of SOA in Application Integration
- To learn web service and SOA related tools

UNIT I SOA BASICS

9

Software Architecture – Types of IT Architecture – SOA – Evolution – Key components – perspective of SOA – Enterprise-wide SOA – Architecture – Enterprise Applications – Solution Architecture for enterprise application – Software platforms for enterprise Applications – Patterns for SOA – SOA programming models

UNIT II SOA ANALYSIS AND DESIGN

9

Service-oriented Analysis and Design – Design of Activity, Data, Client and business process services – Technologies of SOA – SOAP – WSDL – JAX – WS – XML WS for .NET – Service integration with ESB – Scenario – Business case for SOA – stakeholder OBJECTIVES – benefits of SPA – Cost Savings

UNIT III SOA GOVERNANCE

9

SOA implementation and Governance – strategy – SOA development – SOA governance – trends in SOA – event-driven architecture – software s a service – SOA technologies – proof-of-concept – process orchestration – SOA best practices

UNIT IV SOA IMPLEMENTATION

9

SOA based integration – integrating existing application – development of web services – Integration - SOA using REST – RESTful services – RESTful services with and without JWS – Role of WSDL,SOAP and Java/XML mapping in SOA – JAXB Data binding.

UNIT V APPLICATION INTEGRATION

9

JAX –WS 2.0 client side/server side development – Packaging and Deployment of SOA component – SOA shopper case study –WSDL centric java WS with SOA-J – related software – integration through service composition (BPEL) – case study - current trends.

Students should be able to work with

- Comparison of different IT architecture
- Analysis and design of SOA based applications
- Implementation of web service and realization of SOA
- Implementation of RESTful services
- Design and implementation of SOA based Application Integration using BPEL

REFERENCES:

- 1. Shankar Kambhampaly, "Service-Oriented Architecture for Enterprise Applications", Wiley 2008.
- 2. Mark D. Hansen, "SOA using Java Web Services", Practice Hall, 2007.
- 3. Waseem Roshen, "SOA-Based Enterprise Integration", Tata McGraw-HILL, 2009.

MU7005

NON LINEAR EDITING

L T P C 3 0 0 3

OBJECTIVES:

- To introduce the broad perceptive of linear and nonlinear editing concepts.
- To understand the concept of Storytelling styles.
- To be familiar with the audio and video recording.
- To apply different media tools.
- To learn and understand the concepts of AVID XPRESS DV 4.

UNIT I FUNDAMENTALS

9

Evolution of filmmaking - linear editing - non-linear digital video - Economy of Expression - risks associated with altering reality through editing.

UNIT II STORYTELLING

9

Storytelling styles in a digital world through jump cuts, L-cuts, match cuts, cutaways, dissolves, split edits - Consumer and pro NLE systems - digitizing images - managing resolutions - mechanics of digital editing - pointer files - media management.

UNIT III USING AUDIO AND VIDEO

9

Capturing digital and analog video – importing audio – putting video on – exporting digital video to tape – recording to CDs and VCDs.

UNIT IV WORKING WITH FINAL CUT PRO

9

Working with clips and the Viewer - working with sequences, the Timeline, and the canvas - Basic Editing - Adding and Editing Testing Effects - Advanced Editing and Training Techniques - Working with Audio - Using Media Tools - Viewing and Setting Preferences.

UNIT V WORKING WITH AVID XPRESS DV 4

9

TOTAL: 45 PERIODS

Starting Projects and Working with Project Window - Using Basic Tools and Logging - Preparing to Record and Recording - Importing Files - Organizing with Bins - Viewing and Making Footage - Using Timeline and Working in Trim Mode - Working with Audio - Output Options.

OUTCOMES:

Compare the strengths and limitations of Nonlinear editing.

- Identify the infrastructure and significance of storytelling.
- Apply suitable methods for recording to CDs and VCDs.
- Address the core issues of advanced editing and training techniques.
- Design and develop projects using AVID XPRESS DV 4

25

- 1. Robert M. Goodman and Partick McGarth, "Editing Digital Video: The Complete Creative and Technical Guide", Digital Video and Audio, McGraw-Hill 2003.
- 2. Keith Underdahl, "Digital Video for Dummies", Third Edition, Dummy Series, 2001.
- 3. Final Cut Pro 6 User Manual, 2004.
- 4. Avid Xpress DV 4 User Guide, 2007.

NE7071

WEB DESIGN AND MANAGEMENT

L T PC 3 0 0 3

COURSE OBJECTIVES:

- To understand the issues and process of Web design.
- To learn the concepts of Web design patterns and page design.
- To understand and learn the scripting languages with design of web applications.
- To learn the maintenance and evaluation of web design management.

UNIT I SITE ORGANIZATION AND NAVIGATION

ç

User centered design – Web medium – Web design process – Evaluating process – Site types and architectures – Navigation theory – Basic navigation practices – Search – Site maps.

UNIT II ELEMENTS OF PAGE DESIGN

a

Browser compatible design issues - Pages and Layout - Templates - Text - Color - Images - Graphics and Multimedia - GUI Widgets and Forms - Web Design patterns

UNIT III SCRIPTING LANGUAGES

10

Client side scripting: XHTML - DHTML- JavaScript- XML Server side scripting: Perl - PHP - ASP/JSP Designing a Simple web application

UNIT IV PRE-PRODUCTION MANAGEMENT

8

Principles of Project Management – Web Project Method – Project Road Map – Project Clarification – Solution Definition – Project Specification – Content – Writing and Managing content.

UNIT V PRODUCTION, MAINTENANCE AND EVALUATION

9

Design and Construction – Testing, Launch and Handover – Maintenance – Review and Evaluation – Case Study.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to

- Identify the various issues of web design process and evaluation.
- Determine templates for web pages and layout.
- Develop simple web applications using scripting languages.
- Determine the various issues of web project development.
- Address the core issues of web page maintenance and evaluation.

