ANNA UNIVERSITY
CHENNAI - 600 025

UNIVERSITY DEPARTMENTS

REGULATIONS 2012

CURRICULA AND SYLLABI FOR
I TO VIII SEMESTERS

B.E. MINING ENGINEERING
(FULL TIME)
ANNA UNIVERSITY::CHENNAI 600 025

UNIVERSITY DEPARTMENT

R – 2012

B.E. MINING ENGINEERING

I TO VIII SEMESTERS CURRICULA AND SYLLABI

SEMESTER – I

<table>
<thead>
<tr>
<th>CODE NO.</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS8151</td>
<td>Technical English - I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MA8151</td>
<td>Mathematics – I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PH8151</td>
<td>Engineering Physics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CY8151</td>
<td>Engineering Chemistry</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GE8151</td>
<td>Computing Techniques</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GE8152</td>
<td>Engineering Graphics</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH8161</td>
<td>Physics Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CY8161</td>
<td>Chemistry Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>GE8161</td>
<td>Computer Practices Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>GE8162</td>
<td>Engineering Practices Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>17</td>
<td>2</td>
<td>13</td>
<td>27</td>
</tr>
</tbody>
</table>

*Note: The Common Course Committee for I Semester shall provide the syllabus for all the subjects of I Semester.

SEMESTER – II

<table>
<thead>
<tr>
<th>CODE NO.</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS8251</td>
<td>Technical English II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MA8251</td>
<td>Mathematics II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>CODE NO.</td>
<td>COURSE TITLE</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PH8251</td>
<td>Materials Science</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CY8202</td>
<td>Chemistry for Mining Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GE8251</td>
<td>Engineering Mechanics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>EE8251</td>
<td>Basic Electrical Engineering and Measurements</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MI8201</td>
<td>Mine Development</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME8261</td>
<td>Computer Aided Machine Drawing</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ME8262</td>
<td>Manufacturing Technology Laboratory – I</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL 21 3 6 28

Note: The syllabus for the course – MINE DEVELOPMENT is provided herewith and the Common Course Committee for II Semester shall provide the syllabus for the remaining subjects

SEMESTER – III

<table>
<thead>
<tr>
<th>CODE NO.</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG8301</td>
<td>Geology – I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CE8353</td>
<td>Strength of Materials</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EC8302</td>
<td>Basic Electronics Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EE8305</td>
<td>Electrical Drives and Control</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME8303</td>
<td>Basic Mechanical Engineering for Mining</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MI8301</td>
<td>Drilling and Blasting</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PRACTICAL

<table>
<thead>
<tr>
<th>CODE NO.</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC8361</td>
<td>Electronics Engineering Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>EE8262</td>
<td>Electrical Engineering Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>MI8311</td>
<td>Practical Training – I*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL 18 0 6 23

* The students would be undergoing **Training in Mines** during the Summer Vacation at the end of the **Second Semester** for a period of 15 to 30 days. The students have to submit a report on the Training which would be evaluated and the grades for the same would be awarded and reported in the ensuing **Third Semester**.
SEMESTER – IV

<table>
<thead>
<tr>
<th>CODE NO.</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG8401</td>
<td>Geology – II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CE8352</td>
<td>Fluid Mechanics and Machinery</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CE8405</td>
<td>Engineering Surveying</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EE8408</td>
<td>Instrumentation Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MI8401</td>
<td>Mine Environmental Engineering - I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MI8402</td>
<td>Mining Machinery- I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MI8403</td>
<td>Surface Mining</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG8411</td>
<td>Geology Laboratory - I</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CE8361</td>
<td>Fluid Mechanics and Machines Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ME8412</td>
<td>Basic Mechanical Engineering Laboratory for Mining</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>21</td>
<td>0</td>
<td>9</td>
<td>26</td>
</tr>
</tbody>
</table>

SEMESTER – V

<table>
<thead>
<tr>
<th>CODE NO.</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA8501</td>
<td>Statistics and Numerical Methods</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MI8501</td>
<td>Mine Environmental Engineering - II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MI8502</td>
<td>Mine Surveying</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MI8503</td>
<td>Mineral Processing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MI8504</td>
<td>Mining Machinery - II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MI8505</td>
<td>Rock Mechanics and Ground Control - I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MI8506</td>
<td>Underground Mining Methods -Coal</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG8511</td>
<td>Geology Lab II and Field work</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
** The students would be undergoing Training in Mines during the Summer Vacation at the end of the Fourth Semester for a period of 15 to 30 days. The students have to submit a report on the Training which would be evaluated and the grades for the same would be awarded and reported in the ensuing Fifth Semester.

SEMESTER – VI

<table>
<thead>
<tr>
<th>CODE NO.</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME8652</td>
<td>Industrial Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MI8601</td>
<td>Computer Applications in Mining</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MI8602</td>
<td>Rock Mechanics and Ground Control - II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MI8603</td>
<td>Underground Mining Methods - Metal</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective - I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS8561</td>
<td>Employability skills</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>MI8611</td>
<td>Mineral Processing Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>MI8612</td>
<td>Mining Machinery Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>MI8613</td>
<td>Rock Mechanics and Ground Control Laboratory - I</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CE8613</td>
<td>Survey Lab - II</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>15</td>
<td>0</td>
<td>12</td>
<td>21</td>
</tr>
</tbody>
</table>

SEMESTER – VII

<table>
<thead>
<tr>
<th>CODE NO.</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MI8701</td>
<td>Mine Economics and Investment</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
The students would be undergoing **Training in Mines** during the Summer Vacation at the end of the **Sixth Semester** for a period of 15 to 30 days. The students have to submit a report on the Training which would be evaluated and the grades for the same would be awarded and reported in the ensuing **Seventh Semester**.

SEMMESTER – VIII

<table>
<thead>
<tr>
<th>CODE NO.</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MI8801</td>
<td>Mine Legislation and Safety</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective – III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MI8811</td>
<td>Project Work</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
</tbody>
</table>

TOTAL 6 0 12 12

TOTAL CREDITS: 185
<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Code No.</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MI8001</td>
<td>Advanced Coal Mining and Mechanization</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MI8002</td>
<td>Advanced Metal Mining and Mechanization</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MI8003</td>
<td>Advanced Surface Mining</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MI8004</td>
<td>Energy Conservation and Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>MI8005</td>
<td>Longwall Mining</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>MI8006</td>
<td>Material Handling</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>MI8007</td>
<td>Material Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>MI8008</td>
<td>Mine Safety Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>MI8009</td>
<td>Mineral Exploration</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>MI8010</td>
<td>Non-destructive Testing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>MI8011</td>
<td>Numerical Methods in Mining Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>MI8012</td>
<td>Object Oriented Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>MI8013</td>
<td>Petroleum Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>MI8014</td>
<td>Rock Excavation Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>MI8015</td>
<td>Rock Reinforcement</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16.</td>
<td>MI8016</td>
<td>Rock Slope Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17.</td>
<td>MI8017</td>
<td>Small Scale and Marine Mining</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>18.</td>
<td>MI8018</td>
<td>Subsidence Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>19.</td>
<td>MI8019</td>
<td>Systems Engineering in Mining</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>20.</td>
<td>GE8071</td>
<td>Fundamental of Nano Sciences</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>No.</td>
<td>Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>---</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>21.</td>
<td>GE8751</td>
<td>Engineering Ethics and Human Values</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>22.</td>
<td>MG8652</td>
<td>Management Sciences</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>23.</td>
<td>MG8654</td>
<td>Total Quality Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>24.</td>
<td>ME8076</td>
<td>Entrepreneurship Development</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>25.</td>
<td>ME8078</td>
<td>New and Renewable Sources of Energy</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>26.</td>
<td>ME8752</td>
<td>Finite Element Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>27.</td>
<td>MF8078</td>
<td>Quality Control and Reliability Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>28.</td>
<td>GE8072</td>
<td>Disaster Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>29.</td>
<td>GE8073</td>
<td>Human Rights</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
OBJECTIVES:

• To enable all students of engineering and technology develop their basic communication skills in English.
• To give special emphasis to the development of speaking skills amongst the students of engineering and technology students.
• To ensure that students use the electronic media such as internet and supplement the learning materials used in the classroom.
• To inculcate the habit of reading for pleasure.

UNIT I
Listening - Introducing learners to GIE - Types of listening - Listening to audio (verbal & sounds);
Speaking - Speaking about one’s place, important festivals etc. – Introducing oneself, one’s family / friend; Reading - Skimming a reading passage – Scanning for specific information - Note-making; Writing - Free writing on any given topic (My favourite place / Hobbies / School life, etc.) - Sentence completion - Autobiographical writing (writing about one’s leisure time activities, hometown, etc.); Grammar - Prepositions - Reference words - Wh-questions - Tenses (Simple); Vocabulary - Word formation - Word expansion (root words / etymology); E-materials - Interactive exercises for Grammar & Vocabulary - Reading comprehension exercises - Listening to audio files and answering questions.

UNIT II
Listening - Listening and responding to video lectures / talks; Speaking - Describing a simple process (filling a form, etc.) - Asking & answering questions - Telephone skills – Telephone etiquette; Reading – Critical reading - Finding key information in a given text - Sifting facts from opinions; Writing - Biographical writing (place, people) - Lab descriptions (general/specific description of laboratory experiments) - Definitions - Recommendations; Grammar - Use of imperatives - Subject-verb agreement; Vocabulary - Compound words - Word Association; E-materials - Interactive exercises for Grammar and Vocabulary - Listening exercises with sample telephone conversations / lectures – Picture-based activities.

UNIT III
Listening - Listening to specific task - focused audio tracks; Speaking - Role-play – Simulation - Group interaction - Speaking in formal situations (teachers, officials, foreigners); Reading - Reading and interpreting visual material; Writing - Jumbled sentences - Coherence and cohesion in writing - Channel conversion (flowchart into process) - Types of paragraph (cause & effect / compare & contrast / narrative / analytical) - Informal writing (letter/e-mail/blogs) -
UNIT IV
Listening - Watching videos / documentaries and responding to questions based on them;
Speaking - Responding to questions - Different forms of interviews - Speaking at different types of interviews;
Reading - Making inference from the reading passage - Predicting the content of a reading passage;
Writing - Interpreting visual materials (line graphs, pie charts etc.) - Essay writing – Different types of essays;
Grammar - Adverbs – Tenses – future time reference;
Vocabulary - Single word substitutes - Use of abbreviations & acronyms;
E-materials - Interactive exercises for Grammar and Vocabulary - Sample interviews - film scenes - dialogue writing.

UNIT V
Listening - Listening to different accents, Listening to Speeches / Presentations, Listening to broadcast & telecast from Radio & TV;
Speaking - Giving impromptu talks, Making presentations on given topics;
Reading - Email communication - Reading the attachment files having a poem/joke/proverb - Sending their responses through email
Writing - Interpreting visual materials - Creative writing, Poster making;
Grammar - Direct and indirect speech;
Vocabulary - Lexical items (fixed / semi fixed expressions);
E-materials - Interactive exercises for Grammar & Vocabulary - Sending emails with attachment – Audio / video excerpts of different accents,

OUTCOMES:
Learners should be able to
- Speak clearly, confidently, comprehensibly, and communicate with one or many listeners using appropriate communicative strategies.
- Write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide vocabulary range, organizing their ideas logically on a topic.
- Read different genres of texts adopting various reading strategies.
- Listen/view and comprehend different spoken discourses/excerpts in different accents

TOTAL: 60 PERIODS

TEXT BOOK:

REFERENCE BOOKS:

EXTENSIVE READERS

WEBSITE RESOURCES:
1. www.uefap.com
2. www.eslcafe.com
3. www.listen-to-english.com
4. www.owl.english.purdue.edu
5. www.chompchomp.com

MA8151 MATHEMATICS – I L T P C
(Common to all branches of B.E. / B.Tech. Programmes in I Semester) 3 1 0 4

OBJECTIVES:
• To develop the use of matrix algebra techniques this is needed by engineers for practical applications.
• To make the student knowledgeable in the area of infinite series and their convergence so that he/ she will be familiar with limitations of using infinite series approximations for solutions arising in mathematical modeling.
• To familiarize the student with functions of several variables. This is needed in many branches of engineering.
• To introduce the concepts of improper integrals, Gamma, Beta and Error functions which are needed in engineering applications.
• To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.

UNIT I MATRICES 9+3
Eigenvalues and Eigenvectors of a real matrix – Characteristic equation – Properties of eigenvalues and eigenvectors – Cayley-Hamilton Theorem – Diagonalization of matrices –
Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms.

UNIT II INFINITE SERIES

UNIT III FUNCTIONS OF SEVERAL VARIABLES

UNIT IV IMPROPER INTEGRALS

UNIT V MULTIPLE INTEGRALS

TOTAL: 60 PERIODS

OUTCOMES:
- This course equips students to have basic knowledge and understanding in one field of materials, integral and differential calculus

TEXT BOOKS:

REFERENCES:
PH8151 ENGINEERING PHYSICS L T P C
(Common to ALL Branches of B.E./B.Tech. Programmes) 3 0 0 3

OBJECTIVE:
To introduce the basic physics concepts relevant to different branches of Engineering and Technology.

UNIT I PROPERTIES OF MATTER 9
Elasticity - Poisson’s ratio and relationship between moduli (qualitative) - Stress-strain diagram
- factors affecting elasticity - bending of beams - cantilever - bending moment - theory and
experiment of Young’s modulus determination - Uniform and non-uniform bending - I
shaped girders - twisting couple - hollow cylinder - shaft - torsion pendulum - determination
of rigidity modulus- moment of inertia of a body (regular and irregular).

UNIT II ACOUSTICS AND ULTRASONICS 9
Classification of sound - loudness and intensity - Weber-Fechner Law - standard intensity
and intensity level - decibel - reverberation - reverberation time - rate of growth and decay of
sound intensity - derivation of Sabine’s formula - absorption coefficient and its determination
- factors affecting acoustics of buildings : focussing, interference, echo, Echelon effect,
resonance - noise and their remedies. Ultrasonics - production - magnetostriction and
piezoelectric methods - detection of ultrasound - acoustic grating - industrial applications -
NDT - Ultrasonic method: scan modes and practice.

UNIT III THERMAL PHYSICS 9
Thermal expansion - thermal stress - expansion joints - bimetallic strips - thermal
conductivity
- conductions in solids - Forbe’s and Lees’ disc methods - Rectilinear flow of heat
through a rod - flow of heat through a compound materials - radical flow of heat through a
spherical shell - thermal insulation of buildings – Laws of blackbody radiation: Kirchoffs law,
Stephens law, Wiens law, Raleigh-Jean law and Planks law (derivation). Laws of
thermodynamics - Otto and diesel engines and their efficiency - entropy - entropy of Carnot’s
cycle - reverse Carnot’s cycle - refrigerator.

UNIT IV APPLIED OPTICS 9
Interference - Michelson interferometer: construction, working, determination of wave length
and thickness - anti-reflection coating - air wedge and its application - Lasers - Einstein’s
coefficients - CO2, Nd:YAG and semiconductor lasers - homo junction and hetro junction -
construction and working - applications - Optical fibres - classification (index & mode
based) - principle and propagation of light in optical fibres - acceptance angle and numerical
Aperture - fibre optic communication system - active and passive sensors.
UNIT V SOLID STATE PHYSICS
Nature of bonding - growth of single crystals (qualitative) - crystal systems - crystal planes and directions - expressions for interplanar distance - coordination number and packing factor for simple structures: SC, BCC, FCC and HCP - structure and significance of NaCl, ZnS, diamond and graphite - crystal imperfections: point defects, dislocations and stacking faults - unit cell, Bravais space lattices - Miller indices.

OUTCOMES:
- The students will have knowledge on the basics of physics related to properties of matter, optics, acoustics etc., and they will apply these fundamental principles to solve practical problems related to materials used for engineering applications.

TEXTBOOKS:

REFERENCES:

CY8151 ENGINEERING CHEMISTRY L T P C
(Common to all branches of Engineering and Technology) 3 0 0 3

OBJECTIVES:
- To make the students conversant with basics of polymer chemistry.
- To make the student acquire sound knowledge of second law of thermodynamics and second law based derivations of importance in engineering applications in all disciplines.
- To acquaint the student with concepts of important photophysical and photochemical processes and spectroscopy.
- To acquaint the students with the basics of nano materials, their properties and applications.

UNIT I CHEMICAL THERMODYNAMICS
Second law: Entropy - entropy change for an ideal gas, reversible and irreversible processes; entropy of phase transitions; Clausius inequality. Free energy and work function: Helmholtz and Gibbs free energy functions; Criteria of spontaneity; Gibbs-Helmholtz equation; Clausius-Clapeyron equation; Maxwell relations – Van’t Hoff isotherm and isochore. Chemical potential; Gibbs-Duhem equation – variation of chemical potential with temperature and pressure.
UNIT II POLYMER CHEMISTRY

Introduction: Classification of polymers – Natural and Synthetic; Thermoplastic and Thermosetting. Functionality – Degree of polymerisation. Types and mechanism of polymerisation: Addition (Free Radical, cationic, anionic and living); condensation and copolymerisation. Properties of polymers: Tg, Tacticity, Molecular weight – weight average, number average and polydispersity index. Techniques of polymerisation: Bulk, emulsion, solution and suspension.