- 1. Themas A. Powell, "The Complete Reference Web Design", Tata McGraw Hill, Third Edition, 2003.
- 2. Ashley Friedlein, "Web Project Management", Morgan Kaufmann Publishers, 2001.
- 3. H. M. Deitel, P. J. Deitel, A. B. Goldberg, "Internet and World Wide Web How to Program", Third Edition, Pearson Education 2004.
- 4. Joel Sklar, "Principles of Web Design", Thomson Learning, 2001.
- 5. Van Duyne, Landay, and Hong "The Design of Sites: Patterns for creating winning web sites", 2nd Edition, Prentice Hall, 2006.
- 6. Lynch, Horton and Rosenfeld, "Web Style Guide: Basic Design Principles for Creating Web Sites", 2nd Edition, Yale University Press, 2002.

MU7006

VISUALIZATION TECHNIQUES

L T P C 3 0 0 3

OBJECTIVES:

- To understand the importance of data visualization
- To know the different types of visualization techniques
- To create various visualizations

UNIT I INTRODUCTION

9

Introduction – Issues – Data Representation – Data Presentation – Common Mistakes in design.

UNIT II FOUNDATIONS FOR DATA VISUALIZATION

9

Visualization stages – Experimental Semiotics based on Perception Gibson's Affordance theory – A Model of Perceptual Processing – power of visual perception-Types of Data-visualization and data objects.

UNIT III COMPUTER VISUALIZATION

a

Non-Computer Visualization – Computer Visualization Exploring Complex Information Spaces – Fisheye Views – Applications – Comprehensible Fisheye views – Fisheye views for 3D data – Interacting with visualization

UNIT IV MULTIDIMENSIONAL VISUALIZATION

9

One Dimension – Two Dimensions – Three Dimensions – Multiple Dimensions – Trees – Web Works – Data Mapping Document Visualization – Workspaces.

UNIT V CASE STUDIES

9

Small interactive calendars – Selecting one from many – Web browsing through a key hole – Communication analysis – Archival analysis

TOTAL: 45 PERIODS

OUTCOMES:

The student will be able

- To compare various visualization techniques.
- To design creative visualizations.
- To apply visualization over different types of data.

REFERENCES:

- 1. Colin Ware, "Information Visualization Perception for Design" Morgon Kaufmann Publishers, 2nd edition, 2004.
- 2. Robert Spence "Information visualization Design for interaction", Pearson Education, 2nd Edition, 2007
- 3. Stephen Few, "Information Dashboard Design-The Effective Visual Communication of Data" O'Reilly ,1st Edition, 2006
- 4. Stuart.K.Card, Jock.D.Mackinlay and Ben Shneiderman, "Readings in Information Visualization Using Vision to think", Morgan Kaufmann Publishers.

CP7008

SPEECH PROCESSING AND SYNTHESIS

L T P C 3 0 0 3

OBJECTIVES

- To understand the mathematical foundations needed for speech processing
- To understand the basic concepts and algorithms of speech processing and synthesis
- To familiarize the students with the various speech signal representation, coding and recognition techniques
- To appreciate the use of speech processing in current technologies and to expose the students to real— world applications of speech processing

UNIT I FUNDAMENTALS OF SPEECH PROCESSING

9

Introduction – Spoken Language Structure – Phonetics and Phonology – Syllables and Words – Syntax and Semantics – Probability, Statistics and Information Theory – Probability Theory – Estimation Theory – Significance Testing – Information Theory.

UNIT II SPEECH SIGNAL REPRESENTATIONS AND CODING

9

Overview of Digital Signal Processing – Speech Signal Representations – Short time Fourier Analysis – Acoustic Model of Speech Production – Linear Predictive Coding – Cepstral Processing – Formant Frequencies – The Role of Pitch – Speech Coding – LPC Coder.

UNIT III SPEECH RECOGNITION

9

Hidden Markov Models – Definition – Continuous and Discontinuous HMMs – Practical Issues – Limitations. Acoustic Modeling – Variability in the Speech Signal – Extracting Features – Phonetic Modeling – Adaptive Techniques – Confidence Measures – Other Techniques.

UNIT IV TEXT ANALYSIS

g

Lexicon – Document Structure Detection – Text Normalization – Linguistic Analysis – Homograph Disambiguation – Morphological Analysis – Letter-to-sound Conversion – Prosody – Generation schematic – Speaking Style – Symbolic Prosody – Duration Assignment – Pitch Generation

UNIT V SPEECH SYNTHESIS

9

Attributes – Formant Speech Synthesis – Concatenative Speech Synthesis – Prosodic Modification of Speech – Source-filter Models for Prosody Modification – Evaluation of TTS Systems.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to

- Identify the various temporal, spectral and cepstral features required for identifying speech units phoneme, syllable and word
- Determine and apply Mel-frequency cepstral coefficients for processing all types of signals
- Justify the use of formant and concatenative approaches to speech synthesis
- Identify the apt approach of speech synthesis depending on the language to be processed
- Determine the various encoding techniques for representing speech.

REFERENCES:

- 1. Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, "Spoken Language Processing A guide to Theory, Algorithm and System Development", Prentice Hall PTR, 2001.
- 2. Thomas F.Quatieri, "Discrete-Time Speech Signal Processing", Pearson Education, 2002.
- 3. Lawrence Rabiner and Biing-Hwang Juang, "Fundamentals of Speech Recognition", Prentice Hall Signal Processing Series, 1993.
- 4. Sadaoki Furui, "Digital Speech Processing: Synthesis, and Recognition, Second Edition, (Signal Processing and Communications)", Marcel Dekker, 2000.
- 5. Joseph Mariani, "Language and Speech Processing", Wiley, 2009.

COURSE OBJECTIVES:

- To introduce the broad perceptive of cloud architecture and model
- To understand the concept of Virtualization
- To be familiar with the lead players in cloud.
- To understand the features of cloud simulator
- To apply different cloud programming model as per need.
- To be able to set up a private cloud.
- To understand the design of cloud Services.
- To learn to design the trusted cloud Computing system

UNIT I CLOUD ARCHITECTURE AND MODEL

q

Technologies for Network-Based System – System Models for Distributed and Cloud Computing – NIST Cloud Computing Reference Architecture.

Cloud Models:- Characteristics - Cloud Services - Cloud models (IaaS, PaaS, SaaS) - Public vs Private Cloud -Cloud Solutions - Cloud ecosystem - Service management - Computing on demand.

UNIT II VIRTUALIZATION

9

Basics of Virtualization - Types of Virtualization - Implementation Levels of Virtualization - Virtualization Structures - Tools and Mechanisms - Virtualization of CPU, Memory, I/O Devices - Virtual Clusters and Resource management - Virtualization for Data-center Automation.

UNIT III CLOUD INFRASTRUCTURE

9

Architectural Design of Compute and Storage Clouds – Layered Cloud Architecture Development – Design Challenges - Inter Cloud Resource Management – Resource Provisioning and Platform Deployment – Global Exchange of Cloud Resources.

UNIT IV PROGRAMMING MODEL

9

Parallel and Distributed Programming Paradigms – Map Reduce , Twister and Iterative Map Reduce – Hadoop Library from Apache – Mapping Applications - Programming Support - Google App Engine, Amazon AWS - Cloud Software Environments - Eucalyptus, Open Nebula, Open Stack, Aneka, CloudSim

UNIT V SECURITY IN THE CLOUD

9

Security Overview – Cloud Security Challenges and Risks – Software-as-a-Service Security – Security Governance – Risk Management – Security Monitoring – Security Architecture Design – Data Security – Application Security – Virtual Machine Security - Identity Management and Access Control – Autonomic Security.

TOTAL:45 PERIODS

OUTCOMES:

- Compare the strengths and limitations of cloud computing
- Identify the architecture, infrastructure and delivery models of cloud computing
- Apply suitable virtualization concept.
- Choose the appropriate cloud player
- Choose the appropriate Programming Models and approach.
- Address the core issues of cloud computing such as security, privacy and interoperability
- Design Cloud Services
- · Set a private cloud

- 1. Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 2. John W.Rittinghouse and James F.Ransome, "Cloud Computing: Implementation, Management, and Security", CRC Press, 2010.
- 3. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A Practical Approach", TMH, 2009.
- 4. Kumar Saurabh, "Cloud Computing insights into New-Era Infrastructure", Wiley India, 2011.
- 5. George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud" O'Reilly
- 6. James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 2005.
- 7. Katarina Stanoevska-Slabeva, Thomas Wozniak, Santi Ristol, "Grid and Cloud Computing A Business Perspective on Technology and Applications", Springer.
- 8. Ronald L. Krutz, Russell Dean Vines, "Cloud Security A comprehensive Guide to Secure Cloud Computing", Wiley India, 2010.
- 9. Rajkumar Buyya, Christian Vecchiola, S.Thamarai Selvi, 'Mastering Cloud Computing', TMGH,2013.
- 10. Gautam Shroff, Enterprise Cloud Computing, Cambridge University Press, 2011
- 11. Michael Miller, Cloud Computing, Que Publishing, 2008
- 12. Nick Antonopoulos, Cloud computing, Springer Publications, 2010

MU7007 VIRTUAL REALITY

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To impart the fundamental aspects, principles of virtual reality technology
- To gain knowledge about applications of virtual reality

UNIT I INTRODUCTION

,

Introduction to Virtual Reality – Definition – Three I's of Virtual Reality – Virtual Reality Vs 3D Computer Graphics – Benefits of Virtual Reality - Components of VR System - Input Devices – 3D Position Trackers -Performance Parameters – Types of Trackers - Navigation and Manipulation Interfaces – Gesture Interfaces – Types of Gesture Input Devices. Output Devices – Graphics Display – Human Visual System – Personal Graphics Displays – Large Volume Displays – Sound Displays – Human Auditory System.

UNIT II ARCHITECTURE

9

Computing Architectures of VR – Rendering Principle – Graphics and Haptics Rendering –PC Graphics Architecture – Graphics Accelerators – Graphics Benchmarks – Workstation Based Architectures – Sun Blade 1000 Architecture – SGI Infinite Reality Architecture – Distributed VR Architectures – Multipipeline Synchronization – Collocated Rendering Pipelines – Distributed Virtual Environments.

UNIT III MODELING

9

Modeling – Geometric Modeling – Virtual Object Shape – Object Visual Appearance – Kinematics Modeling – Transformation Matrices – Object Position – Transformation Invariants – Object Hierarchies – Viewing the 3D World – Physical Modeling – Collision Detection – Surface Deformation – Force Computation – Force Smoothing and Mapping – Behavior Modeling – Model Management.

UNIT IV PROGRAMMING

9

VR Programming – Toolkits and Scene Graphs – World ToolKit – Java 3D – Comparison of World ToolKit and Java 3D - GHOST – People Shop – Human Factors in VR – Methodology and Terminology – VR Health and Safety Issues – VR and Society.