UNIT III KINETICS AND CATALYSIS

UNIT IV PHOTOCHEMISTRY AND SPECTROSCOPY

UNIT V NANOCHEMISTRY

OUTCOMES:
- The knowledge gained on polymer chemistry, thermodynamics, spectroscopy, phase rule and nano materials will provide a strong platform to understand the concepts on these subjects for further learning.

TEXT BOOKS

REFERENCE BOOKS:
2. K. K. Rohatgi-Mukherjee, “Fundamental of Photochemistry” New Age International (P)
GE8151 COMPUTING TECHNIQUES L T P C
 3 0 0 3

OBJECTIVES:
The students should be made to:
• Learn the organization of a digital computer.
• Be exposed to the number systems.
• Learn to think logically and write pseudo code or draw flow charts for problems.
• Be exposed to the syntax of C.
• Be familiar with programming in C.
• Learn to use arrays, strings, functions, pointers, structures and unions in C.

UNIT I INTRODUCTION 8

UNIT II C PROGRAMMING BASICS 10

UNIT III ARRAYS AND STRINGS 9

UNIT IV FUNCTIONS AND POINTERS 9

UNIT V STRUCTURES AND UNIONS 9
Introduction – need for structure data type – structure definition – Structure declaration – Structure within a structure - Union - Programs using structures and Unions – Storage classes, Pre-processor directives.

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, the student should be able to:
- Design C Programs for problems.
- Write and execute C programs for simple applications.

TEXTBOOKS

REFERENCES

GE8152 ENGINEERING GRAPHICS

OBJECTIVES
To develop in students, graphic skills for communication of concepts, ideas and design of engineering products and expose them to existing national standards related to technical drawings.

Concepts and conventions (Not for Examination) 1
Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREE HAND SKETCHING 14
Basic Geometrical constructions, Curves used in engineering practices
Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three Dimensional objects – Layout of views- Free hand sketching of multiple views from pictorial views of objects

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES 14
Orthographic projection- principles-Principal planes-First angle projection-Projection of points.
Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and trapezoidal method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.
UNIT III PROJECTION OF SOLIDS
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids hen the axis is inclined to one of the principal planes by rotating object method and auxiliary plane method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES
Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones. Development of lateral surfaces of solids with cut-outs and holes

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS
Principles of isometric projection – isometric scale –Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions and miscellaneous problems. Perspective projection of simple solids- Prisms, pyramids and cylinders by visual ray method and vanishing point method.

COMPUTER AIDED DRAFTING (DEMONSTRATION ONLY)
Introduction to drafting packages and demonstration of their use.

TOTAL: 75 PERIODS

OUTCOMES: On Completion of the course the student will be able to
- perform free hand sketching of basic geometrical constructions and multiple views of objects.
- do orthographic projection of lines and plane surfaces.
- draw projections and solids and development of surfaces.
- prepare isometric and perspective sections of simple solids.
- demonstrate computer aided drafting.

TEXT BOOKS

REFERENCES
Publication of Bureau of Indian Standards:
5. IS 15021 (Parts 1 to 4) – 2001: Technical drawings – Projection

Methods:
Special points applicable to University Examinations on Engineering Graphics:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
4. The examination will be conducted in appropriate sessions on the same day

PH 8161
PHYSICS LABORATORY
(Common to all branches of B.E. / B.Tech. Programmes)

OBJECTIVES:
• To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics, properties of matter and liquids.

1. Torsional pendulum Determination of rigidity modulus of wire and moment of inertia of disc
2. Non–uniform bending Determination of young’s modulus
3. Lee’s disc Determination of thermal conductivity of a bad conductor
4. Potentiometer Determination of thermo e.m.f. of thermocouple
5. Air wedge Determination of thickness of a thin sheet of paper
6. i. Optical fibre Determination of Numerical Aperture and acceptance angle
 ii. Compact disc Determination of width of the groove using laser
7. Acoustic grating Determination of velocity of ultrasonic waves in liquids
8. Post office box Determination of Band gap of a semiconductor
9. Spectrometer Determination of wavelength using grating
10. Viscosity of liquids Determination of co-efficient of viscosity of a liquid by Poiseuille’s flow

TOTAL : 30 PERIODS

OUTCOMES:
• The hands on exercises undergone by the students will help them to apply physics principles of optics and thermal physics to evaluate engineering properties of materials.
OBJECTIVES:
- To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To acquaint the students with the determination of molecular weight of a polymer by vacometry.

1. Estimation of HCl using Na2CO3 as primary standard and Determination of alkalinity in water sample.
2. Determination of total, temporary & permanent hardness of water by EDTA method.
3. Determination of DO content of water sample by Winkler’s method.
4. Determination of chloride content of water sample by argentometric method.
5. Estimation of copper content of the given solution by iodometry.
6. Determination of strength of given hydrochloric acid using pH meter.
7. Determination of strength of acids in a mixture of acids using conductivity meter.
8. Estimation of iron content of the given solution using potentiometer.
9. Estimation of iron content of the water sample using spectrophotometer (1,10-phenanthroline / thiocyanate method).
10. Estimation of sodium and potassium present in water using flame photometer.
14. Determination of CMC.
15. Phase change in a solid.

TOTAL: 30 PERIODS

OUTCOMES:
- The students will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters

REFERENCE BOOKS
Learn to use Arrays, strings, functions, structures and unions.

LIST OF EXPERIMENTS:
1. Search, generate, manipulate data using MS office/ Open Office
2. Presentation and Visualization – graphs, charts, 2D, 3D
3. Problem formulation, Problem Solving and Flowcharts
4. C Programming using Simple statements and expressions
5. Scientific problem solving using decision making and looping.
6. Simple programming for one dimensional and two dimensional arrays.
7. Solving problems using String functions
8. Programs with user defined functions
9. Program using Recursive Function and conversion from given program to flow chart.
10. Program using structures and unions.

TOTAL : 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Apply good programming design methods for program development.
- Design and implement C programs for simple applications.
- Develop recursive programs.

GE8162 ENGINEERING PRACTICES LABORATORY L T P C
(COMMON TO ALL BRANCHES OF B.E./B.TECH. PROGRAMMES) 0 0 3 2

OBJECTIVE
To provide exposure to the students with hands-on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP – A (CIVIL & ELECTRICAL)

1. CIVIL ENGINEERING PRACTICE 12

Plumbing
Basic pipe connections involving the fittings like valves, taps, coupling, unions, reducers, elbows and other components used in household fittings. Preparation of plumbing line sketches.
Laying pipe connection to the suction side of a pump – inlet.
Laying pipe connection to the delivery side of a pump – outlet.
Practice in mixed pipe connections: Metal, plastic and flexible pipes used in household appliances.
Wood Work
Sawing, planning and making common joints: T-Joint, Mortise and Tenon joint, Dovetail joint.

Study
Study of joints in door panels, wooden furniture
Study of common industrial trusses using models.

2. ELECTRICAL ENGINEERING PRACTICE
Basic household wiring using switches, fuse, indicator – lamp etc.,
Preparation of wiring diagrams
Stair case light wiring
Tube – light wiring
Study of iron-box, fan with regulator, emergency lamp

GROUP – B (MECHANICAL AND ELECTRONICS)

3. MECHANICAL ENGINEERING PRACTICE
Welding
Arc welding of butt joints, lap joints, tee joints
Gas welding Practice.
Basic Machining
Simple turning, drilling and tapping operations.
Machine assembly Practice.
Study and assembling the following:
Centrifugal pump, mixies and air conditioners.
Demonstration on
(a) Smithy operations like the production of hexagonal bolt.
(b) Foundry operation like mould preparation for grooved pulley.

4. ELECTRONIC ENGINEERING PRACTICE
Soldering simple electronic circuits and checking continuity.
Assembling electronic components on a small PCB and testing. Study of Telephone, FM radio, low-voltage power supplies.

TOTAL: 45 PERIODS
OUTCOMES:
- Ability to fabricate carpentry components and pipe connections including plumbing works.
- Ability to use welding equipments to join the structures
- Ability to fabricate electrical and electronics circuits

HS8251 TECHNICAL ENGLISH II L T P C
(For all branches of B.E / B.Tech programmes) 3 1 0 4

- To make the students acquire listening and speaking skills meant for both formal and informal contexts
- To help them develop their reading skills by exposing them to different types of reading strategies
- To equip them with writing skills needed for academic as well as workplace situations
- To make them acquire language skills at their own pace by using e-materials and language lab component

UNIT I
Listening - Listening to informal conversations and participating; Speaking - Opening a conversation (greetings, comments on something, weather) - Turn taking - Closing a conversation (excuses, general wish, positive comment, thanks); Reading - Developing analytical skills, Deductive and inductive reasoning - Extensive reading; Writing - Effective use of SMS for sending short notes and messages - Using ‘emoticons’ as symbols in email messages; Grammar - Regular & irregular verbs - Active and passive voice; Vocabulary - Homonyms (e.g. ‘can’) - Homophones (e.g. ‘some’, ‘sum’); E-materials - Interactive exercise on Grammar and vocabulary – blogging; Language Lab - Listening to different types of conversation and answering questions.

UNIT II
Listening - Listening to situation based dialogues; Speaking - Conversation practice in real life situations, asking for directions (using polite expressions), giving directions (using imperative sentences), Purchasing goods from a shop, Discussing various aspects of a film (they have already seen) or a book (they have already read); Reading - Reading a short story or an article from newspaper, Critical reading, Comprehension skills; Writing - Writing a review / summary of a story / article, Personal letter (Inviting your friend to a function, congratulating someone for his success, thanking one’s friend / relatives); Grammar - modal verbs, Purpose expressions; Vocabulary - Phrasal verbs and their meanings, Using phrasal verbs in sentences; E-materials - Interactive exercise on Grammar and vocabulary, Extensive reading activity (reading
UNIT III
Listening - Listening to the conversation - Understanding the structure of conversations; Speaking - Conversation skills with a sense of stress, intonation, pronunciation and meaning - Seeking information – expressing feelings (affection, anger, regret etc.); Reading - Speed reading – reading passages with the time limit - Skimming; Writing - Minutes of meeting – format and practice in the preparation of minutes - Writing summary after reading the articles from the journals - Format for the journal articles – elements of technical articles (abstract, introduction, methodology, results, discussion, conclusion, appendices, references) - Writing strategies; Grammar - Conditional clauses - Cause and effect expressions; Vocabulary - Words used as nouns and verbs without any change in the spelling (e.g. ‘rock’, ‘train’, ‘ring’); E-materials - Interactive exercise on Grammar & vocabulary - Speed Reading practice exercises; Language Lab - Intonation practice using EFLU materials – Attending a meeting and writing minutes.

UNIT IV
Listening - Listening to a telephone conversation, Viewing a model interview (face-to-face, telephonic and video conferencing) and observing the practices; Speaking - Role play practice in telephone skills - listening and responding, - asking questions, - note taking – passing on messages, Role play and mock interview for grasping the interview skills; Reading - Reading the job advertisements and the profile of the company concerned – scanning; Writing - Applying for a job – cover letter - résumé preparation – vision, mission and goals of the candidate; Grammar - Numerical expressions - Connectives (discourse markers); Vocabulary - Idioms and their meanings – using idioms in sentences; E-materials - Interactive exercises on Grammar & Vocabulary - Different forms of résumés- Filling up a résumé / cover letter; Language Lab - Telephonic interview – recording the responses - e-résumé writing.

UNIT V
Listening - Viewing a model group discussion and reviewing the performance of each participant - Identifying the characteristics of a good listener; Speaking - Group discussion skills – initiating the discussion – exchanging suggestions and proposals – expressing dissent/agreement – assertiveness in expressing opinions – mind mapping technique; Reading - Note making skills – making notes from books, or any form of written materials - Intensive reading Writing - Types of reports – Feasibility / Project report – report format – recommendations / suggestions – interpretation of data (using charts for effective presentation); Grammar - Use of clauses; Vocabulary – Collocation; E-materials - Interactive grammar and vocabulary exercises - Sample GD - Pictures for discussion, Interactive grammar and vocabulary exercises - Pictures for discussion; Language Lab - Different models of group discussion

TOTAL: 45 PERIODS
OUTCOMES:
Learners should be able to
• Speak convincingly, express their opinions clearly, initiate a discussion, negotiate, argue using appropriate communicative strategies.
• Write effectively and persuasively and produce different types of writing such as narration, description, exposition and argument as well as creative, critical, analytical and evaluative writing.
• Read different genres of texts, infer implied meanings and critically analyse and evaluate them for ideas as well as for method of presentation.
• Listen/view and comprehend different spoken excerpts critically and infer unspoken and implied meanings.

TEXT BOOK:

REFERENCE BOOKS:

EXTENSIVE READERS

WEB RESOURCES
1. www.esl-lab.com
2. www.englishgrammar.org
3. www.englishclub.com
4. www.mindtools.com
5. www.esl.about.com
OBJECTIVES:

- To make the student acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems.
- To acquaint the student with the concepts of vector calculus, needed for problems in all engineering disciplines.
- To develop an understanding of the standard techniques of complex variable theory so as to enable the student to apply them with confidence, in application areas such as heat conduction, elasticity, fluid dynamics and flow of electric current.
- To make the student appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated.

UNIT I DIFFERENTIAL EQUATIONS 9+3
Method of variation of parameters – Method of undetermined coefficients – Homogenous equation of Euler’s and Legendre’s type – System of simultaneous linear differential equations with constant coefficients.

UNIT II VECTOR CALCULUS 9+3
Gradient and directional derivative – Divergence and Curl – Irrotational and Solenoidal vector fields – Line integral over a plane curve – Surface integral and volume integral - Green’s, Gauss divergence and Stoke’s theorems – Verification and application in evaluating line, surface and volume integrals.

UNIT III ANALYTIC FUNCTION 9+3

UNIT IV COMPLEX INTEGRATION 9+3

UNIT V LAPLACE TRANSFORMS 9+3

TOTAL : 60 PERIODS
OUTCOMES:
- The subject helps the students to develop the fundamentals and basic concepts in vector calculus, ODE, Laplace transform and complex functions. Students will be able to solve problems related to engineering applications by using these techniques.

TEXT BOOKS:

REFERENCES:

PH8251 MATERIALS SCIENCE
(Common to Manufacturing, Industrial, Mining, Mechanical, Aeronautical, Automobile and Production Engineering)

OBJECTIVE:
To introduce the essential principles of materials science for mechanical and related engineering applications.

UNIT I MECHANICAL PROPERTIES

UNIT II PHASE DIAGRAMS
Solid solutions - Hume Rothery’s rules - free energy of solid solution - intermediate phases - The phase rule - single component system - one-component system of iron - binary phase diagrams - isomorphous systems - the tie-line rule - the level rule - application to isomorphous
system - eutectic phase diagram - peritectic phase diagram - other invariant reactions - microstructural change during cooling.

UNIT III FERROUS ALLOYS AND HEAT TREATMENT

UNIT IV ELECTRONIC MATERIALS
Classification of solids - energy bands - concept of Fermi level - conductor, semiconductor, insulator - Semiconductors: intrinsic, extrinsic - carrier concentration expression (qualitative) - compound semiconductors (qualitative) - dielectric materials - polarization mechanisms - dielectric breakdown - magnetic materials - ferromagnetic materials & hysteresis - ferrites - superconducting materials, properties, types and applications.

UNIT V NEW MATERIALS AND APPLICATIONS

TOTAL: 45 PERIODS

OUTCOMES:
- Upon completion of this course, the students can able to apply the different materials, their processing, and heat treatments in suitable application in mechanical engineering fields.

TEXT BOOK:

REFERENCE BOOKS:
AIM
To impart knowledge on the Applied Chemistry topics important in Mining Engineering.

OBJECTIVES:
To make the students conversant with
- Treatment of water for domestic and industrial purpose
- Applications of different kinds of Polymers, Lubricants and adhesives.
- Types and mechanism of corrosion and control measures
- Application of different types of abrasives and chemical nature of building materials and composites
- Chemistry of different types of Fuels and Explosives

UNIT I WATER TREATMENT

UNIT II POLYMERS, LUBRICANTS AND ADHESIVES
Thermosetting and thermoplastics resins – properties and applications of polythene, polypropylene, TEFLOm, polystyrene, polyvinyl chloride, PMMA, polyamides, polyesters, bakelite, vulcanization of rubber – rubber blended plastics – laminated plastics – laminated glass – thermocole. Lubricants and lubrication- functions- classification with examples- properties (viscosity index, flash and fire point, oiliness, carbon residue, aniline point, cloud and pour point)- greases (calcium based, sodium based, lithium based only)- solid lubricants- graphite and molybdenum sulphide. Adhesives – adhesive action – development of adhesive strength – physical and chemical factors influencing adhesive action – bonding process of adhesives – phenol formaldehyde resins, polyurethane, epoxy resins, urea formaldehyde

UNIT III CORROSION AND CORROSION INHIBITION
UNIT IV ABRASIVES AND CHEMISTRY OF BUILDING MATERIALS

UNIT V FUELS AND EXPLOSIVES

TOTAL: 45 PERIODS

OUTCOMES:

- The knowledge gained on water treatment, polymer chemistry, corrosion, adhesive and fuels and explosives will provide a strong platform to understand the concepts on these subjects for further learning.

TEXT BOOKS:

REFERENCE BOOKS

OBJECTIVE

• To develop capacity to predict the effect of force and motion in the course of carrying out the design functions of engineering

UNIT I BASICS AND STATICS OF PARTICLES 12

UNIT II EQUILIBRIUM OF RIGID BODIES 12

UNIT III PROPERTIES OF SURFACES AND SOLIDS 12

UNIT IV DYNAMICS OF PARTICLES 12

UNIT V FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS 12
Friction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge friction-. Rolling resistance - Translation and Rotation of Rigid Bodies – Velocity and acceleration – General Plane motion of simple rigid bodies such as cylinder, disc/wheel and sphere.

TOTAL: 60 PERIODS
OUTCOMES:

- ability to explain the differential principles applies to solve engineering problems dealing with force, displacement, velocity and acceleration.
- ability to analyse the forces in any structures.
- ability to solve rigid body subjected to dynamic forces.

TEXT BOOKS:

REFERENCES:

EE8251 BASIC ELECTRICAL ENGINEERING AND MEASUREMENTS L T P C 3 0 0 3

AIM

To provide knowledge in the basic concepts of Electric Circuits, Electrical machines and Measurement techniques.

OBJECTIVE:

To impart knowledge on
I. Electric circuit laws
II. Principle of Electrical Machines
III. Various measuring instruments
UNIT I ELECTRICAL CIRCUITS

UNIT II ELECTRICAL MACHINES
Construction and Principle of operation DC machines- Characteristics of DC machines Construction and Principle of operation of single phase transformers, synchronous machines, three-phase and single-phase induction motors

UNIT III MEASUREMENT AND INSTRUMENTATION
Classification of instruments – moving coil and moving iron meters – Induction type,dynamometer type wattmeters – Energy meter – Megger – Instrument transformers (CT &PT) –Wheatstone’s bridge for measurement of unknown resistance ,Maxwell’s bridge for unknown inductance and Schering Bridge for unknown capacitance

UNIT IV TRANSUDCERS
Classification of transducers, strain, RTD, thermocouples, Piezo-electric transducer, LVDT,Turbine and electromagnetic flow meters, level transducers ultrasonic and fiber optic transducers, type of sensors, elastic sensors, viscosity, moisture and pH sensors, Digital transducers, vibrating wire instruments like load cells, stress meter, etc.

UNIT V SIGNAL CONDITIONING AND DISPLAY
Instrumentation amplifiers- Filters- A/D and D/A converters - Multiplexing and data acquisition - LED, LCD and CRT displays.

TOTAL: 45 PERIODS

OUTCOMES:
• Upon Completion of this subject, the students can able to explain different types of electrical machines and their performance

TEXT BOOKS

REFERENCES

MI 8201 MINE DEVELOPMENT L T P C 3 0 0 3

AIM:
To impart knowledge on mineral deposits and development of mining industry.

OBJECTIVES:
- To introduce the field of mining and provide basic input about mining unit operations.
- To know the history of mining and describe the correlation between the development of mining and cultural progress.
- To study concept of exploration & development drilling, blasting and the technology employed.
- To learn the various modes of access and study the methods of designing the access.

UNIT I INTRODUCTION TO MINING 8
History of mining, contribution of mining to civilisation and national economy Indian mineral resources and world status, role of mining engineers in industry. Introduction to opencast and underground coal & metalliferous mining – selection criteria, comparison. Modes of entry into deposits for underground mining – shafts, inclines, adits, etc.

UNIT II INTRODUCTION TO DRILLING 10
Principles of drilling, methods, selection, applications and limitations, drill bits, flushing methods, fields of application, exploration and production drilling, drilling in undergroundworkings, variables affecting the performance of drilling, novel methods of drilling.

UNIT III SHAFT SINKING 10
Selection of site and size, sinking methods, support system, ventilation, lighting and drainage arrangements during sinking, material handling and safety in sinking shafts. Introduction to piling, caisson and freezing methods - cementation method - widening and deepening of shafts. Modern techniques of shaft sinking – shaft boring, design of shaft insets, pit bottom excavation and shaft raising.

UNIT IV INTRODUCTION TO EXPLOSIVES AND BLASTING 10
Types of explosives, fuses, detonators and other accessories, alternatives to explosives, cause of accidents and safety precautions, drilling and blasting pattern for underground excavations,
merits, demerits and limitations of blasting. Storage and transport of explosives.

UNIT V DRIFTING AND TUNNELING

Drivage of drifts, organisation and cycle of operations, supporting of development workings, modern methods of drifting, tunnelling, road heading and tunnel boring.

OUTCOME:

- The students will have basic insight into field of mining along with basic concept relating to history of mining, drilling methods, shaft sinking, explosive and blasting along with drifting and tunneling technology.

REFERENCE BOOKS:

8. Universal Mining School - Lecture notes, cardiff, U.K

ME8261 COMPUTER AIDED MACHINE DRAWING

OBJECTIVE

- To make the students understand and interpret drawings of machine components so as to prepare assembly drawings both manually and using standard CAD packages.
- To familiarize the students with Indian Standards on drawing practices and standard components.

UNIT I DRAWING STANDARDS

UNIT II FITS AND TOLERANCES

Limits, Fits – Tolerancing of individual dimensions – Specification of Fits – Preparation of production drawings and reading of part and assembly drawings, basic principles of geometric dimensioning & tolerancing.
UNIT III INTRODUCTION TO DRAFTING PACKAGE
Drawing, Editing, Dimensioning, Plotting Commands, Layering Concepts, Matching, Detailing, Detailed drawing, Basic principles of geometric dimensioning & tolerancing.

UNIT IV ASSEMBLY DRAWING (Preparation of 2D assembled views for the given part details)

TOTAL: 20% of classes for theory classes and 80% of classes for practice = 45 PERIODS

Note: 50% of assembly drawings must be done manually and remaining 50% of assembly drawings must be done by using any 2D drafting package)

OUTCOMES
• Ability to develop engineering drawing for the industrial component using Indian Standard code of practice.

TEXT BOOKS

REFERENCES

ME8262 MANUFACTURING TECHNOLOGY LABORATORY – I

OBJECTIVES:
• To Study and practice the various operations that can be performed in lathe, shaping, drilling, milling etc. and to equip with the practical knowledge required in the core
industries.

LIST OF EXPERIMENTS:
Machining, Measurement and Machining time estimations of:
- Taper Turning
- External Thread cutting
- Internal Thread Cutting
- Eccentric Turning Knurling
- Square Head Shaping
- Hexagonal Head Shaping

TOTAL: 45 PERIODS

OUTCOMES:
- Upon completion of this course, the students can able to demonstrate and fabricate different types of components using the machine tools

AG8301 GEOLOGY – I L T P C 3 0 0 3

AIM:
To familiarize the students with the fundamental concepts of geology and its role in mining engineering

OBJECTIVE:
To lay emphasis on the study of minerals, rocks and structures. At the end of the course the students will have an understanding of the sciences of ores and minerals.

UNIT I PHYSICAL GEOLOGY 9

UNIT II STRATIGRAPHY 9
Geological time scale – mineral resource distributions and economic importance of Archean, Paleozoic, Mesozoic and Cenozoic rocks of India.

UNIT III MINERALOGY 9
Classification of minerals – Physical properties of minerals – Properties of quartz, feldspar, pyroxene, amphibole, mica, olivine and garnet group of minerals and calcite.
UNIT IV PETROLOGY
Classification of rocks – Description of igneous, sedimentary and metamorphic rocks – forms and mode of occurrence of rocks – Engineering properties of rocks: field and laboratory tests.

UNIT V STRUCTURAL GEOLOGY

OUTCOME:
- The students will know about minerals, rocks and structures. They will also learn about stratigraphy, petrology and structural geology

TEXT BOOKS:

REFERENCE BOOKS:

CE8353 STRENGTH OF MATERIALS
(Common for Mechanical, Manufacturing, Industrial, Mining, Printing, Material Science and Engineering and Agriculture and Irrigation Engineering)

OBJECTIVE:
To understand the stresses developed in bars, compounds bars, beams, shafts, cylinders and spheres.
UNIT I STRESS, STRAIN AND DEFORMATION OF SOLIDS 9

UNIT II TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM 9

UNIT III TORSION 9
Torsion formulation stresses and deformation in circular and hollows shafts – Stepped shafts – Deflection in shafts fixed at the both ends – Stresses in helical springs – Deflection of helical springs, carriage springs.

UNIT IV DEFLECTION OF BEAMS 9
Double Integration method – Macaulay’s method – Area moment Theorems for computation of slopes and deflections in beams - Conjugate beam and strain energy – Maxwell's reciprocal theorems.

UNIT V THIN CYLINDERS, SPHERES AND THICK CYLINDERS 9
Stresses in thin cylindrical shell due to internal pressure circumferential and longitudinal stresses and deformation in thin cylinders – spherical shells subjected to internal pressure – Deformation in spherical shells – Lame’s theory – Application of theories of failure.

TOTAL: 45 PERIODS

OUTCOMES:
- Upon completion of this course, the students can able to apply mathematical knowledge to calculate the deformation behavior of simple structures.
- Critically analyse problem and solve the problems related to mechanical elements and analyse the deformation behavior for different types of loads.

TEXT BOOKS:

REFERENCES:
AIM:
To familiarize the students with the fundamental concepts in electronics engineering

OBJECTIVE:
To lay emphasis on the study of electronics engineering. At the end of the course the students will have an understanding of engineering of electronics.

UNIT I SEMICONDUCTORS AND RECTIFIERS
Classification of solids based on energy band theory, Intrinsic semiconductors, Extrinsic semiconductors – P-type and N-type, P-N junction, VI Characteristics of PN junction diode, Half and Full wave rectifiers, Zener effect, Zener diode, Zener diode Characteristics, Zener diode as a regulator.

UNIT II TRANSISTOR AND AMPLIFIERS
Bipolar junction transistors – CB, CE, CC configurations and characteristics, Biasing circuits – Fixed bias, Voltage divider bias, CE amplifier, Concept of feedback, Negative feedback, voltage series feedback amplifier, Current series feedback amplifier.

UNIT III FET AND POWER ELECTRONIC DEVICES
FET – Configuration and characteristics, FET amplifier, Characteristics and simple applications of SCR, Diac, Triac and UJT.

UNIT IV SIGNAL GENERATORS AND LINEAR ICs

UNIT V DIGITAL ELECTRONICS
Boolean algebra, Logic Gates, , Half and Full adders, Decoder, Encoder, Multiplexer, Demultiplexer, Flip flops, Digital to Analog converters - R-2R and weighted resistor types, Analog to Digital converters - Successive approximation and Flash types.

OUTCOME:
- The students will have knowledge about semiconductors, rectifiers, transistor, amplifiers, FET, power electronics, signal generators and linear ICs. They will also know about digital electronics.
TEXT BOOK:

REFERENCES:

EE8305 ELECTRICAL DRIVES AND CONTROL L T P C 3 0 0 3

AIM
To provide knowledge in the area of electrical dives and their control techniques

OBJECTIVES:
To impart knowledge on
I. Basics of electric drives
II. Different speed control methods
III. Various motor starters and controllers
IV. Applications

UNIT I INTRODUCTION

UNIT II SPEED CONTROL OF DC MACHINES

UNIT III SPEED CONTROL OF AC MACHINES
Induction motor – Speed torque Characteristics – pole changing, stator frequency variation - slip-ring induction motor – stator voltage variation - Rotor resistance variation, slip power recovery – basic inverter circuits- variable voltage frequency control.
UNIT IV MOTOR STARTERS AND CONTROLLERS

DC motor starters using voltage sensing relays, current sensing relays and time delay relays - wound rotor induction motor starters – starters using frequency sensing relays -DOL -starter

UNIT V HEATING AND POWER RATING OF DRIVE MOTORS

Load diagram, over load capacity, insulating materials, heating and cooling of motors, service condition of electric drive – continuous, intermittent and short time – industrial application.

OUTCOMES:
• Upon Completion of this subject, the students can able to explain different types of electrical machines and their performance

TEXT BOOKS:

REFERENCES:

ME8303 BASIC MECHANICAL ENGINEERING FOR MINING

OBJECTIVES
• To gain an understanding of the basic concepts of various aspects of Mechanical Engineering, fields of application, their merits, demerits, and limitations and applications to Mining Engineering.

UNIT I BASIC CONCEPTS OF THERMODYNAMICS AND HEAT TRANSFER

UNIT II IC ENGINES AND AIR CONDITIONING 8

UNIT III POWER TRANSMISSION 9

UNIT IV KINEMATICS OF MACHINES 9

UNIT V ROTODYNAMIC AND VIBRATORY MACHINES 9

OUTCOMES:
• To equip the mining engineering students with the basic principles of operation of MiningMachinery.

TEXT BOOKS:
REFERENCE BOOKS:

MI 8301 DRILLING AND BLASTING L T P C 3 0 0 3

AIM:
To impart knowledge on drilling and blasting operations to extract the mineral deposit.

OBJECTIVES:
- To understand the exploratory and production drilling in mines.
- To study the explosives and blasting agents, accessories and tools.
- To study the various theories of rock fragmentation.
- To study the design of blasting in underground and surface mines.

UNIT I EXPLORATORY DRILLING 9
Drilling for exploration and other purposes; various types of drilling equipment – their merits, demerits and limitations; core recovery – single and double tube core barrels, wire line drilling; directional drilling, fishing tools; borehole surveying; borehole logging; novel and special drilling techniques. Drilling for oil and ground water.

UNIT II PRODUCTION DRILLING 9
Production drilling; Various methods of drilling - percussive, rotary, rotary percussive, Factors affecting drilling; mechanics of drilling; drillability and drilling index; micro-bit drilling; selection of drilling equipment; different types of bit, bit wear; drill hole economics; case studies

UNIT III EXPLOSIVES, ACCESSORIES AND TOOLS 8
Explosives and Blasting Agents- ANFO, slurry, emulsion, LOX, permitted explosives, bulk explosives; Selection of explosives; Blasting accessories, Initiation systems, Testing of explosives; Storage, transportation and handling of explosives; Destruction of explosives and accessories. Theories of rock breakage; mechanics of rock fragmentation by explosive action, Instrumentation in blasting –V.O.D probe, vibration monitoring, high speed video camera, etc.
UNIT IV BLASTING IN UNDERGROUND MINES
Design of blast for coal and metal underground mines – gallery, Solid blasting techniques, periphery blasting, drilling pattern for tunneling and shaft sinking, controlled blasting techniques, dangers associated with underground blasting and preventive measures; misfires, blown out shots, incomplete detonation – their causes and remedial measures.

UNIT V BLASTING IN SURFACE MINES AND ALLIED ENGG. FIELDS
Methods of blasting in surface mines, Blast design, Primary and secondary blasting, Rock fragmentation studies, Dangers associated with blasting in opencast mines and preventive measures, Environmental impacts due to blasting, Controlled blasting techniques, Blasting in opencast coal mines of developed galleries, Blasting economics, Computer aided design of blasts. Blasting for road constructions, trench cutting, demolition of buildings etc; Blasting for Dimensional stones; Underwater blasting. Alternatives to blasting.
Note: Relevant portions of Coal and Metalliferrous Mines Regulations, DGMS Circulars shall be covered wherever required.

OUTCOME:
• The students will have knowledge on drilling and blasting operations in underground and surface mines. They will also know to design blasting pattern for mines, dimensional stones, road constructions, oil and ground water.

TEXT BOOKS:

REFERENCES:

EC 8361 ELECTRONICS ENGINEERING LABORATORY L T P C 0 0 3 2

OBJECTIVES:

• Students should be able to verify the principles studied in theory by performing experiments in the laboratory

1. VI Characteristics of PN Junction and Zener Diodes.
2. Characteristics of CE configuration of Transistor.
4. Characteristics of FET.
5. Operational Amplifier Applications – Adder, Multiplier.
6. RC Oscillator
7. LC Oscillators
8. IC 555 Astable and Monostable multivibrators
9. Half and Full adders
10. RS, T and D FFs
11. BCD counter using IC 7490

TOTAL: 45 PERIODS

OUTCOMES:

• ability to use of diodes, transistors for rectifiers
• ability to use of operational amplifiers

EE 8262 ELECTRICAL ENGINEERING LABORATORY L T P C 0 0 3 2

OBJECTIVES:

• Students should be able to verify the principles studied in theory by performing experiments in the laboratory

1. Speed Control of DC Shunt Motor
2. Load Test on DC Shunt Motor
3. Study of starters
4. Swinburne’s Test
5. Load Test on DC Series Motor
6. Load Test on three Phase Alternator
7. Load Test on three Phase Induction Motor
8. Wheatstone’s Bridge
9. Load Test on single phase Induction Motor.
10. Load test on Single Phase Transformer.

TOTAL: 45 PERIODS

OUTCOMES
- Ability to perform speed characteristic of different electrical machine

MI 8311 PRACTICAL TRAINING – I

AIM:
To impart practical experience to the student for gaining deeper understanding of the various activities and principles of mining.
Gaining practical experience is an important aspect of the mining engineering programme having many characteristic features of its own.