UNIT V VR APPLICATIONS

9

Medical Applications of VR – Education, Arts and Entertainment – Military VR Applications – Emerging Applications of VR – VR Applications in Manufacturing – Applications of VR in Robotics – Information Visualization.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the student should be able to

- To understand the basic concepts of Virtual reality
- To expose the concept of Virtual Reality Programming with toolkits.
- Design of various modeling concepts.
- Develop the Virtual Reality applications in different areas

REFERENCES:

- 1. Grigore C. Burdea, Philip Coiffet, "Virtual Reality Technology", 2nd Edition, Wiley India, 2006.
- 2. John Vince, "Introduction to Virtual Reality", Springer-Verlag Ltd., 2004.
- 3. William R.Sherman, Alan B.Craig :Understanding Virtual Reality Interface, Application, Design",The Morgan Kaufmann Series, 2003.

NE7002

MOBILE AND PERVASIVE COMPUTING

L T PC 3 0 03

COURSE OBJECTIVES:

- To understand the basics of Mobile Computing and Personal Computing
- To learn the role of cellular networks in Mobile and Pervasive Computing
- To expose to the concept of sensor and mesh networks
- To expose to the context aware and wearable computing
- To learn to develop applications in mobile and pervasive computing environment

UNIT I INTRODUCTION

9

Differences between Mobile Communication and Mobile Computing – Contexts and Names – Functions – Applications and Services – New Applications – Making Legacy Applications Mobile Enabled – Design Considerations – Integration of Wireless and Wired Networks – Standards Bodies – Pervasive Computing – Basics and Vision – Principles of Pervasive Computing – Categories of Pervasive Devices

UNIT II 3G AND 4G CELLULAR NETWORKS

S

Migration to 3G Networks – IMT 2000 and UMTS – UMTS Architecture – User Equipment – Radio Network Subsystem – UTRAN – Node B – RNC functions – USIM – Protocol Stack – CS and PS Domains – IMS Architecture – Handover – 3.5G and 3.9G a brief discussion – 4G LAN and Cellular Networks – LTE – Control Plane – NAS and RRC – User Plane – PDCP, RLC and MAC – WiMax IEEE 802.16d/e – WiMax Internetworking with 3GPP

UNIT III SENSOR AND MESH NETWORKS

9

Sensor Networks – Role in Pervasive Computing – In Network Processing and Data Dissemination – Sensor Databases – Data Management in Wireless Mobile Environments – Wireless Mesh Networks – Architecture – Mesh Routers – Mesh Clients – Routing – Cross Layer Approach – Security Aspects of Various Layers in WMN – Applications of Sensor and Mesh networks

UNIT IV CONTEXT AWARE COMPUTING & WEARABLE COMPUTING

Adaptability – Mechanisms for Adaptation - Functionality and Data – Transcoding – Location Aware Computing – Location Representation – Localization Techniques – Triangulation and Scene Analysis – Delaunay Triangulation and Voronoi graphs – Types of Context – Role of Mobile Middleware – Adaptation and Agents – Service Discovery Middleware

Health BAN- Medical and Technological Requirements-Wearable Sensors-Intra-BAN communications

UNIT V APPLICATION DEVELOPMENT

9

Three tier architecture - Model View Controller Architecture - Memory Management - Information Access Devices - PDAs and Smart Phones - Smart Cards and Embedded Controls - J2ME - Programming for CLDC - GUI in MIDP - Application Development ON Android and iPhone.

TOTAL:45 PERIODS

OUTCOMES:

At the end of the course the student should be able to

- Design a basic architecture for a pervasive computing environment
- Design and allocate the resources on the 3G-4G wireless networks
- Analyze the role of sensors in Wireless networks
- Work out the routing in mesh network
- Deploy the location and context information for application development
- Develop mobile computing applications based on the paradigm of context aware computing and wearable computing

REFERENCES:

- 1. Asoke K Talukder, Hasan Ahmed, Roopa R Yavagal, "Mobile Computing: Technology, Applications and Service Creation", 2nd ed, Tata McGraw Hill, 2010.
- 2. Reto Meier, "Professional Android 2 Application Development", Wrox Wiley, 2010.
- 3. .Pei Zheng and Lionel M Li, 'Smart Phone & Next Generation Mobile Computing', Morgan Kaufmann Publishers, 2006.
- 4. Frank Adelstein, 'Fundamentals of Mobile and Pervasive Computing', TMH, 2005
- 5. Jochen Burthardt et al, 'Pervasive Computing: Technology and Architecture of Mobile Internet Applications', Pearson Education, 2003
- 6. Feng Zhao and Leonidas Guibas, 'Wireless Sensor Networks', Morgan Kaufmann Publishers, 2004
- 7. Uwe Hansmaan et al, 'Principles of Mobile Computing', Springer, 2003
- 8. Reto Meier, "Professional Android 2 Application Development", Wrox Wiley, 2010.
- 9. Mohammad s. Obaidat et al, "Pervasive Computing and Networking", John wiley
- 10. Stefan Poslad, "Ubiquitous Computing: Smart Devices, Environments and Interactions", Wiley, 2009.
- 11. Frank Adelstein Sandeep K. S. Gupta Golden G. Richard III Loren Schwiebert "Fundamentals of Mobile and Pervasive Computing, ", McGraw-Hill, 2005

MU7008

USER INTERFACE DESIGN

L T P C 3 0 0 3

OBJECTIVES:

- To understand the basics of User Interface Design.
- To design the user interface, design, menu creation and windows creation
- To understand the concept of menus, windows, interfaces, business functions, various problems in windows design with colour, text, Non-anthropomorphic Design.
- To study the design process and evaluations.

UNIT I INTERACTIVE SOFTWARE AND INTERACTION DEVICE

Human-Computer Interface - Characteristics Of Graphics Interface - Direct Manipulation Graphical System – Web User Interface –Popularity –Characteristic & Principles.