The students have to undergo training in mines during the summer vacation at the end of the II Semester for a period of 10 to 15 Days and obtain a valid certificate from the competent authority of the organisation provide training. The students have to submit a report on the training which would be evaluated during the ensuing VII Semester. This carries a total of one credit during the III Semester. Evaluation would be done by a faculty or a group of faculties on different marking heads such as training, viva voce report etc., or other approved evaluation systems.

Normally a student is not permitted to withdraw from the practical training. In case of any unforeseen circumstances / valid reasons if he could not undergo the training as scheduled, on the recommendation of the Head of the Department and approval by the competent authority the student may be permitted to undergo Practical Training-I before proceeding to V Semester. The decision of the competent authority is final.

AG8401 GEOLOGY - II

AIM:
To study about the origin, distribution and exploration of economic minerals.

OBJECTIVE:
To familiarize the students with the economic mineral deposits and the techniques used to explore mineral and fossil fuel deposits.
UNIT I ECONOMIC GEOLOGY

Ore forming process, mineral deposits formed from magmatic, hydrothermal and volcanic process: mechanical concentration, oxidation and supergene enrichment.

UNIT II ECONOMIC INDIAN MINERAL DEPOSITS

Metallic, non-metallic deposits, study of graphite, copper, zinc, lead, gold, iron, manganese, radioactive minerals, asbestos, mica, gemstone-origin, mode of occurrence and distribution in India. Origin and occurrence of industrial minerals-ceramic, refractory, abrasive, glass and paint industry.

UNIT III COAL AND PETROLEUM GEOLOGY

Origin, physical properties, processes, occurrence of coal and its types, petroleum deposits. Fossil fuel distribution is sedimentary basins of India.

UNIT IV GEOPHYSICS

Geophysical prospecting methods – seismic, electrical, magnetic and gravity methods of mineral prospecting, Location of ore body, coal and petroleum reserves, subsurface litho-log and 3-D models.

UNIT V REMOTE SENSING AND GIS

Introduction to aerial and satellite remote sensing, identification of photo recognition elements; applications of remote sensing and GIS in geological mapping and mineral exploration.

TOTAL: 45 PERIODS

OUTCOME:

- The students will have familiarity about economic geology and Indian mineral deposits. They will have deep knowledge about geophysics, remote sensing and GIS.

TEXT BOOKS:

REFERENCE BOOKS:

CE 8352 FLUID MECHANICS AND MACHINERY

OBJECTIVE:

• The applications of the conservation laws to flow through pipes and hydraulic machines are studied. To understand the importance of dimensional analysis. To understand the importance of various types of flow in pumps and turbines.

UNIT I FLUID PROPERTIES AND FLOW CHARACTERISTICS

Units and dimensions - Properties of fluids - mass density, specific weight, specific volume, specific gravity, viscosity, compressibility, vapor pressure, capillarity and surface tension. Flow characteristics – concept of control volume - application of control volume to continuity equation, energy equation and momentum equation.

UNIT II FLOW THROUGH CIRCULAR CONDUITS

UNIT III DIMENSIONAL ANALYSIS

Need for dimensional analysis – methods of dimensional analysis – Similitude –types of similitude - Dimensionless parameters- application of dimensionless parameters – Model analysis.

UNIT IV PUMPS

UNIT V TURBINES

TOTAL: 45 PERIODS

OUTCOMES:

• Upon completion of this course, the students can able to apply mathematical knowledge to predict the properties and characteristics of a fluid.
• Can critically analyse the performance of pumps and turbines.
TEXT BOOKS:

REFERENCES:

CE8405 ENGINEERING SURVEYING L T P C 3 0 0 3

AIM:
To comprehend the principles of Surveying for efficient field operations

OBJECTIVES:
• To introduce Surveying and Leveling
• To introduce instruments and methods
• To offer details of Leveling
• To impart knowledge about triangulation and determination of azimuth of a survey line

UNIT I INTRODUCTION AND LINEAR MEASUREMENTS 9
Objectives and general principles of mine surveying, definitions of plane and geodetic surveying, Chain surveying, principles, equipment, ranging, setting and chain lines, chaining on sloping ground, errors in chaining, use of steel tape and corrections, catenary taping, corrections to measured lengths, errors in measurement, metallic, steel tapes, miscellaneous field problems relating to sighting, taping and both, field notes, record of data, plotting and computation.

UNIT II ANGULAR MEASUREMENT 9
Construction, testing, correction/adjustments of angle-measuring instruments-theodolite, compass, angle measurement procedures, corrections, and computations, plane and rectangular coordinates, relative applications, sources of error and field checks in traversing, relative merits and applications of theodolite, fixed, free needle surveying, etc., limit of precision.
UNIT III LEVELLING
Construction, testing and adjustment of leveling instruments methods of leveling, rise and fall, height of collimation, booking, errors, computations, standards of accuracy.

UNIT IV TRIANGULATION
Primary, secondary, tertiary triangulation, frame work of triangles, accuracy required, setting up baseline, extension, main and check base, corrections, angle measurement methods, figure adjustment and correction, computation of triangulation scheme, transfer coordinates through two, three four point interpolation, reduction to centre(satellite station) methods, broken baseline method.

UNIT V TRUE NORTH FIXATION AND PLANE TABLE SURVEYING
Common terms and definitions in astronomical surveys – determination of true north, sun/star observations and connection to triangulation base line. Descriptions of plane table and accessories – adilade plumbing fork, etc., methods and use of plane table surveying, two and three point problems.

TOTAL : 45 PERIODS

OUTCOME:
The students will have knowledge about leveling, triangulation and determination of azimuth for field operations. They will also know about true north fixation and plane table surveying.

TEXT BOOKS:

REFERENCE BOOKS:

EE8408 INSTRUMENTATION ENGINEERING

AIM:
To study the basic instrumentation methods
OBJECTIVES:
To have a knowledge of
• Electronic Instruments
• Pressure measurements
• Flow measurements
• Vibration, Viscosity and Humidity Level measurement
• Various analyzers

UNIT I ELECTRONIC INSTRUMENTS 9

UNIT II PRESSURE MEASUREMENTS 9
Unit of Pressure – Manometers- Different types, - Elastic type pressure gauges – Bourdon tube – Bellows – Diaphragm – Elastic elements with LVDT and strain gauge – Capacitive type pressure gauge – Measurement of vacuum – McLeod gauge – Thermal conductivity gauge – Ionisation gauge.

UNIT III FLOW MEASUREMENTS 9

UNIT IV VIBRATION, VISCOSITY, HUMIDITY, LEVEL MEASUREMENT 9

UNIT V ANALYSERS 9

OUTCOMES:
• The knowledge gained on electronic, pressure, flow and vibration measurement will provide a strong platform to understand the concepts on these subjects for further learning.

TEXT BOOKS:

REFERENCES:

MI8401 MINE ENVIRONMENTAL ENGINEERING – I

AIM:
To introduce the various parameters affecting the underground mine environment, impart knowledge on the prevailing ventilation systems.

OBJECTIVES:
- Introduce the components of underground mine atmosphere and measurement methods and instrumentation.
- To impart knowledge on various elements affecting mine environment.
- To study the ways in which ventilation occurs in mines and the controls associated
- To deal with principal laws governing mine ventilation and various ventilation systems.

UNIT I MINE GASES
Occurrence, properties, physiological effects, detection – types of instruments, construction, principle and limitations, measurement and analysis, methane layering, methane drainage. Methods of ventilation survey, Instruments required for ventilation survey,

UNIT II MINE CLIMATE AND CONTROL
Psychrometric properties of air, Sources of heat and humidity in mines and their effects, heat stress estimation, cooling power of mine air and methods of improving cooling power including air conditioning. Psychrometric surveys.

UNIT III PRINCIPAL LAWS OF AIR MOVEMENT IN UNDERGROUND
Fundamentals of fluid flow and its application in mine ventilation with special reference to Bernoulli’s Equation, Reynolds number, Poiseuille’s equation, Atkinson’s equation, Karman-Prandtl equation for rough flows, resistance of mine roadways, friction and shock resistance, etc.
UNIT IV NATURAL VENTILATION AND AIR CURRENT DISTRIBUTION IN MINES 8
Natural ventilation, effect of depth, temperature, pressure, etc. thermodynamic treatment, distribution of air current in mines – splitting, stoppings, regulators, ventilation doors, air crossings, controlled recirculation, etc. Retrograde and boundary, ascensional, decensonal, homotropal and antitropal ventilation systems, Ventilation in deep and hot mines, remedial measures.

UNIT V MECHANICAL VENTILATION & VENTILATION PLANNING 12
Main mechanical ventilators, booster fans and auxiliary fans, and their selection, installation, fan performance, characteristics and testing, fans in series and parallel, fan drifts and evasees, reversal of air current, forcing versus exhaust ventilation, ventilation of long headings including overlap systems. Calculation of pressure and quantity requirements, economic analysis, ventilation standards, network analysis, monitoring of mine environment. principles and computer applications.

Note: All the above are to be studied with emphasis on CMR, MMR and the relevant circulars.

TOTAL : 45 PERIODS

OUTCOME:
- The students will have basic knowledge of underground mine atmosphere, ventilation methods, parameters influencing mine environment, measurement methods and instrumentation. They will also know about the principal laws governing mine ventilation systems.

TEXT BOOKS:

REFERENCE BOOKS:

MI8402 MINING MACHINERY – I L T P C 3 0 0 3

AIM:
To impart knowledge on transport and electrical systems in mines
OBJECTIVES:
1. To understand the electrical layouts and power distribution in mine.
2. To study the rope haulage layouts, technical details and applications.
3. To study the various modes of transport means and electrical circuits.
4. To study the types of pumps, installations and design calculations.

UNIT I INTRODUCTION 6
Different types of motive power used in mines – their fields of application, relative merits and
demerits; transmission and distribution of compressed air in mines, compressed air drills.
Elements of the transport system, classification and techno-economic indices.

UNIT II ROPE HAULAGE 12
Wire ropes – classification, construction, fields of application, rope capping and splicing;
deterioration of rope in use and its prevention; testing of ropes, selection and maintenance,
rope calculations.
Rail Track and tubs– gauge; layout, curves, turnouts and cross-over, track maintenance, main
features of rolling stock like tubs, mine cars man riding cars and tipplers;
Types of rope haulages – merits, demerits and fields of application, constructional features,
safety appliances and rope haulage calculations.

UNIT III OTHER TRANSPORT SYSTEMS 10
Locomotives – diesel, trolley-wire, battery locomotives, constructional features and safety
devices and comparison of different types; underground and surface battery charging stations
and safety measures, locomotive calculations; shuttle cars, underground trucks, load-haul-
dumpers, SDL vehicles, aerial rope ways, gravity transport, principles of hydraulic& pneumatic
transportation and their fields of application, electric layouts, man-riding systems.

UNIT IV PUMPING 5
Different types of drives, installation and maintenance of pumps and pipes in shafts and
roadways, electrical layouts, various sources of water in mines, design of sumps.

UNIT V MINE ELECTRICAL ENGINEERING 10
Distribution of electric power in mines, types of mine cables and their fields of applications,
mining switch gears and their installation in hazardous atmosphere, flame proof enclosures,
intrinsically safe circuits, (examples) safety aspects and signalling. Mine telephone system
and latest development in mine communications.
Note: All statutory aspects like CMR, MMR and the relevant DGMS circulars are to be
covered by the faculty.

TOTAL: 45 PERIODS
OUTCOME:

- The students will have basic knowledge on motive power used in mines, pumping, rope haulage and other transport systems. They also will know about mine electrical engineering in all statutory aspects.

REFERENCE BOOKS:

MI8403 SURFACE MINING L T P C 3 0 0 3

AIM:
To give the student complete knowledge on layout, design and planning of opencast mines.

OBJECTIVES:

1. To develop an understanding of surface mining equipments and its operations in a surface mine.
2. To achieve the ability to classify and select surface mining methods.
3. To understand the slope failures in a surface mine and study the concept of waste dump formations.

UNIT I INTRODUCTION 5
Status of surface mining, types of surface mines, applicability and limitations, compilation of basic data, concept of stripping ratio, stripping economics, concept of ultimate pit limits, design of haul roads, elements of surface mine planning.

UNIT II LAYOUT AND DESIGN OF SURFACE MINES 10
Selection of site for box cut, selection of operating parameters like bench height, width, slope, etc., Working pit slope and ultimate pit slope, various modes of slope failures, factors influencing slope stability, development of opencast mine layouts, stripping methods using different machinery, Various layout problems and their solutions. Conversion of Underground mine to opencast mines.
UNIT III GROUND PREPARATION METHODS
Preparation of the site – Ripping, Drilling and Blasting; Types, operation, selection, applications and limitations of ground preparation equipments – Rippers, Dozers, Blasthole drills and rock breakers, Placer mining and hydrulicking. Economics of Drilling and blasting.

UNIT IV EXCAVATION SYSTEM IN SURFACE MINES
Selection criteria for excavation / loading and material transport equipment used in surface mines. Classification, construction, capacity, operation, productivity and application of different types of excavating / loading equipment used in surface mining projects - Shovels, Draglines, Front end loaders, Scrapers, Bucket wheel and bucket chain excavators, Surface miners. Problems of Deep open cast mining.

UNIT V TRANSPORT AND WASTE DUMPS
Scope and application of different modes of transport system in surface mines – Trucks, Conveyors (shiftable and high-angle), Aerial ropeways, Rail transport and Pipeline transport systems. Scope and application of in-pit crushers in surface mines. Types of waste dump – internal and external; dump formation methods and corresponding equipment; Dump stability and stabilisation measures.

TOTAL: 45 PERIODS
Note: All Statutory aspects like CMR, MMR and relevant DGMS circulars are to be covered by the faculty.

OUTCOME:
The students will have ability to classify and select the suitable surface mining methods and equipment based on site conditions. They will also have a concept of waste dump formations and slope failures in surface mines.

TEXT BOOKS:

REFERENCES:

AG8411 GEOLOGY LABORATORY – I

OBJECTIVE:
To practice the determination of engineering properties of rocks, preparation of weathering profiles, RMR, RQD, preparation of geological and structural maps and recognition of geological structures in the field.

UNIT I MINEREOLOGY 6
Identification of physical properties of quartz and feldspar varieties, hypersthene hornblends, augite, mica, asbestos, barite, calcite, fluorite, tourmaline, beryl. Study of Moh’s scale of hardness.

UNIT II PETROLOGY 6

UNIT III STRUCTURAL GEOLOGY 6
Exercises on structural maps of geological site and interpretation of geological conditions; 3 point and 4 point bore hole problems to decipher the subsurface geological conditions for mining of resources.

UNIT IV GEOLOGICAL MAPPING METHODS 6
Topo sheets, Map scale – types, preparation and interpretation of contour maps, drainage maps, symbols, rock and geological structures, use of clinometers, Brunton compass and knowledge on GPS.

UNIT V GEOLOGICAL FIELD WORK 6
Geological mapping of igneous, sedimentary and metamorphic terrains. Identification of minerals and ores in the field site. Recognition of geological structures – fault, fold joint in the field.
OUTCOME:
The students will have knowledge about ore reserve estimation, ore assaying, remote sensing, geological mapping and identification of geological structures in the field.

CE 8361 FLUID MECHANICS AND MACHINES LABORATORY

OBJECTIVES:
Students should be able to verify the principles studied in theory by performing the experiments in lab.

A. Flow Measurement
 1. Calibration of Rotometer
 2. Flow through Venturimeter
 3. Flow through a circular Orifice
 4. Determination of mean velocity by Pitot tube
 5. Verification of Bernoulli’s Theorem

B. Losses in Pipes
 6. Determination of friction coefficient in pipes
 7. Determination of losses due to bends, fittings and elbows

C. Pumps
 8. Characteristics of Centrifugal pumps
 9. Characteristics of Gear pump
 10. Characteristics of Submersible pump
 11. Characteristics of Reciprocating pump

D. Turbines
 12. Characteristics of Pelton wheel turbine
 13. Characteristics of Francis turbine

E. Determination of Metacentric height
 14. Determination of Metacentric height

OUTCOMES:
- Ability to use the measurement equipments for flow measurement
- Ability to do performance trust on different fluid machinery

TOTAL: 30 PERIODS

TOTAL: 45 PERIODS
REFERENCE BOOKS:

ME8412 BASIC MECHANICAL ENGINEERING LABORATORY FOR MINING EXPERIMENTS

OBJECTIVES:
- Students should able to verify the principles studied in thermal and engineering design course by performing experiments in the laboratory

THERMAL EXPERIMENTS
1. Study of I.C. engines and components
2. Performance test on 4 S diesel engine
3. Performance test on reciprocating air-compressor
4. Study of refrigeration system
5. Natural and forced convection studies

ENGINEERING DESIGN
1. Cam displacement and velocity analysis
2. Whirling of shaft-determination of critical speed of shaft with concentrated loads
4. Vibrating system – spring mass system – determination of damping co-efficient of single degree of freedom system.
5. Transverse vibration – free – beam, determination of natural frequency and deflection of beam.
6. Study of Gears and linkage mechanisms

OUTCOMES:
- ability to use of thermal experiments related to IC and refrigeration and air-
conditioning
• ability to use of various engineering design experiments

MA8501 STATISTICS AND NUMERICAL METHODS L T P C
 3 1 0 4

OBJECTIVES
• To introduce testing of hypothesis analysis which is central to many applications in engineering
• To acquaint the student with analysis of correlation and Eigen value problems used in wide variety of situations.

UNIT I TESTING OF HYPOTHESIS 9
Sampling distributions - tests for single mean, proportion, difference of means (large and small samples) – tests for single variance and equality of variances – chi-square test for goodness of fit – Independence of attributes.

UNIT II ANALYSIS OF CORRELATION, REGRESSION DESIGN OF EXPERIMENTS 9
Correlation – Types of Regression - Completely randomized design – randomized block design – latin square design - 22 - factorial design.

UNIT III SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS 9

UNIT IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION 9
Lagrange’s and Newton’s divided difference interpolation –Newton’s forward and backward difference interpolation - approximation of derivatives using interpolation polynomials - numerical integration using trapezoidal and Simpson’s 1/3 rules.

UNIT V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 9
TOTAL: 45+15

OUTCOMES
• The understanding of the mathematical principles on numerical differentiation and integration and numerical solutions to ODE would provide them the ability to formulate and solve some of the physical problems of engineering.
TEXT BOOKS:

BOOKS FOR REFERENCES:

MI 8501 MINE ENVIRONMENTAL ENGINEERING – II L T P C 3 0 0 3

AIM:
Impart complete knowledge about planning and design of mine ventilation system.

OBJECTIVES:
1. To study the physics of mechanical ventilators and the parameters governing their performance.
2. 0000000000000To study various methods of ventilation data collection.
3. To study about mine illumination, pollution and ecological systems.

UNIT I ENVIRONMENT & ECOLOGY 9

UNIT II ENVIRONMENTAL POLLUTION - I 9
Environmental Pollutants due to surface and underground Mining – Air, Water, Noise, Sources and Classification of pollutants including dust and their effect on human health, Sources, hazards, sampling and analysis, standards, instrumentation and measurement of pollutants including dust, Control and preventive measures for air pollution including for dust, Structure of
the atmosphere – ozone layer depletion – Acid rain – Green house gases and global warming
Ambient Air quality and emission standards, Air quality Sampling and monitoring, Dispersion
of air pollutants,

UNIT III ENVIRONMENTAL POLLUTION - II
Environmental Pollution due to Water - Sources and Classification of pollutants and their
effect on human health, hazards, sampling and analysis, Water pollution standards, Noise
standards – Measurement – Noise Impact Index assessment, Control and preventive
measures for water, noise pollution. Pollution due to vibrations their monitoring, prevention
and control, Land pollution, land for alternation dealing with mind out land , re-vegetation,
tailing management, tailing dams, method and construction, land use plan, Mine closure
planning. Textural classification and properties of soil. Impact of pollution on human health,
miner’s diseases and their social impact.

UNIT IV ENVIRONMENTAL MANAGEMENT
Environmental quality objectives, Emission and ambient standards – Minimum National
of Industries – Environmental management plans, Environmental impact assessment, Environmental
management system audits, Environmental economics – Principles of cost
benefit analysis – Valuing the Environment – Environmental Accounting, Environmental
administration- training awareness and competence,

UNIT V ENVIRONMENTAL LEGISLATIONS
of regularity agencies and occupation consent to establish and operate wild life protection act
and rules , Environmental clearance procedure for a mining Project.

TOTAL: 45 PERIODS

OUTCOME:
The students will have knowledge on mechanical ventilators, influencing parameters and
various methods of data collection. They will also know about illumination, pollution and
ecological systems.

TEXT BOOKS:
1. Hartman, H.L. Mine Ventilation and Air Conditioning, Wiley Interscience publication,
 1999.
4. Manahan S.E. Environmental Science and Technology.

REFERENCES:

MI8502 MINE SURVEYING

AIM:
To train the students on Mine Surveying techniques for application in underground as well as surface mines

OBJECTIVES:
1. To study methods of underground traversing and surveys.
2. To study methods on traversing in metal mines
3. To study the various modern surveying techniques and instrumentation.
4. To study methods of contouring and curves layouts.

UNIT I UNDERGROUND SURVEY AND MODERN SURVEYING METHODS

Special features of Underground Mining surveying; Correlation of Surface and underground mine workings; operational details and applicable errors in each; methods of transferring levels to different landings/ levels/ horizon; Illustrative examples: Measurement of shaft depth

Application of Remote sensing and photogrammetry in exploration and mining; EDM; Electronic theodalite, Electronic Tachometer (Total station); Laser Theodalite; GPS; GIS; DTM Applicability and limitations.
UNIT II ADJUSTMENT OF SURVEY MEASUREMENT

Most probable value, laws of weights; principle of least square; uncorrelated values of unequal precision; Adjustment of figures – Simple triangle, two connected triangles, crossed quadric lateral, hubangle correction (polygon); errors and adjustment in steep sights; striding level; Application of top eccentric and side eccentric telescopes Illustriative examples:

UNIT III ALIGNMENT SURVEY AND TACHOMETRY

Alignment / Gradient control of vertical and inclined shafts; gradient control in development openings; Holing surveys; Application of appropriate methods, equipment, operational control; Alignment in Headgears, machinery foundation etc Illustriative examples:

UNIT IV STOPE & SUBSIDENCE SURVEYS AND .MINE PLANS

Preparation of Mine plans and sections; stepped plan; Allay plan; Duties and responsibilities of mine surveyor under mines act and connected legislations.

UNIT V CONTOURING AND CURVE SETTING MISCELLANEOUS SURVEY

APPLICATIONS

Methods of Contouring; contour gradient; uses of contours; Reservoir / Catchment area calculations Illustriative examples: setting out underground / curves; need for curves; types of curves; methods of curve setting

Dip/ Strike / Fault interpretation from inclined angle vertical borehole data in dipping and plunging formations; interpretations of borehole maps; borehole deviation; calculation of plunge in folded terrain.

OUTCOME:

• The students will have knowledge on methods of underground traversing, alignment of survey, methods of stope and subsidence surveys. They will have a confident about preparation of mine plans and section and also contouring and curve setting.

TEXT BOOKS:

1. Winniberg, F., Metalliferous Mine Surveying
REFERENCES

MI 8503 MINERAL PROCESSING

AIM:
To understand the need and the application of mineral processing.

OBJECTIVES:
- To study comminution, laboratory and industrial sizing, separation/concentration
- To understand sampling of ores
- To study special methods of processing

UNIT I INTRODUCTION

UNIT II COMMINUTION
Introduction to comminution, primary/secondary/tertiary crushing, purpose, duty, theory of crushing, crushing sequence, reduction ratio, types of crushers and comparison, general crushing flow sheet, wet/dry grinding, mechanism and various affecting parameters.

UNIT III LABORATORY & INDUSTRIAL SIZING AND SAMPLING AND CONTROL
Purpose, factors governing particle behaviour, laboratory and industrial screens, trommels, vibrating screens, etc. wet and dry screening, classification, classifiers.

Purpose, sampling - solid ore, pulp, head feed, grinding circuit samples, flotation products, etc., X-ray fluorescence, automatic sampling. Metallurgical accounting.
UNIT IV SEPARATION/CONCENTRATION 10
Newton’s and Stoke’s Laws of particle settlement, different concentration techniques – gravity, chemical froth flotation, wet & dry magnetic separation, electromagnetic, amalgamation, heavy media, jigging, shaking tables, sluicing, spirals, thickeners, filtration, etc., coal washing.

UNIT V SPECIAL METHODS 10
Chemical extraction, cyanide process, leaching, use of ion exchange, solvent extraction, pilot plant studies on ores, tailing dams; generalised plant practice/flow sheets for coal and other important ores – copper, aluminium, lead, zinc, silver, gold, uranium, iron, limestone, magnesite.

OUTCOME:
• The students will have knowledge on processing of minerals/ores, transportation of ore, comminution, sampling, industrial sizing, different techniques for separation/concentration and special methods to process the minerals.

REFERENCES:

MI 8504 MINING MACHINERY - II L T P C 3 0 0 3
AIM:
To impart knowledge on Winding and Coal Face Machinery.

OBJECTIVES:
• To understand the functioning of winding engines and other winding accessories
• To study surface and pit bottom layouts
• To study various coal face machinery, face haulage systems and conveyors

UNIT I WINDING ENGINES 10
Winding systems, drum winders, drives, mechanical braking of winders, safety devices in winding, over wind and over speed protection, Koepe and multi-rope friction winding, electrical layouts. Duty cycles of drum winders of different drum cross sections. Special problems of deep shaft winding.
UNIT II WINDING ACCESSORIES
9
Head gear and their design, head sheave, cages and skips, suspension gear, shaft fittings and appliances – guides, keps, etc., signalling system, winding calculations relating to rope size & numbers, capacity & power requirement for cage, skip, drum and Koepe winding systems.

UNIT III SURFACE AND PIT BOTTOM LAYOUTS
6
Mine car circuits at the surface and pit bottom, creepers, skip winding – loading and discharge arrangements.

UNIT IV COAL FACE MACHINERY
11
Construction, salient mechanical and electrical features and operations of coal drills and their control panels, coal cutters, different types of mechanical loaders coal ploughs, cutter loaders and continuous miners; development road headers in face mechanisation, longwall mining equipment, electrical and hydraulic layouts; condition monitoring of mining machinery for underground and opencast mines and ore handling plants, modern concepts in underground mine mechanisation.

UNIT V FACE HAULAGE AND CONVEYORS
9
Scraper chain conveyors, AFCs, belt conveyors, shaking and vibrating conveyors, armoured flexible conveyors, high angle conveying, electrical layouts.
Note: All the above are to be studied with emphasis on CMR, MMR and the relevant circulars
TOTAL : 45 PERIODS

OUTCOME:
• The students will have knowledge on function of winding engines, winding accessories, pit-top and bottom mine circuits. They will also know about working of various coal face machinery, face haulage systems and conveyors.

REFERENCES
AIM: To learn the fundamentals of Rock Mechanics and its applications to Mining.

OBJECTIVES:
- To study about application of Rock Mechanics
- Physico-Mechanical properties of rocks, non-destructive testing methods, time dependent properties of rock
- Different types of underground supports, etc.

UNIT I INTRODUCTION
Definition of some important terms used in rock mechanics, application of rock mechanics in mining, introduction to stress analysis, principal stresses and strains, differential equations of static equilibrium.

UNIT II PHYSICAL PROPERTIES OF ROCKS AND ROCK INDICES
Physical properties of rock – density, porosity, moisture content, permeability, swell index, slake durability index, thermal conductivity, hardness, durability, Protodyaknov index, impact strength index, point load index, rock mass classification.

UNIT III MECHANICAL PROPERTIES OF ROCKS
Preparation of test specimens, laboratory determination of mechanical properties of rocks, compressive strength, tensile strength, shear strength, modulus of elasticity, Poisson’s ratio, triaxial strength of rocks, Mohr’s envelope, effect of various parameters on the strength of rocks, in-situ strength, effect of joints and fracture on mechanical properties of rocks.

UNIT IV NON-DESTRUCTIVE TESTING METHODS AND TIME DEPENDENT PROPERTIES OF ROCKS
Dynamic wave velocities, dynamic elastic constants, their determination in the laboratory, application in mining, time dependent properties of rocks, creep, mechanism of creep of rocks – different stages, rheological models.

UNIT V UNDERGROUND SUPPORTS
Various methods of roof examination, pressure arch theory, ground forces and field stresses, mechanism, objectives and limitations of supports, conventional supports – column type, timber sets, arches, yielding type; rock and cable bolting, rock grouting, shotcreting, roof stitching, support of shaft bottoms, galleries, junctions and places of roof falls, design of supports, longwall powered supports. Design of systematic support rules for B & P Development, depillaring LW gate readings and extraction.

TOTAL : 45 PERIODS

OUTCOME:
- The students will have fundamental knowledge on application of rock mechanics, physico-mechanical properties of rocks and different types of underground supports.

TEXT BOOK:
MI 8506 UNDERGROUND MINING METHODS - COAL

AIM:
To study about the different methods of working and winning Coal.

OBJECTIVES:
- To study the development of panels and extraction of coal in Bord and Pillar method
- To study the Longwall advancing and retreating methods
- To study the various special methods of winning coal

UNIT I INTRODUCTION
Status of coal industry and deposit factors affecting choice of mining methods, classification of mining methods, grading and analysis of coal.

UNIT II BORD AND PILLAR METHOD-DEVELOPMENT
Design and development of a district, bord and pillar, room and pillar methods, with conventional and continuous mining techniques; panel system.

UNIT III BORD AND PILLAR METHOD – EXTRACTION
Pillar extraction by caving and stowing methods; mechanised extraction of pillars, shaft pillar extraction, systematic supports, surface, underground and face arrangements for stowing.

UNIT IV LONGWALL METHOD
Advance and retreat methods, continuous and cyclic systems, extraction with different machines-ploughs, shearer, design of longwall workings, optimum length of face, size of panel, gates, support system, personnel, organisation and safety measures, salvaging in longwall.

UNIT V SPECIAL METHODS OF WORKING
Problems of working thick & thin seams, multi slices, sublevel caving, horizon mining, gallery blasting method, contiguous seam working, working steeply inclined seams, working under surface structures and seams liable to spontaneous heating, outburst and bumps, etc.
hydraulic mining, wongawali, shortwall, underground coal gasification, shield mining.

Note: All the above are to be studied with emphasis on CMR and the relevant circulars.

TOTAL: 45 PERIODS

OUTCOME:
- The students will have knowledge on development and depillaring of coal in Bord and Pillar and advancing and retreating in Longwall methods. They will also know about novel methods of winning of coal.

REFERENCES
4. Das S.K., Modern Coal Mining technology, Lovely Prakashan, Dhanbad 1994.

AG8511 GEOLOGY LABORATORY II AND FIELD WORK

AIM:
To study the identification of ores, reserve estimation and geological mapping of minerals and ores.

OBJECTIVE:
To practice the determination of engineering properties of rocks, preparation of weathering profiles, RMR, RQD, preparation of geological and structural maps and recognition of geological structures in the field.

UNIT I ORE GEOLOGY
Identification of ores of iron, manganese, lead, zinc, copper, chrome, aluminum, graphite, asbestos, ochres, corundum, kyanite, garnet, silimanite, vermiculite, mica, silica.

UNIT II ORE RESERVE ESTIMATION & APPLIED GEOLOGY
Ore reserve estimation – ore assaying reserve calculation. Determination of engineering properties of rocks, determination of porosity of rocks. Preparation of weathering profile,
UNIT III REMOTE SENSING & GEOPHYSICS 6

UNIT IV GEOLOGICAL FIELD WORK 6
Geological mapping of igneous, sedimentary and metamorphic terrains. Identification of minerals and ores in the field site. Recognition of geological structures - fault, fold joint etc. in the field.

OUTCOME:
- The students will have knowledge about ore reserve estimation, ore assaying, remote sensing, geological mapping and identification of geological structures in the field.

REFERENCE BOOKS:

EE8514 INSTRUMENTATION ENGINEERING LABORATORY L T P C 0 0 2 1

OBJECTIVES
- To familiar with different measurement equipments and use of this industry
1. Familiarization of Basic measuring instruments
2. Analysis of various Bridge circuits
3. Characteristics of amplifiers, A/D converters
4. Characteristics of active filters
5. Characteristics of strain gauge circuits.
6. Characteristics of LVDT
7. Characteristics of RTD and vibrating wire instruments
8. Characteristics of Thermo couple and LDR
9. Characteristics of Pressure to current converters.
OUTCOMES

- Ability to handle different measurement tools and perform measurements

MI 8511
PRACTICAL TRAINING - II
L T P C
0 0 0 1

AIM:

To provide training in mines for gaining thorough understanding of all the theoretical knowledge.

Gaining practical experience is an important aspect of the mining engineering programme having many characteristic features of its own.

The students have to undergo training in mines during the summer vacation at the end of the IV Semester for a period of 4 weeks and obtain a valid certificate from the competent authority of the organisation provide training. The students have to submit a report on the training which would be evaluated during the ensuing V Semester. This carries a total of one credit during the V Semester. Evaluation would be done by a faculty or a group of faculties on different marking heads such as training, viva voce report etc., or other approved evaluation systems.

Normally a student is not permitted to withdraw from the practical training. In case of any unforeseen circumstances / valid reasons if he could not undergo the training as scheduled, on the recommendation of the Head of the Department and approval by the competent authority the student may be permitted to undergo Practical Training-II before proceeding to VII Semester The decision of the competent authority is final.

CE8514
SURVEY LABORATORY – I
L T P C
0 0 4 2

OBJECTIVE:

- To provide the practice exercises on pantograph, correlation survey, mine plan preparation with use of stereoscope.

1. To study and understand the parts and terms common to different survey instruments such as chains, different types of tapes, prismatic compass, trough compass, and to learn to measure distance and magnetic bearing.

2. To fix a closed traverse on the ground, measure the length with a steel tape and magnetic bearing of the sides using a miner’s dial, calculate the included angles, testing permanent adjustments of a theodolite.

3. To learn the use of different types of theodolites, testing permanent adjustments of a theodolite, layout of a closed traverse, calculate the partial and total coordinates, closing error, distribute the closing error applying Bowditch rule and recalculate the coordinates - calculate the magnetic bearings of the lines, heights and distances, exercises.