HUMAN COMPUTER INTERACTION UNIT II

User Interface Design Process – Obstacles –Usability –Human Characteristics In Design – Human Interaction Speed –Business Functions –Requirement Analysis – Direct – Indirect Methods – Basic Business Functions - Design Standards - General Design Principles - Conceptual Model Design -Conceptual Model Mock-Ups

UNIT III **WINDOWS**

9

Characteristics- Components- Presentation Styles- Types- Managements- Organizations-Operations—Web Systems—System Timings - Device—Based Controls Characteristics—Screen — Based Controls — Human Consideration In Screen Design – Structures Of Menus – Functions Of Menus- Contents Of Menu- Formatting - Phrasing The Menu - Selecting Menu Choice-Navigating Menus- Graphical Menus. Operate Control - Text Boxes- Selection Control-Combination Control— Custom Control— Presentation Control.

UNIT IV MULTIMEDIA

Text For Web Pages - Effective Feedback- Guidance & Assistance- Internationalization-Accessibility- Icons- Image- Multimedia - Coloring- Case Study: Addressing usability in E-Commerce sites

UNIT V DESIGN PROCESS AND EVALUATION

User Interface Design Process - Usability Testing - Usability Requirements and Specification procedures and techniques- User Interface Design Evaluation

TOTAL:45 PERIODS

OUTCOMES:

- Knowledge on development methodologies, evaluation techniques and user interface building tools
- Explore a representative range of design guidelines
- Gain experience in applying design guidelines to user interface design tasks.
- Ability to design their own Human Computer

REFERENCES:

- 1. Wilbent, O. Galitz, "The Essential Guide To User Interface Design", John Wiley& Sons,
- 2. Deborah Mayhew, The Usability Engineering Lifecycle, Morgan Kaufmann, 1999Ben Shneiderman, "Design The User Interface", Pearson Education, 1998.
- 3. Alan Cooper, "The Essential Of User Interface Design", Wiley Dream Tech Ltd., 2002. Sharp, Rogers, Preece, 'Interaction Design', Wiley India Edition, 2007
- 4. Alan Dix et al, " Human Computer Interaction ", Prentice Hall, 1993.
- 5. Ben Schneiderman, "Designing the User Interface", Addison Wesley, 2000.

L T PC 3 0 0 3

COURSE OBJECTIVES:

- To provide information about wider engineering issues that form the background to develop complex, evolving (software-intensive) systems
- To gain basic knowledge about object-oriented analysis and to familiarize UML concepts
- To study the requirements of various domain applications
- To design, implement and test the software in object oriented approach
- To discuss the issues in managing the software projects
- To explore the standards related to life cycle process

UNIT I INTRODUCTION

C

System Concepts – Software Engineering Concepts – Development Activities – Managing Software Development –Modelling with UML – Project Organization and Communication – Case Study

UNIT II REQUIREMENT ELICITATION AND ANALYSIS

9

Requirements Elicitation Concepts – Requirements Elicitation Activities – Managing Requirements Elicitation– Analysis Concepts – Analysis Activities – Managing Analysis - Case Study

UNIT III SYSTEM DESIGN

9

Decomposing the system – Overview of System Design – System Design Concepts – System Design Activities: Objects to Subsystems – System Design Activities: Addressing Design Goals – Managing System Design - Case Study

UNIT IV OBJECT DESIGN, IMPLEMENTATION AND TESTING

a

Object Design Overview – Reuse Concepts – Design Patterns – Reuse Activities – Managing Reuse – Interfaces Specification Concepts – Interfaces Specification Activities – Managing Object Design – Mapping Models to Code Overview – Mapping Concepts – Mapping Activities – Managing Implementation – Testing – Case Study

UNIT V MANAGING CHANGE

9

Rationale Management Overview – Rationale Concepts – Rationale Activities: From Issues to Decisions – Managing Rationale – Configuration Management Overview – Configuration Management Concepts – Configuration Management Activities – Managing Configuration Management – Project Management Overview – Project Management Activities – Standard for Developing Life Cycle Process (IEEE 1074) – Overview of Capability Maturity Model (CMM) – Life Cycle Models

TOTAL: 45 PERIODS

OUTCOMES:

Upon Completion of the course, the students should be able to

- Apply Object Oriented Software Engineering approach in every aspect of software project
- Analyse the requirements from various domains
- Evaluate the relationships between Software Design and Software Engineering
- Adapt appropriate object oriented design aspects in the development process
- Implement and test the software project using object oriented approach
- Manage the issues regarding the decision making and changes in the different stage of software development
- Implement mini projects incorporating the principles of object oriented software engineering

- 1. Bernd Bruegge, Alan H Dutoit, Object-Oriented Software Engineering, 2nd ed, PearsonEducation, 2004.
- 2. Ivar Jacobson, "Object Oriented Software Engineering", Pearson Education, 1992
- 3. Craig Larman, Applying UML and Patterns, 3rd ed, Pearson Education, 2005.
- 4. Stephen Schach, Software Engineering 7th ed, McGraw-Hill, 2007.

MU7009

INTELLIGENT AGENT SYSTEMS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To learn the principles and fundamentals of designing agents
- To analyze architecture design of different agents.
- To understand user interaction with agents.

UNIT I INTRODUCTION

9

Agents and Multi Agent Systems- Intelligent Agent- Concepts of Building Agent – Situated Agents – Proactive and Reactive agents- Challenging Agent Environment- Social Agents- Agent Execution Cycle- Prometheus Methodology- Guidelines for using Prometheus- Agent Oriented Methodologies- System Specification – Goal Specification – Functionalities – Scenario Development – Interface Description – Checking for Completeness and Consistency.