4. Study of levels- establishing the difference in levels between points using both rise and
fall and height of collimation methods.

5. To carry out leveling on a given line and prepare longitudinal section, run a fly level between two far off points and calculate the difference in height.

6. Measurement of base line, applying corrections, conduct a triangulation survey of a figure involving a braced quadrilateral and adjust the angles - calculation of true bearing, measure and compare with check base.

7. To study plane table and its accessories to carry out the plane table survey of the area using radiation, intersection, traversing and resection methods, two point problem and three point problems of plane table surveying.

OUTCOME:
The students will have practical knowledge about survey instruments and its workings.

ME8652 INDUSTRIAL MANAGEMENT L T P C 3 0 0 3

AIM:
To provide a clear understanding of basic management principles that leads to corporate building.

OBJECTIVE:
To deliver the principles of management, functions of management, organizational structure and dynamics, modern concepts of Industrial Management.

UNIT I INTRODUCTION

UNIT II FUNCTIONS OF MANAGEMENT

UNIT III ORGANIZATIONAL BEHAVIOUR

UNIT IV GROUP DYNAMICS

UNIT V MODERN CONCEPTS

TOTAL: 45 PERIODS

OUTCOMES:
• Students gain knowledge on the basic management principles to become management(s) professional.

TEXT BOOK

REFERENCES

MI8601 COMPUTER APPLICATIONS IN MINING

AIM:
To impart skills on designing and development of mining software and appreciate the scope of Computer application in Mining
OBJECTIVES:
1. To impart knowledge on hardware and software issues concerned with computers in mining industry.
2. To develop algorithms and programs on various mining related problems
3. To impart knowledge on high-end simulation methodologies
4. To study modern techniques on solving mining problems.

UNIT I INTRODUCTION TO COMPUTERS
Hardware concepts – CPU architecture and developments – Overview on input, output and memory devices – interfacing concepts; evolution of operating systems; operating systems functions, characteristics – distributed operating system – Cloud computing / grid computing in mining.

UNIT II SOFTWARE
Application of structured and object oriented programming languages to mining problems like pillar design, blast design, subsidence etc., - modular programming – Top down and bottom approach for mine design and planning.

UNIT III DATABASE MANAGEMENT SYSTEMS
Database and Relational database - development of software packages for mining companies – forms, queries and reports - management information system – enterprise resource planning for production machineries, manpower, finance , and other mining operations.

UNIT IV PROBLEM SOLVING – APPLICATIONS IN MINING
Ventilation network analysis; online and offline monitoring and control. MINOS, FIDOS. CAD in mining – geostatistics, reserve estimation, krigging, block modeling and orebody modeling, pit design and optimization, mine scheduling, TDS, blast design etc., digitization and scanning of mine maps - GIS in mining.

UNIT V MODERN TRENDS
Computer graphics and virtual reality, artificial intelligence, expert system, neural networks, simulated annealing, robotics and their applications in mining.

TOTAL: 45 PERIODS

OUTCOME:
The students will have basic programming knowledge and its applications on various mining related problems and familiarity with hardware and software issues during development of programs. They will also have a perspective on high-end simulation methodologies and modern techniques to solve mining problems.

REFERENCES:

MI 8602 ROCK MECHANICS AND GROUND CONTROL – II L T P C

3 0 0 3

AIM:
To impart knowledge on various approaches used in tackling mining problems.

OBJECTIVES:
1. Introducing the various instrumentation and measurement methods.
2. To study the theories of failure and approaches used for open pit and underground designs.

UNIT I ROCK MECHANICS INSTRUMENTATION
Conventional testing machines and servo-controlled stiffness testing machines, load cells, strain gauges, flat jacks, convergence indicators, anchorage testing equipment, sag bolts, etc, in situ measurements.

UNIT II PIT SLOPE STABILITY & SUBSIDENCE
Approach to slope stability, slope parameters, Geological and physico-mechanical parameters affecting slope stability, effect of water pressure, determination of factor of safety, introduction to methods of failure analysis.

Theories of subsidence, factors affecting subsidence, subsidence surveys, subsidence prediction techniques, subsidence control – surface and underground measures, pseudo-mining damage.

UNIT III THEORIES OF FAILURE OF ROCKS & PILLAR DESIGN AND ROCK BURST
Different theories of failure of rocks, modes of failure - Griffith, Coulumb, Navier, Mohr's,
Hoek-Brown, etc.
Strength of pillars, barrier and shaft pillars design – load estimation, factor of safety, various formulae, rock burst, bumps.

UNIT IV DESIGN OF UNDERGROUND WORKINGS 9
Stress distribution in underground workings, design of underground openings, measurement of rock movements, engineering rock mass classification, rock load assessment and support design, introduction to numerical methods of geomechanics; scaled model studies – principles of modeling and model material and testing.

UNIT V STOWING/FILLING 8
Principal methods of stowing, collection, preparation and transport of materials, surface, underground and face arrangements, design of stowing plants.

TOTAL : 45 PERIODS

OUTCOME:
• The students will have knowledge on rock mechanics instrumentation, approach to pit slope stability, theories of subsidence and failure of rocks. They will also know about design of underground opening and methods of stowing.

REFERENCES:

MI 8603 UNDERGROUND MINING METHODS - METAL L T P C
3 0 0 3

AIM:
To impart detailed knowledge about metal mining methods and technology.

OBJECTIVE:
1. To introduce concepts of metal mining and metal mining terminology.
2. To study development and operations of metal mines.
3. To study about special methods of metal mining methods.

UNIT I BASICS
Metal Mining Terminology; Typical modern metal mine features; typical pre stoping ore block constructional features; classification of methods; Techno economic characteristics impacting on choice of method; Typical unit cost parameters; optimum size of mine and stope.

UNIT II GENERAL MINE DESIGN
Mode of mine and stope entry; Layouts; optimum production; Basic design – Level Intervals, ore pass, common ore pass, size of blocks ore handling in stope and other openings, overview of constructional features – X cuts, Raises, Winzes etc.

UNIT III STOPING – GENERAL DESCRIPTION
Unsupported methods – Room and pillar, shrinkage, sublevel stoping etc. Supported stopes – Cut and fill, square set etc. Caving methods – Top slicing, sublevel caving, block caving.

UNIT IV STOPE PLANNING AND LAYOUT
Preparing a stoping block; sequence of stoping; organization; production cycle; unit cost calculation; comparison of methods and costs

UNIT V NOVEL INNOVATIVE TECHNIQUES & SPECIAL APPLICATIONS
Rapid excavation; Hydraulic mining; slurry mining; solution mining; Radial – axial splitter; Thermal fragmentation; shock wave breaking; Nuclear mining. Deep mining; narrow contiguous veins; shaft and remnant pillars; VCR; Ring drilling; Large Blast hole stoping. Cast studies of Indian and foreign underground metal mines.

Note: All the above are to be studied with emphasis on MMR and the relevant circulars

TOTAL: 45 PERIODS

OUTCOME:
• The students will have basic concept on metal mining methods, mine design, development and operations of metal mines. They will also know about novel methods of metal mining and its applications.

REFERENCES:
Objectives

- To enhance the employability skills of students with a special focus on Presentation skills, Group discussion skills and Interview skills
- To help them improve their soft skills, including report writing, necessary for the workplace situations

2. Creating effective PPTs – presenting the visuals effectively
3. Using appropriate body language in professional contexts – gestures, facial expressions, etc.
4. Preparing job applications - writing covering letter and résumé
5. Applying for jobs online - email etiquette
6. Participating in group discussions – understanding group dynamics - brainstorming the topic
7. Training in soft skills - persuasive skills – People skills - questioning and clarifying skills – mock GD
8. Writing Project proposals – collecting, analyzing and interpreting data / drafting the final report
9. Attending job interviews – answering questions confidently
10. Interview etiquette – dress code – body language – mock interview

OUTCOME

- The students will have enough confidence to present themselves well using proper oral and written communication skills to any interview (or) discussion (or) presentation.

REFERENCE BOOKS

Extensive Readers

Web Resources
1. www.humanresources.about.com
2. www.careerride.com

MI 8611 MINERAL PROCESSING LABORATORY

AIM:
To study the mineral processing procedure and instruments.

OBJECTIVE:
To study the sampling techniques, coal washing, crushing, grinding and sedimentation characteristics of samples.

1. Study of grab sampling and different sample division techniques like coning and quartering, riffle sampling techniques, etc.
2. Determination of crushing characteristics of a given mineral sample using jaw crusher
3. Determination of the grinding characteristics of a given mineral sample using ball mill
4. Sieve analysis of a given sample and to calculate (a) percentage sample retained on screens (b) average size of sample material and (c) to plot sizing curves
5. Concentration of a given mineral sample using mineral jig
6. Concentration of a given mineral using Wilfley table
7. Concentration of a given mineral using froth flotation cell
8. concentration of a given mineral using magnetic separator
10. Study of sedimentation characteristics of a given sample

TOTAL: 45 PERIODS
Students will be able to solve some engineering problems with the help of FEA simulation problems etc.

AIM:
To study the different machineries deployed in mines.

OBJECTIVE:
To study the various machineries, ropes, conveyors and different types of loading machines.

1. Study of construction of different types of wire ropes and Types of rope chapels used for rope haulages & winding, safety hooks used in winding.
2. Construction and operation of compressed air operated drills
3. Study of different types of haulage systems – tensioning arrangement in endless haulage and different types of haulage clips and other means of attachment of tubs to the rope.
4. Study of haulage track, curves, diamond crossing, construction of Mine tubs and cars along with their couplings.
5. Study of safety devices provided of haulage roads and locomotives - Exhaust conditioning and flame traps & underground Battery charging station layout
6. Electrical power distribution in mines, electrical layout for rope haulages and pumps, Electrical and hydraulic layouts for longwall faces
7. Study of aerial rope ways – driving/tensioning/loading/unloading and angle stations
8. Study of various types of head gear-fleet angle, Study of shaft fittings-signal systems, guides, safety dogs and protective roofing, study of guides- methods of support and tensioning arrangements.
10. Study of different types of conveyors like armoured face conveyors, belt conveyors, gate belt conveyors, shaker & vibrating conveyors, high angle conveyors
11. Study of coal drill and its electrical panel/gate end box
12. Study of coal ploughs and shearsers
13. Study of continuous minors and road headers
14. Study of pit top & pit bottom layouts in shaft and incline under various conditions.
15. Study of different types of loading machines

TOTAL: 45 PERIODS

OUTCOME:
The students will have practical knowledge about underground machineries, ropes,
pit-top and pit-bottom layouts.

MI8613 ROCK MECHANICS AND GROUND CONTROL LABORATORY - I L T P C
DETERMINATION OF 0 0 2 1

AIM:

- To give hands-on skills to the students in determining the hardness, porosity, RQD, compressive, tensile and shear strength of rocks using various methods.

OBJECTIVE:
To study the various of methods to determine the strength of rock.

1. RQD of rocks.
2. Protodyaknov index of rock.
3. Point load index strength of rock
4. Porosity of rocks.
5. Hardness of rocks by different methods.
7. Tensile strength of rock using Brazilian method.
8. Tensile strength of steel rod.
9. Shear strength of rocks.
10. Deformation characteristics of rocks using.
11. Tri-axial strength of rock and drawing of Mohr’s envelope.
12. Slake durability of rocks.

OUTCOME:
- The students will have knowledge on strength and deformation characteristics of rock using different methods

CE8613 SURVEY LABORATORY- II L T P C
DETERMINATION OF 0 0 4 2

AIM:

- To familiarize the students with the recent methods of surveying and its instruments.

OBJECTIVE:
- To provide the practice exercises on pantograph, correlation survey, mine plan preparation with use of stereoscope.
1. Enlarging/reducing a given plan to a prescribed scale by the method of least squares and using pantograph/ediograph.

2. Simulate conditions for a correlation, survey on surface and find out the bearing and distance of a base line by different methods.

3. Simulate conditions in surface and conduct alignment surveys of drives and transfer of surveys through winzes and raises.

4. Contour a given area with reference to a benchmark and base line by trigonometric levelling and calculate the volume between two given reduced levels.

5. Establish a base line on the ground using a theodolite with reference to two elevated points whose coordinates are known but on which instrument cannot be set. Compare the calculated distance of the baseline with actual measurement.

6. Establish the true bearing of a baseline by observing a circumpolar star by the method of equal altitudes, extra-meridian observation of the Sun for the calculation of azimuth.

8. Correlation surveys carried at different levels and transfer of survey points from one level to another through vertical shafts.

9. Use of modern surveying equipment including experience in using application software.

10. Transfer of base line from one level to other by correlation.

OUTCOME:
The students will have practical knowledge about recent development of surveying and mine planning.

MI 8701 MINE ECONOMICS AND INVESTMENT L TP C

3 0 0 3

AIM:
To study the fundamentals of mineral economics

OBJECTIVES:
- Study of estimation and valuation of mineral deposits
- Study of project appraisal
- Study of finance and accounting

UNIT I INTRODUCTION
Mineral industry and its role in national economy; world and national mineral resources; Mining - A unique investment environment; special risk factors in mine investment and evaluation;
national mineral policy.

UNIT II ORE RESERVE ESTIMATION
Methods of sampling, sampling frequency; analysis of sampling data, estimation of reserves, introduction to geo-statistical methods, classification of reserves.

UNIT III MINE VALUATION
Time value of money; annuity; redemption of capital, net present value; depletion allowance; depreciation; inflation; escalation; rates of return; Hoskold’s Two rate method; capital and operating cost including wages, incentives, material, etc.; assets; liabilities; cash flows and discounted cash flow; profitability index – their implications in mine economic evaluation.

UNIT IV PROJECT APPRAISAL
Methods of project evaluation – pay back, annual value, benefit/cost ratio, ERR and IRR, etc., evaluation of exploratory mining areas and operating mines; mine project financing, its risks and constraints; mine taxation; critical impact of depreciation, depletion, type of funding, reserves, life, etc., on mine profitability.

UNIT V FINANCE AND ACCOUNTING
Sources of mine funds – shares, debentures, fixed deposit, sinking fund, capital gearing, P & L account, balance sheet, typical case studies of mine feasibility. Cost estimation of individual mining operations and overall mining cost, cost control methods.

TOTAL: 45 PERIODS

OUTCOME:
• The students will have knowledge on estimation and valuation of mineral deposits. They will possess about project appraisal, finance and accounting.

REFERENCES
5. Park, R.J., Examination and Valuation of mineral property
AIM:
To have a fundamental knowledge of natural disasters related to mining

OBJECTIVES:
- To study about spontaneous heating, mine fires, inundation and explosions
- To study about mine rescue and first aid

UNIT I SPONTANEOUS HEATING AND FIRES 12
Causes, detection, incubation period, precautions against spontaneous heating in underground and surface coalmines including coal benches, surface coal stocks, and dumps. Detection, prevention and control of underground fires, fire fighting, study of atmosphere behind sealed-off fire areas for reopening, methods of reopening sealed off fire areas.

UNIT II EXPLOSIONS 12
Causes, prevention and control of underground fire-damp and coal dust explosions including stone dusting, stone dust barriers, water barriers and triggered barriers, investigation after an explosion.

UNIT III MINE RESCUE AND FIRST AID 9
Classification of rescue apparatus including self rescuer, various types of rescue and escape apparatus, rescue organisation of a mining company, layout of a modern rescue station including personnel, first aid to the persons injured in mine-accidents, electric shock, asphyxiation, different methods of artificial respiration, rescue and recovery work in mines including through boreholes, rescue rules.

UNIT IV INUNDATION 9
Surface and underground inundation, their causes and preventive measures, precautions to be taken while approaching old waterlogged workings, safety boring apparatus, design and construction of water dams and barriers, recovery of flooded mines, dewatering of old workings, layout of drainage systems and sumps.

UNIT-V MINE ILLUMINATION 6
Electric safety lamps, their maintenance and examination, lamp room design and organisation, lighting from mains, lighting on mechanised longwall faces and gassy mines, photometry and illumination survey, legislations related to illumination survey.

Note: All the above are to be studied with emphasis on CMR and the relevant circulars

TOTAL: 45 PERIODS

OUTCOME:
- The students will have knowledge on spontaneous heating, mine fires, inundation and explosions. They will also know about mine rescue and first aid.
TEXT BOOKS:

REFERENCES:
5. Classified Circulars by D.G.M.S., Dhanbad.

MI 8703 MINE PLANNING AND DESIGN L T P C 3 0 0 3

AIM:
To understand the fundamental principles of mine planning and design

OBJECTIVES:
- To understand the planning of opencast mining, underground mining and equipment utilization
- To study project implementation and monitoring

UNIT I INTRODUCTION
Technical factors in mine planning, methodology of mine planning, short range & long range, mine modelling, mine simulation systems approach to mine planning based on mine sub-system and their elements, mine plan generation

UNIT II OPENCAST MINING
Selection of initial mine cuts, location of surface structures, division of mining area into blocks, mine design, bench drainage, geometry, haul roads, slope stability; open pit limits
and optimisation, calendar plan, production planning, production scheduling, economic productivity indices.

UNIT III UNDERGROUND MINING

10

Location of mine entries, mine and auxiliary, optimisation of mine parameters, design of shaft pillars and protective pillars, planning of production capacity, layout of development drives / raises / winzes etc, length of faces, size of panels, etc, planning of support systems, ventilation, lay out of drainage system, planning production schedule and monitoring, selection of depillaring / stoping method, manpower management economic/ productivity indices, techno-economic analysis, mine reclamation design.

UNIT IV EQUIPMENT PLANNING

10

Latest technological developments in increase in both types and capacities of equipment used in mining operations. Planning and selection of equipment for different mining conditions. Equipment design for optimum drilling and blasting operations. Equipment information – performance monitoring and expert systems, Innovative mining systems.

UNIT V PROJECT IMPLEMENTATION AND MONITORING

8

OUTCOME:
The students will have knowledge on planning of opencast mining, underground mining and equipment utilization. They will also know about project implementation and monitoring methods.

REFERENCES

MI 8711 COMPREHENSION

AIM:

To sharpen the knowledge and clarify the ideas acquired by the students during the degree programme

The objective of this comprehension is to achieve an understanding of the fundamentals of contemporary manufacturing systems including materials, manufacturing process, product and process control, computer integrated manufacture and quality. The students work in groups and solve a variety of problems given to them. The problems given to the students should be of real like industrial problems selected by a group of faculty members of the concerned department. A minimum of three small problems have to be solved by each group of students. The evaluation is based on continuous assessment by a group of Faculty Members constituted by the professor in-charge of the course.

MI 8712 COMPUTER APPLICATIONS IN MINING LABORATORY

AIM:

To develop algorithms and programs on various mining related problems in basic programming languages.

OBJECTIVE:

To study the computer programming for mining problems, mine ventilation network analysis, modeling of surface and underground workings using various software.

1. Computer programming for mining problems like design of pillars / blast design / subsidence prediction.
3. Database systems and analysis
4. Digitisation and scanning of mine plans
5. Ore body modeling.
6. Pit optimization.
7. Truck dispatch system optimization.
8. Production Scheduling for grade control
9. Digital Terrain modeling and Wire-frame modeling
10. Mine modeling
11. Slope stability analysis

TOTAL: 60 PERIODS

OUTCOME:
The students will have knowledge on design and planning of surface and underground mining methods using mining software

MI8713 MINE ENVIRONMENTAL ENGINEERING LABORATORY L T P C
0 0 2 1

OBJECTIVE:
To demonstrate the various methods and instrumentation involved in analysing an underground mine atmosphere.

1. To determine the psychrometric properties, gas percentage in atmosphere.
2. To study the principles and characteristics governing mine fans.
3. To understand lamp design and perform underground illumination surveys.
 1. Study of mine flame safety lamp, gas testing with flame safety lamp, electric cap lamps, lamp room layouts and illumination survey.
 2. Mine air sampling and detection of various mine gasses, like, methane, carbon monoxide (CO), by conventional methods and by gas chromatograph, etc.
3. Determination of psychrometric properties of air, measurement of cooling power by Kata thermometer.
4. Study of air-reversal arrangement in mine fans.
5. Study of pressure survey and quantity survey in mines using velometer, anemometer and barometer.
6. Determination of air born dust by gravimetric dust sampler, personal dust sampler and by high volume sampler.
8. Determination of crossing point temperature and index of inflammability.
9. Study of self rescuers of different types.
10. Study of self contained breathing apparatus
11. Proximate analysis of coal
12. Measurement of vibrations due to various sources.
14. Determination of organic carbon of soil sample

OUTCOME:

- The students will get practical knowledge about underground mine ventilation methods and planning.

MI 8715 PRACTICAL TRAINING - III

AIM:
To provide training in mines for gaining thorough understanding of all the theoretical knowledge.

Gaining practical experience is an important aspect of the mining engineering programme having many characteristic features of its own.

The students have to undergo training in mines during the summer vacation at the end of the VI Semester for a period of 4 weeks and obtain a valid certificate from the competent authority of the organisation provide training. The students have to submit a report on the training which would be evaluated during the ensuing VII Semester. This carries a total of one credit during the VII Semester. Evaluation would be done by a faculty or a group of faculties on different marking heads such as training, viva voce report etc., or other approved evaluation systems.

Normally a student is not permitted to withdraw from the practical training. In case of any unforeseen circumstances / valid reasons if he could not undergo the training as scheduled, on the recommendation of the Head of the Department and approval by the competent authority the student may be permitted to undergo Practical Training-III before proceeding to VIII Semester. The decision of the competent authority is final.

MI 8716 ROCK MECHANICS AND GROUND CONTROL LABORATORY – II

AIM:
- To give hands-on skills to the students in determining the physic-mechanical properties of rock; providing insight into the geotechnical parameters governing the
strength of rocks.

OBJECTIVE:
- To study the physico-mechanical properties of rock, ground vibration monitoring, stowing characteristics, etc.

1. Time dependent properties of rocks
2. Drillability index of rocks.
3. Stress and fracture patterns around underground model openings
4. Design of mine pillars.
5. Prediction of Subsidence.
6. Young’s Modulus of Elasticity and Poisson’s ratio.
7. Rock anchorage capacity of a rock bolt
8. Roof convergence and other ground control instruments
9. Post Failure Behaviour of Rocks
10. Angle of Internal Friction
11. Ground Vibration Monitoring
12. Stowing Characteristics
13. Permeability

TOTAL : 30 PERIODS

OUTCOME:
- The students will have knowledge on time dependent properties of rock, subsidence, ground vibration monitoring, stowing characteristics and permeability.

MI 8717 SURVEY CAMP L T P C 0 0 0 1

The course of mine surveying is sharply demarcated into general principles and practice of surveying and surveying practice in mines. The subject of Surveying is applied in nature and is best learnt in an operating mine. This is done during the mine survey camp organised in an underground mine as part of the curriculum.

The students of VI Semester have to undergo the survey camp during the semester for a period of 10 days and submit a report. This carries one credit.
If due to valid reasons a student could not undergo this survey camp as scheduled he could do so along with the succeeding batch with the recommendation of the Head of the Department and approval by the competent authority, whose decision is final in this regard.

MI 8714 MINI PROJECT L T P C 0 0 4 2

Students have to undertake a Mini Project work. The aim of the project is to stimulate creative and innovative aspects of their technological learning. The project may consist of design and fabrication, working models, demonstration models, software development, field study in the Mines, Industrial plants, application of software development of feasibility and detail project report of mines environmental project etc. The students have to carry out the projects consisting of a group of students by forming a team of students whose two to three students and have to carry out work for full semester. The students should submit a report and compassing their design results etc.

TOTAL : 60 PERIODS

MI 8801 MINE LEGISLATION AND SAFETY L T P C 3 0 0 3

AIM:

To study about the various legislations relating to mineral industries

OBJECTIVES:

- To study various acts, rules and regulations relating to the mineral industry
- To study accidents, diseases and mine safety

UNIT I INTRODUCTION TO MINING LAWS AND LEGISLATION 2

General principles of mining laws, development of mining legislation of India.

UNIT II ACTS, RULES AND REGULATIONS – I 15

Mines Act, Mines Rules, Coal and metalliferous mines Regulations, Bye-laws, Circulars, and standing orders (Except the ones which are collected in course Drilling & Blasting, Surface Mining, Mining Machinery I & II, Mine Environmental Engineering I, II & III, Underground Mining methods (Coal & Metal))

UNIT III ACTS RULES AND REGULATIONS – II 15

UNIT IV ACCIDENTS AND DISEASES
Classification of accidents, causes and prevention of accidents, accident enquiry reports, cost of accidents, occupational diseases and their social effects.

UNIT V MINE SAFETY
Role of management, labour and government, Safety audit, instrumentation, organisation for disaster management in mines, safety conferences.

TOTAL : 45 PERIODS

OUTCOME:
The students will have knowledge on various acts, rules and regulations relating to the mineral industry. They will also know about accidents, diseases and mine safety.

REFERENCES

MI 8811 PROJECT WORK

0126

AIM:
To provide the students an opportunity to express their skills, academic knowledge, practical experience and ability to analyze problems and suggest solution.

A Project topic must be selected either from published lists or the students themselves may propose suitable topics in consultation with their guides. The aim of the project work is to deepen comprehension of principles by applying them to a new problem which may be the design and manufacture of a device, a research investigation, a computer or management project or a design problem.
The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department.

A project report is required at the end of the semester. The project work is evaluated jointly by external and internal examiners constituted by the Head of the Department based on oral presentation and the project report.

MI 8001 ADVANCED COAL MINING AND MECHANIZATION 3 0 0 3

AIM:
To understand the advanced methods of working and mechanization for winning Coal.

OBJECTIVES:
• To introduce the recent trends of level of mechanisation for coal face
• To understand the various advanced methods of coal mining

UNIT I COAL FACE MECHANISATION 8
Recent Trends, mechanised bord and pillar mining, case studies.

UNIT II MINING OF THICK SEAMS 8
Problems, past experiences in India, current methods, mining of thick, contiguous, and steep seams

UNIT III HYDRAULIC MINING 9
Applicability, operating parameters, equipment, layouts, Indian experience. Computer applications such as remote control and environmental monitoring in hydraulic mining.

UNIT IV LONGWALL MINING 10
Powered supports, development of powered supports, their types and designs, selection for different conditions, last drivages for longwall panelling, remotely operated powered support and longwall faces, Indian experiments, salvaging in longwall.

UNIT V UNDERGROUND COAL GASSIFICATION 10
Scope, application, methods of gasification, design of gasification plants, coal bed methane. Environmental monitoring techniques and computer applications in coal gasification techniques.

OUTCOME:
• The students will have good exposure about the various advanced methods of coal mining with the knowledge about advanced coal face mechanization.

REFERENCES:
1. Das S.K., Modern Coal Mining Technology, Lovely Prakashan, Dhanbad, 1994

MI 8002 ADVANCED METAL MINING AND MECHANIZATION L T P C 3 0 0 3

AIM:
To understand the advanced methods of working and mechanization for metal mining.

OBJECTIVES:
- To introduce the recent advancement of metal mine development
- To understand the various advanced methods of metal mining

UNIT I ADVANCED MINE DEVELOPMENT 9
Recent advances in raising, winzing, development of drives, tunnels, cross-cuts, drifts, stope preparations, opening up of mineral deposit, enlargement of drives and raises, recent trends in shaft sinking. Techno economic aspects.

UNIT II ADVANCED METAL MINING AND STOPING PRACTICES 9
Recent advances in stoping practices, VCR mining, deep mining, stoping practices in rock burst prone mines, back-filling, recent developments in metal mining in India.

UNIT III MECHANISATION, SUPPORT SYSTEMS IN METAL MINES 9
Mechanisation in metal mines – LHD declines, hydraulic transport, trackless mining, modern support system used in metal mines, recent developments in winding and transport

UNIT IV SPECIAL MINING TECHNIQUES 9

UNIT V SPECIAL PROBLEMS OF ORE MINING 9
Special problems of deep mines – rock pressure, heat, humidity, rock burst, noise and dust pollution, deep winding and transport, etc.

TOTAL: 45 PERIODS
OUTCOME:
- The students will have good knowledge about the various advanced methods of metal mining and special mining techniques to overcome the field issues.

REFERENCES:

MI 8003 ADVANCED SURFACE MINING L T P C 3 0 0 3

AIM:
To learn the advancement of surface mining method.

OBJECTIVES:
- To introduce the various techniques for mine planning, geotechnical investigation and equipment management.
- To appreciate the modern trends in opencast mines, safety and environment.

UNIT I PLANNING 10
Open-pit optimisation techniques for mine geometry and output, mine development phases, quality control and conservation. Output and manpower planning; calendar planning, mine scheduling, production scheduling, truck dispatch system, design of sumps and pumping systems and drainage.

UNIT II GEOTECHNICAL PARAMETERS 7
Application of geotechnical investigation for design of ultimate pit slope and other design parameter, slope stability analysis including mine waste rock dumps and tailing dumps.

UNIT III EQUIPMENT MANAGEMENT 7
Machine availability, productivity, maintenance, maintenance scheduling, preventive maintenance, control and monitoring inventory. Workshops for HEMM. Power supply arrangements in opencast mines.
UNIT IV SAFETY AND ENVIRONMENT
Safety aspects in opencast mines regarding height, width and slope of benches, drilling and blasting, fly rock, nearby dwellings, mine illumination, gradient and other aspects of haul roads, formation of spoil dumps, tailings management etc. pollution due to noise, vibrations due to machinery and blasting, water pollution, measurement monitoring and control measures for the same, land reclamation and afforestation, environmental audit.

UNIT V MODERN TRENDS IN OPENCAST MINES
Recent developments in mining methods and layouts. In pit crushing & conveying, continuous surface mining. Selective extraction and dumping. Extraction of seams developed/extracted by underground methods. Deep OCM, Placer mining and solution mining – scope of applicability, sequence of development and machinery

OUTCOME:
- The students will have insight about the advanced techniques for mine planning, geotechnical investigation and equipment management and also will understand the modern trends in opencast mines, safety and environment.

REFERENCES
4. Das, S.K., Modern Coal Mining Technology, Lovely Prakashan, Dhanbad, 1994

MI8004 ENERGY CONSERVATION AND MANAGEMENT
L T P C 3 0 0 3

OBJECTIVES:
At the end of the course, the student is expected to
- understand and analyse the energy data of industries
- carryout energy accounting and balancing
- conduct energy audit and suggest methodologies for energy savings and
- utilise the available resources in optimal ways
UNIT I IMPORTANCE OF ENERGY CONSERVATION AND MANAGEMENT 8

UNIT II ELECTRICAL SYSTEMS 12
AC / DC current systems, Demand control, power factor correction, load management, Motor drives : motor efficiency testing, energy efficient motors, motor speed control – Lighting : lighting levels, efficient options, day lighting, timers, Energy efficient windows – electrical distribution systems – Transformers – Power quality – harmonic distortion.

UNIT III THERMAL SYSTEMS 10

UNIT IV ENERGY CONSERVATION 8
Energy conservation in Pumps, Fans (flow control) and blowers, Compressed Air Systems, Refrigeration and air conditioning systems – Waste heat recovery recuperators, heat sheets, heat pipes, heat pumps.

UNIT V ENERGY MANAGEMENT, ECONOMICS 7

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of this course, the students can able to analyse the energy data of industries.
• Can carryout energy accounting and balancing
• Can suggest methodologies for energy savings

TEXT BOOK

REFERENCES
AIM:
To study the various operations and working methods of longwall mining.

OBJECTIVES:
- To pioneer the history of longwall mining and its development stages
- To understand the extraction, support and transport on a longwall face
- To learn ventilation methods and strata monitoring instruments

UNIT I PLANNING
History of longwall mining and its development, techno-economic consideration of the modified longwall retreat panels, longwall advance panels with caving method and stowing method, design of gate roadways and their size disposition, layout of panels, production and manpower planning, sublevel caving systems for thick seams, caving system in thin seams, multi-slice longwall mining, application of longwall mining for steep seams, longwall caving in metal mines.

UNIT II SUPPORTS
Types of supports used in longwall mining in the past and present, design of powered supports for different situations, longwall face end problems, supports in longwall gate roadways during drivage and extraction, pressure distribution around a moving longwall face, caving of thick seams and thin seams. Main roof fall, local fall and induced roof wall, floor heaving, precautions during main fall and surface subsidence.

UNIT III EXTRACTION AND TRANSPORT ON A LONGWALL FACE
Methods of mining coal on longwall faces, machines – shearers, ploughs etc., methods of cutting and face advancement, stables and sumping, gate road pillar extension. Mode of transporting coal or ore in longwall face and machinery used. Shortwall Mining – a modified longwall mining. Remotely operated longwall faces. Shifting of longwall equipment.

UNIT IV DEVELOPMENT AND WORKING OF LONGWALL FACES
Methods of driving gate roadways, choice of selection of machinery, road headers and dinters, special problems associated with working of longwall faces - faults, roof caving, face spalling, overburden movement, subsidence control, hydraulic stowing, dealing with spontaneous heating while working thick seams in coal.

UNIT V ENVIRONMENT AND ANCILLARY
Methods of ventilating longwall faces and gate roadways. Methane control, dust control and noise control, monitoring at longwall faces. Assessment of cost of ventilation. Electric and
hydraulic circuits. Surface and ground water effects. Strata monitoring with instruments.

TOTAL: 45 PERIODS

OUTCOME:
The students will have better understanding about mine planning, methods of working, development of longwall face, support systems, methods of ventilating longwall faces and transport system on a longwall face.

TEXT BOOKS:

REFERENCES:
1. Mathur, S.P., Mining Planning for Coal, M.G. Consultants, Bilaspur, 1999

MI 8006 MATERIAL HANDLING L T P C 3 0 0 3

AIM:
To study the various handling systems deployed in mineral industry.