UNIT II ARCHITECTURAL DESIGN

9

Agent Types - Grouping Functionalities - Agent Coupling - Develop Agent Descriptors - Interactions - Interaction Diagram from Scenarios- Interaction Protocol from Interaction Diagram-Develop Protocol and Message Descriptors –Architectural Design - Identifying the Boundaries of Agent System – Percepts and Action - Shared Data Objects – System Overview – Checking for Completeness and Consistency.

UNIT III MODEL DESIGN CONCEPTS

9

Emergence Emergent Dynamics-Simulation Experiments and Behavior Space – Emergent Dynamics –Observation- Interface Displays- File output- Behavior Space as an Output Writer-Export Primitives and Menu Commands – Sensing Scope of Variables- Using Variables of other objects- Putting Sense to Work- Adaptive Behavior and Objectives- Prediction – Interaction-Scheduling –Stochasticity- Collectives.

UNIT IV PATTERN ORIENTED MODELING

9

Patterns for Model Structure- Steps in POM to Design Model Structure- Theory Development – Theory Development and Strong Interface in the Virtual Lab- Parameterization and Calibration-Parameterization of ABMs is Different- Parameterize Sub models –Calibration Concepts and Strategies

UNIT V AGENTS FOR INTELLIGENT ASSISTANCE

9

Computer Characters- Software Agents for Cooperative Learning – Integrated Agents- Agent Oriented Programming- KQML as an Agent Communication Language- Agent Based Framework for Interoperability - Agents for Information Gathering - KAoS- Communicative Actions for Artificial Agents – Mobile Agents.

TOTAL:45 PERIODS

OUTCOMES:

Upon Completion of the course, the students will be able to,

- implement a architecture design for an agent.
- implement communicative actions with agents.
- use a tool to implement typical agents for different types of applications.

- 1. Lin Padgham and Michael Winikoff "Developing Intelligent Agent System" John Wiley, 2004.
- 2. Steven F. RailsBack and Volker Grimm "Agent-Based and Individual Based modeling",s,Princeton university press, 2012
- 3. Lin Padgham and Michael Winikoff, "Developing Intelligent Agent Systems: A Practical Guide", John Wiley & sons Publication, 2004.
- 4. Jeffrey M. Bradshaw, "Software Agents", MIT Press , 1997.
- 5. Steven F. RailsBack and Volker Grimm, "Agent-Based and Individual Based modeling: A Practical Introduction", Princeton University Press, 2012.

IF7301 SOFT COMPUTING

L T P C 3 0 0 3

OBJECTIVES:

- To learn the key aspects of Soft computing and Neural networks.
- To know about the components and building block hypothesis of Genetic algorithm.
- To understand the features of neural network and its applications
- To study the fuzzy logic components
- To gain insight onto Neuro Fuzzy modeling and control.
- To gain knowledge in machine learning through Support vector machines.

UNIT I INTRODUCTION TO SOFT COMPUTING

9

Evolution of Computing - Soft Computing Constituents - From Conventional AI to Computational Intelligence - Machine Learning Basics

UNIT II GENETIC ALGORITHMS

q

Introduction, Building block hypothesis, working principle, Basic operators and Terminologies like individual, gene, encoding, fitness function and reproduction, Genetic modeling: Significance of Genetic operators, Inheritance operator, cross over, inversion & deletion, mutation operator, Bitwise operator, GA optimization problems, JSPP (Job Shop Scheduling Problem), TSP (Travelling Salesman Problem), Differences & similarities between GA & other traditional methods, Applications of GA.

UNIT III NEURAL NETWORKS

9

Machine Learning using Neural Network, Adaptive Networks – Feed Forward Networks – Supervised Learning Neural Networks – Radial Basis Function Networks - Reinforcement Learning – Unsupervised Learning Neural Networks – Adaptive Resonance Architectures – Advances in Neural Networks.

UNIT IV FUZZY LOGIC

9

Fuzzy Sets – Operations on Fuzzy Sets – Fuzzy Relations – Membership Functions-Fuzzy Rules and Fuzzy Reasoning – Fuzzy Inference Systems – Fuzzy Expert Systems – Fuzzy Decision Making

UNIT V NEURO-FUZZY MODELING

9

TOTAL: 45 PERIODS

Adaptive Neuro-Fuzzy Inference Systems – Coactive Neuro-Fuzzy Modeling – Classification and Regression Trees – Data Clustering Algorithms – Rule base Structure Identification – Neuro-Fuzzy Control – Case Studies.

OUTCOMES:

- Implement machine learning through Neural networks.
- Develop a Fuzzy expert system.
- Model Neuro Fuzzy system for clustering and classification.
- Write Genetic Algorithm to solve the optimization problem

- 1. Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, "Neuro-Fuzzy and Soft Computing", Prentice-Hall of India, 2003.
- 2. Kwang H.Lee, "First course on Fuzzy Theory and Applications", Springer-Verlag Berlin Heidelberg, 2005.
- 3. George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-Theory and Applications", Prentice Hall, 1995.
- 4. James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Pearson Edn., 2003.
- 5. David E. Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning", Addison Wesley, 2007.
- 6. Mitsuo Gen and Runwei Cheng,"Genetic Algorithms and Engineering Optimization", Wiley Publishers 2000.
- 7. Mitchell Melanie, "An Introduction to Genetic Algorithm", Prentice Hall, 1998.
- 8. S.N.Sivanandam, S.N.Deepa, "Introduction to Genetic Algorithms", Springer, 2007.
- 9. Eiben and Smith "Introduction to Evolutionary Computing" Springer
- 10. E. Sanchez, T. Shibata, and L. A. Zadeh, Eds., "Genetic Algorithms and Fuzzy Logic Systems: Soft Computing Perspectives, Advances in Fuzzy Systems Applications and Theory", Vol. 7, River Edge, World Scientific, 1997.

IF7003 VIDEO ANALYTICS L T P C 3 0 0 3

OBJECTIVES:

- To know the fundamental concepts of big data and analytics
- To learn various techniques for mining data streams
- To acquire the knowledge of extracting information from surveillance videos.
- To learn Event Modelling for different applications.
- To understand the models used for recognition of objects in videos.

UNIT I INTRODUCTION TO BIG DATA & DATA ANALYSIS

9

Introduction to Big Data Platform – Challenges of Conventional systems – Web data- Evolution of Analytic scalability- analytic processes and tools- Analysis Vs Reporting- Modern data analytic tools- Data Analysis: Regression Modeling- Bayesian Modeling- Rule induction.

UNIT II MINING DATA STREAMS

9

Introduction to Stream concepts- Stream data model and architecture – Stream Computing-Sampling data in a Stream- Filtering Streams- Counting distinct elements in a Stream- Estimating moments- Counting oneness in a window- Decaying window- Real time Analytics platform(RTAP) applications- case studies.

UNIT III VIDEO ANALYTICS

9

Introduction- Video Basics - Fundamentals for Video Surveillance- Scene Artifacts - Object Detection and Tracking: Adaptive Background Modelling and Subtraction- Pedestrian Detection and Tracking-Vehicle Detection and Tracking- Articulated Human Motion Tracking in Low-Dimensional Latent Spaces

UNIT IV BEHAVIOURAL ANALYSIS & ACTIVITY RECOGNITION

9

Event Modelling- Behavioural Analysis- Human Activity Recognition-Complex Activity Recognition-Activity modelling using 3D shape, Video summarization, shape based activity models- Suspicious Activity Detection

UNIT V HUMAN FACE RECOGNITION & GAIT ANALYSIS

Introduction: Overview of Recognition algorithms – Human Recognition using Face: Face Recognition from still images, Face Recognition from video, Evaluation of Face Recognition Technologies- Human Recognition using gait: HMM Framework for Gait Recognition, View Invariant Gait Recognition, Role of Shape and Dynamics in Gait Recognition

TOTAL:45 PERIODS

OUTCOMES:

On successful completion of this course, students will be able to:

- 1. Work with big data platform and its analysis techniques.
- 2. Design efficient algorithms for mining the data from large volumes.
- 3. Work with surveillance videos for analytics.
- 4. Design of optimization algorithms for better analysis and recognition of objects in a scene.
- 5. Model a framework for Human Activity Recognition

REFERENCES:

- 1. Michael Berthold, David J.Hand, Intelligent Data Analysis, Springer, 2007.
- 2. Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 2012.
- 3. Yunqian Ma, Gang Qian, "Intelligent Video Surveillance: Systems and Technology", CRC Press (Taylor and Francis Group), 2009.
- 4. Rama Chellappa, Amit K.Roy-Chowdhury, Kevin Zhou.S, "Recognition of Humans and their Activities using Video", Morgan&Claypool Publishers, 2005.

MU7010

CONTENT BASED IMAGE RETRIEVAL

LTPC

3 0 0 3

OBJECTIVES

- To learn about Content-Based Image Retrieval with user needs
- To gain knowledge about content-based image and video retrieval system.
- To have knowledge about the survey of Content-Based Image Retrieval

UNIT I INTRODUCTION

9

Fundamentals – Definition of CBIR - A typical CBIVR system architecture-User's perspective-Image use in the community- Users needs for image data.

UNIT II DESIGN OF CONTENT-BASED IMAGE RETRIEVAL SYSTEM

9

Feature extraction and representation- Similarity measurements-Dimension Reduction and High dimensional Indexing- Clustering-The Semantic Gap-Learning-Relevance Feedback(RF)-Benchmarking CBIVR solutions.

UNIT III DESIGN OF CONTENT-BASED VIDEO RETRIEVAL SYSTEM

9

The problem – Video Parsing-Video Abstraction and Summarization-Video content representation, Indexing and Retrieval-Video browsing schemes-Examples of Video Retrieval systems.

UNIT-IV SURVEY OF CONTENT-BASED IMAGE RETRIEVAL SYSTEM

9

Criteria – Systems: ADL – AMORE-ASSERT-BDLP-CANDID-CBIRD-CVBQ-CHROMA-Quicklook2-VisualSEEk-WISE.

UNIT V CASE STUDY: MUSE

Overview of the System-User's Perspective-The RF mode-RFC mode-Experiments and Results

TOTAL: 45 PERIODS

OUTCOMES:

- To apply knowledge of content-based image retrieval system
- To model and design of Retrieval system.
- To develop Content-Based Image Retrieval system with simple case studies.

REFERENCES:

- 1. Oge Marques, Borgo Furht, "Content Based Image and Video Retrieval", Kluwer Academic Publishers, 2002.
- 2. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, "Introduction to Information Retrieval", Cambridge University Press, 2008
- 3. Rafael C.Gonzalez and Richard E.Woods, "Digital Image Processing", Third Edition, Pearson Education, 2008, New Delhi.

NE7012 SOCIAL NETWORK ANALYSIS

LT P C 3 0 0 3

COURSE OBJECTIVES:

- To understand the concepts of Social networks and Web Social Networks
- To appreciate the modeling and visualizing techniques associated with Social Networks
- To understand the different techniques used to mine communities from Web Social Networks
- To appreciate concepts of evolution and prediction in Social Networks
- To understand the application of text mining techniques for Content and Opinion mining

UNIT I INTRODUCTION

g

Introduction to Web - Limitations of current Web - Development of Semantic Web - Emergence of the Social Web - Statistical Properties of Social Networks -Network analysis - Development of Social Network Analysis - Key concepts and measures in network analysis - Discussion networks - Blogs and online communities - Web-based networks.

UNIT II MODELING AND VISUALIZATION

9

Visualizing Online Social Networks - A Taxonomy of Visualizations - Graph Representation - Centrality- Clustering - Node-Edge Diagrams - Visualizing Social Networks with Matrix-Based Representations- Node-Link Diagrams - Hybrid Representations - Modelling and aggregating social network data - RandomWalks and their Applications –Use of Hadoop and MapReduce - Ontological representation of social individuals and relationships.

UNIT III MINING COMMUNITIES

9

Aggregating and reasoning with social network data, Advanced Representations - Extracting evolution of Web Community from a Series of Web Archive - Detecting Communities in Social Networks - Evaluating Communities - Core Methods for Community Detection & Mining - Applications of Community Mining Algorithms - Node Classification in Social Networks.

UNIT IV EVOLUTION

9

Evolution in Social Networks – Framework - Tracing Smoothly Evolving Communities - Models and Algorithms for Social Influence Analysis - Influence Related Statistics - Social Similarity and Influence - Influence Maximization in Viral Marketing - Algorithms and Systems for Expert Location in Social Networks - Expert Location without Graph Constraints - with Score Propagation – Expert Team Formation - Link Prediction in Social Networks - Feature based Link Prediction - Bayesian Probabilistic Models - Probabilistic Relational Models

UNIT V TEXT AND OPINION MINING

9

Text Mining in Social Networks -Opinion extraction – Sentiment classification and clustering - Temporal sentiment analysis - Irony detection in opinion mining - Wish analysis - Product review mining – Review Classification – Tracking sentiments towards topics over time.

TOTAL: 45 PERIODS

OUTCOMES:

Upon Completion of the course, the students will be able to

- Build a social network data set from existing social networking sites
- Identify the different components of a web social network that can be used for analyzing and mining
- Identify the different data structures and graph algorithms that can be used for web social network mining
- Implement a community detection algorithm
- Process Social Network data using MapReduce paradigm
- Design an application that uses various aspects of Social Network Mining to improve its functionality and to harvest information available on the web to build recommender systems
- Analyze social media data using appropriate data/web mining techniques

REFERENCES:

- 1. Charu C. Aggarwal, "Social Network Data Analytics", Springer; 2011
- 2. Peter Mika, "Social Networks and the Semantic Web", Springer, 1st edition 2007.
- 3. Borko Furht, "Handbook of Social Network Technologies and Applications", Springer, 1st edition, 2010.
- 4. Guandong Xu, Yanchun Zhang and Lin Li, "Web Mining and Social Networking Techniques and applications", Springer, 1st edition, 2011.
- 5. Giles, Mark Smith, John Yen, "Advances in Social Network Mining and Analysis", Springer, 2010.
- 6. Ajith Abraham, Aboul Ella Hassanien, Václav Snášel, "Computational Social Network Analysis: Trends, Tools and Research Advances", Springer, 2009.
- 7. Toby Segaran, "Programming Collective Intelligence", O'Reilly, 2012

MU7011

VIDEO COMPRESSION

L T P C 3 0 0 3

OBJECTIVES:

- To introduce principles and current technologies of multimedia systems.
- To study the issues in effectively representing, processing and transmitting multimedia data including text, graphics, sound and music, image and video.
- To study the Image, video and audio standards such as JPEG, MPEG, H.26x, Dolby Digital and AAC will be reviewed.
- To study the applications such as video conferencing, multimedia data indexing and retrieval will also be introduced.

UNIT I INTRODUCTION

9

Overview of image compression - important information theory concepts - entropy definition and interpretation - Shannon-Fanon coding - Huffman coding - Adaptive Huffman coding - Lempel-Ziv codec- QM codec, context-based QM coder - examples of lossless compression

UNIT II QUANTIZATION

9

Scalar quantization, optimal scalar quantizer, commander- Vector quantization- Audio and speech compression- JPEG & JPEG-2000 still image compression- Video coding standards (A) MPEG-1, MPEG-2

UNIT III VIDEO PROCESSING

9

Video coding standards H.264/AVC and HEVC- Video coding techniques - motion estimation, rate control algorithms, pre & post processing- Video delivery/streaming over wired and wireless networks

UNIT IV ADVANCED VIDEO CODING TECHNIQUES

9

Mobile multimedia computing- Multimedia content management and protection- Future directions – Multi-view video coding, depth coding and others

UNIT V CONTENT MANAGEMENT

9

Video Compression-Motion Compensation, H.261 standard – FMM-14 Multimedia Applications Content-based retrieval in digital libraries – FMM

TOTAL:45 PERIODS

OUTCOMES:

Upon Completion of the course, the students will be able

- To know principles and current technologies of multimedia systems
- To know issues in effectively representing, processing, and retrieving multimedia data
- To know the areas by implementing some components of a multimedia streaming system
- To know the latest web technologies and some advanced topics in current multimedia research

REFERENCES:

- 1. Handbook of Image and Video processing Al Bovik (Alan C Bovik), Academic Press, Second Edition, 2005.
- 2. Digital Image Sequence Processing, Compression, and Analysis Todd R. Reed, CRC Press, 2004.
- 3. H.264 and MPEG-4 Video Compression: Video Coding for Next Generation Multimedia Iain E.G. Richardson, Wiley, 2003
- 4. Digital Video Processing A. Murat Tekalp, Prentice Hall, 1995
- 5. Andy Beach, "Real World Video Compression" Pearson Education, 2010.
- 6. Peter D. Symes," Video Compression Demystified" McGraw-Hill, 2001.
- 7. Yun Q. Shi, Huifang Sun," Image and Video Compression for Multimedia Engineering Fundamentals, Algorithms, and Standards" 2nd Edition 2008.