OBJECTIVES:
- To introduce the basic principles in material handling and its equipment
- To study the conveyor system and its advancement

UNIT I BULK HANDLING SYSTEMS 9
Basic principles in material handling exclusive to mining industry and its benefits. Classification of material handling equipments. Current state of art of bulk handling materials in mining in the world and Indian scenario; Selection of suitable types of systems for application. Stacking, blending, reclaiming and wagon loading, machinery and systems used at the stack yards; stock piles, silos, bunkers – their design, reclamation from them, various types of weigh bridges. Segregation - size wise and grade wise, Railway sidings.
UNIT II SHORT CONVEYORS AND HAULAGE SYSTEMS 9
Roller conveyor, overhead conveyor, screw conveyor, auger conveyor, apron feeder, bucket elevators, scraper haulage, conveyors in steep gradient, Armoured face conveyor, Off-highway Trucks, haul roads, In-pit crushers and modular conveyors, electric trolley assisted haulage, shuttle cars, skip hoist, winders, LHD’s, pneumatic conveying, hydraulic transport.

UNIT III BELT CONVEYOR SYSTEM 9
Design, capacity, calculations with respect to the size, speed, troughing, power requirement, tension requirement, belt selection, factor of safety; developments in the design, of various components of belt conveyor systems such as; structures, rollers, gear boxes and motors, drums and pulleys, belting, ancillary components and safety gadgets.

UNIT IV NEW TYPES OF BELT CONVEYOR SYSTEMS 9
Curved conveyors, cable belts, pipe conveyors, rock belts – mine-run-rock conveyor, steel belt conveyors, steel slot conveyor, chain belt conveyors, etc., and other new developments, stackers and reclaimers, High Angle Conveyors (HAC); New inventions in HAC , Mobile or fixed installations; Woven wire belts, En Masses conveyor, Vibrating conveyor, gravity bucket conveyor.

UNIT V MATERIAL HANDLING IN MINES, PLANTS AND WORKSHOPS 9
Mobile cranes, derrick cranes, pillar cranes, tower cranes, radial cranes, bridge cranes, fork lifters, over head gantry material handling in workshops. Mineral handling in dimensional stone quarries, Mineral handling plants(coal, etc.,)
Locomotives, rail tracks, rail cars, railways wagons; Aerial ropeways, gravity ropeways; Containers and shipping; Rope haulage - different types.

TOTAL: 45 PERIODS

OUTCOME:
The students will get exposure towards the material handling methods and systems and its principle to convey the minerals or materials from mines, plants and workshops.

TEXT BOOKS:
REFERENCES:

MI 8007 MATERIAL MANAGEMENT L T P C
3 0 0 3

OBJECTIVE:
- To teach the basic principles of purchasing, warehousing and inventory management

UNIT I INTRODUCTION 8
Introduction to material management, importance of integrated materials management, need for integrated materials management concept, definition, scope and advantage - an overview, A-B-C analysis, codification, variety reduction, standardisation.

UNIT II PURCHASING MANAGEMENT 10
Material planning and purchase, purchase system, procedures, price forecasting, purchasing of capital equipment, vendor development, account procedure, purchasing decisions, procurement policies.

UNIT III WARE HOUSING AND STORE MANAGEMENT 10
Store keeping principles – past and latest techniques, stores-general layout, cost aspect and productivity, problems and development, store system procedures incoming material control, store accounting and stock incoming material control, store accounting and stock verification, value analysis

UNIT IV INVENTORY MANAGEMENT 10
Introduction, basic models, definition of commonly used terms, replenishment model, choice of systems, etc. inventory work in progress, safety stock, computerisation in materials management control, information to materials management case study, spare parts management.

UNIT V MATERIAL PROCUREMENT PROCEDURES 7
Arbitration Act – Octroi, central and local sales tax, excise duties – customs tariff, import
control policies, procurement from govt. agencies and international market – insurance, DGS and D tariff.

TOTAL: 45 PERIODS

OUTCOMES:
• The student would understand the framework and scope of material management and functions.

REFERENCES:

MI 8008 MINE SAFETY ENGINEERING 3 0 0 3

AIM:
To study the mine accidents, health and mine safety.

OBJECTIVES:
• To learn the level of risk associated with mining, risk assessment and management
• To know the occupational diseases, mine disasters and mitigation

UNIT I MINE ACCIDENTS 8
Accident in mines; different types, accident investigations; accident analysis; accident prevention and corrective action, accident proneness, creating and maintaining safety awareness, ZAP and MAP, job safety analysis, safety meeting and committee.

UNIT II HEALTH AND MINE SAFETY 8
Definition of health and safety, management’s role – function; evolution of management involvement, management’s training, responsibility, cost of health and safety, role of labour organizations – Union impact and involvement, role of government – statutory controls and directions, spot and regular inspections, enforcement of standards, penalties for violations, collection and distribution of statistical data.

UNIT III FAULT TREE ANALYSIS 8
Introduction – methodology, symbols and Boolean techniques, qualitative analysis,
computerized methods, statistical analysis, safety information, systems design.

UNIT IV RISK ASSESSMENT AND DISASTER MANAGEMENT

Principles, risk and hazard control, risk and hazard evaluation and data collection for identified health risks, exposure assessment and risk characterization, probabilistic risk analysis, risk management, safety culture, human factors, reliability evaluation, safety audit. Identification of causes of mine disasters, preventive action, disaster management and mitigation, typical cases of mine disasters in India

UNIT V MINER’S OCCUPATIONAL DISEASES AND ENQUIRY COMMITTEE

Miner’s occupational health and diseases, preventive medical examinations, various types of injuries, compensable diseases, medical attention and removable of causative factors in the mines. Recommendations of inquiry committee carried out for safety and health issues in India.

OUTCOME:

The students will have deep knowledge about the mine accidents, disaster, disease and mine safety with risk assessment, mitigation and management.

REFERENCES

7. Mine Disasters of India, NCSM Publication.

MI8009 MINERAL EXPLORATION L T P C

3 0 0 3

AIM:

To learn the mineral resources, exploration strategy, preparation and evaluation of reports.
OBJECTIVES:
- To know the mineral resources and prospecting techniques
- To understand exploration techniques and strategy
- To study the prefeasibility and feasibility reports and its evaluation methods

UNIT I MINERAL RESOURCES AND PROSPECTING
Introduction to important mineral resources in India and world wide, surface and aerial prospecting, reconnaissance, application of geochemical, geophysical and geostatistical methods

UNIT II EXPLORATION
Preliminary and detailed exploration by boring, exploratory mining by shafts, drifts, cross-cuts, collection and compilation of data for computer processing.

UNIT III EXPLORATION STRATEGY
Exploration investment decision, exploration techniques and strategies, exploration targets.

UNIT IV EXPLORATION GROUPS AND THEIR ROLE
Strategy and structure of the exploration group, government policies, aspects of exploration, role of exploration in the mining company.

UNIT V PREPARATION AND EVALUATION OF PROJECT REPORTS
Evaluation of exploration and development projects, study of typical pre-feasibility and feasibility reports.

TOTAL: 45 PERIODS

OUTCOME:
- The students will have knowledge about the available mineral resources, exploration techniques and its strategy. They will know about the methods of preparation of feasibility reports and its evaluation techniques.

REFERENCES

MI8010 NON-DESTRUCTIVE TESTING L T P C
3 0 0 3

AIM:
To learn the principle and instruments for non-destructive testing.

OBJECTIVE:
To study the various non-destructive testing techniques such as liquid penetrant, magnetic particle inspection, radiography, eddy current inspection, ultrasonic testing, etc.

UNIT I LIQUID PENETRANT AND MAGNETIC PARTICLE INSPECTION 9
Liquid penetrant systems - processing cycles - inspection of surface defects - Generation of Magnetic fields - Magnetic particle inspection equipments - Demagnetization – Applications and limitations.

UNIT II RADIOGRAPHY 11
Production of x-rays - Characteristic rays and white ray - Tube current and Voltage - Sources of 8 rays - Half life period - Penetrating power - Absorption of x and y rays - Radiation contrast and film contrast - exposure charts - pentameters and sensitivity - Safety.

UNIT III EDDY CURRENT INSPECTION 7
Eddy current production - Impedance concepts - inspection of magnetic materials – inspection of non magnetic materials - influences of various parameters - Advantages and limitations.

UNIT IV ULTRASONIC TESTING 10
Production of ultrasonic waves - Different types of waves - Normal beam inspection - Angle beam inspection - thickness measurements - Applications.

UNIT V RECENT TECHNIQUES 8
Principles of acoustic emission - instrumentation for non destructive testing - Principles of holography - Applications of holographic techniques non destructive inspection - advantages and limitations - Other techniques.

TOTAL: 45 PERIODS

TEXT BOOK:
REFERENCES:

MI 8011 NUMERICAL METHODS IN MINING ENGINEERING L T P C
3 0 0 3

AIM:
To introduce the concept of numerical methods in mining engineering.

OBJECTIVES:
- To study the finite element methods, finite difference methods and boundary element methods
- To understand the practical applications of numerical methods in mining field

UNIT I INTRODUCTION TO ELASTIC AND PLASTIC MODELS 9
Fundamentals, elastic, plastic, homogeneous and isotropic, non-linear elastic and elasto-plastic models.

UNIT II FINITE DIFFERENCE METHODS 9
Concept, formation of mesh element, finite difference patterns, solutions, application to mining.

UNIT III FINITE ELEMENT METHODS 9
Concept, discretisation, element configuration, element stiffness, assemblage and solutions, two and three dimensional solutions, linear and non-linear analysis, applications in geomechanics; simulation of joints in strata.

UNIT IV BOUNDARY ELEMENT METHOD 9
Concept, discretisation, different methods of solution for isotropic and infinite media.

UNIT V PRACTICAL APPLICATIONS IN MINING AND ROCK MECHANICS 9
Practical Applications in stress analysis, slope stability, subsidence prediction, pillar design, rock burst, etc.

TOTAL: 45 PERIODS

OUTCOME:
- The students will get the concept about finite element models, methods and boundary elements method and its practical applications in mining and rock mechanics.
REFERENCES

MI8012 OBJECT ORIENTED PROGRAMMING L T P C
3 0 0 3

AIM:
To introduce the object oriented programming methodology and classes.

OBJECTIVE:
To study the various programming methodologies, classes, threads, packages and C++

UNIT I INTRODUCTION 9
Programming methodologies – comparison – features of object oriented programming – basics of java environment.

Classes

UNIT II EXTENDING CLASSES 9

UNIT III THREADS AND PACKAGES 9

UNIT IV EVENT HANDLING AND NETWORKING 9

UNIT V C++ 9
Differences between Java and C++ - multiple inheritance – pointers – templates.

OUTCOME:
TOTAL: 45 PERIODS
The students will get basic knowledge about object oriented programming language.

REFERENCES

MI 8013 PETROLEUM ENGINEERING L T P C 3 0 0 3

AIM:
To study the methods for exploration, drilling operations and production in petroleum industry.

OBJECTIVES:
- To learn the exploration methods and reserve estimation in petroleum industry
- To know the drilling and production methods in petroleum industry

UNIT I EXPLORATION METHODS AND RESERVE ESTIMATION

Concept of Petroleum Engineering; Regional petroleum prospecting – magnetic and gravity methods, procedures for data collection, corrections, Interpretation; Seismic reflection method data acquisition, seismic processing, display of seismic data interpretation, hot spots for oil and gas, 3D surveying Volumetric oil and gas reserve estimation – deterministic methods – Monte Carlo method, parametric methods, Three point estimates – uncertainty of input to estimation.

UNIT II DRILLING OPERATIONAL PRACTICES

Rotary oil well rig, rotary drilling, basic operations for brakes, Betties Protector, drill-pipe wiper, tong pull back, making-up joints, breaking up joints, connecting and disconnecting Kelly & Hook, checking conditions of rotary ships and master Busting – operational practices for spudding-in-drill-color and pipe connection, pulling out, running in stabilization tools and operation, fitting of well head, installation of blow-out preventor (BOP) and testing drill stem assembly, failure of drill pipes, drill stem design, tension loading, external fluid pressure-height on bit, drill collar bending, strength ratio, transition zone, quick guide to solve drill stem failures – directional drilling, inclinometer survey, horizontal drilling.

UNIT III HYDRAULIC (MUD) PROGRAMME

Drilling fluid, function, classification of drilling fluid, drilling complication and mud importance, designing hydraulic programme for drilling operations, equations used in hydraulic programme, pump characteristics, calculation of system processor losses, selection of nozzle size, optimization of hydraulic programme
UNIT IV CASING AND CEMENTATION

Tensile requirements for casing, API casing list, casing performance properties, types of casings, casing policy, casing and lines, calculation of fracture pressure gradient, casing settings depth selection, casing design, specialization of casing, collapses pressure, tensile load, burst pressure, tension on collapse strength of casing, design factors, casing design, cementation, cement properties, types procedures and purposes.

UNIT V WELL COMPLETION AND PRODUCTION

Logging operations, logging methods, interpretation calculation of saturation, gas saturation, water saturation, porosity, permeability, oil and gas findings, performance techniques, well completion, production tubing, well head x’mas tree fittings – transportation - oil to gas and water separator – oil to stockyard Reservoir Engineering – concept and approach, oil recovery – primary, secondary, enhanced oil recovery techniques. Offshore drilling technology, rigs of offshore drilling, general jacking procedures, drilling from a floating vessel. International oil business, management and economics.

TOTAL: 45 PERIODS

OUTCOME:
The students will get knowledge about exploration techniques, drilling operations, casing, cementation, well completion and production in petroleum industry.

REFERENCES:

MI 8014 ROCK EXCAVATION ENGINEERING

AIM:
To study the rock mechanics, rock cutting technology and rock excavating machine.
OBJECTIVES:
- To understand the rock mechanics, rock cutting technology, rock cutting tools and rock excavating machine

UNIT I INTRODUCTION
Concepts, historical developments in rock excavation, systems, factors affecting the rock fragmentation, mechanism of rock breakage and fracture; their application to rock fragmentation methods for rock fragmentation – explosive action, cutting, ripping and impacts.

UNIT II ROCK MECHANICS
Rock properties related to machining process; application of compressive, tensile and multi-axial strengths, index tests and abrasivity, anisotropy, elasticity, porosity, laminations, bedding and jointing in rock fragmentation process.

UNIT III ROCK CUTTING TECHNOLOGY
Mechanism of drilling – rotary, percussive, rotary, rotary percussive, mechanics of rock machining, theory of single tool rock cutting, crack initiation and propagation, breakage pattern, rock excavation by cutting action – picks, discs, roller cutters water jet cutting, methods of evaluation of drillability and cuttability of rocks.

UNIT IV ROCK CUTTING TOOLS
Rock cutting tool materials, different types, relative applications and their choice, tool shape and size, specific energy consumption, tool wear, effect of operational parameters on tool performance, maintenance and replacement of cutting tools of excavating machines.

UNIT V ROCK EXCAVATING MACHINES
Excavating machines, principles, operation, applicability and technical indices of road headers, TBM'S coalface machines and bucket wheel excavators.

TOTAL: 45 PERIODS

OUTCOME:
The students will get familiarity about rock mechanics properties, rock cutting technology and excavating machines.

REFERENCES
AIM:
To study the rockmass classification, grouting and special methods of rock reinforcement.

OBJECTIVES:
• To introduce the rockmass classification and mechanism of rock reinforcement
• To learn the typical and special methods of rock reinforcement

UNIT I ROCKMASS CLASSIFICATION 12
Basic concepts of rockmass classification; Rock Quality Designation (RQD); Norwegian Geomechanics Classification i.e. Q-system; Rock Mass Rating (RMR); CMRI system; Application of rockmass classification in assessing the support requirement for underground caverns.

UNIT II GROUTING, GUNITING AND SHOTCRETING 6
Mechanisms of rock reinforcement by grouting; selection of optimum pressure and water-cement ratio for grouting; layout for grouting, working principle and field of application for grouting; Guniting and shotcreting operations and their field of application; fibre reinforced shotcreting.

UNIT III ROCK BOLTS 10
Elements of rock bolts; types of rock bolts and their fields of application; rock bolting machines and installation of rock bolts; pre-tensioning of rock bolts; principles of rock bolting; anchorage test and factors affecting anchorage strength of bolts; modes of failure; Design of rock bolting system for underground excavation i.e. determination of bolt length and bolt pattern.

UNIT IV CABLE BOLTS AND ROCK ANCHORS 8
Classification of cable bolts; installation and testing; modes of failure; different type of grouting materials; types of anchors; use of anchors for stabilising rock slope, dam etc.; testing of anchors.

UNIT V SPECIAL METHODS OF ROCK REINFORCEMENT 9
Ground freezing for slope stabilisation; berms for slope stabilisation; fore-poling; resin grouted rock bolts of fibre glass; geo-textiles and it’s area of application; water drainage and rock reinforcement; dump stabilisation by vegetation.

TOTAL: 45 PERIODS

OUTCOME:
The students will have the concept about the rockmass classification, mechanism of rock reinforcement, existing and special methods of rock reinforcement.

REFERENCES
1. Schach, R., Garshael, K. and Heltzen, A. M., Rock Bolting – A Practical Handbook,
AIM: To understand the mechanism of rock slope failure and influencing parameters.

OBJECTIVES:
- To introduce the basic mechanics of rock slope failure
- To learn the types of rock failure and its influencing parameters

UNIT I BASIC MECHANICS OF ROCK SLOPE FAILURE
Rock slope economics; continuum mechanics approach to slope stability; slope parameters; effect of water pressure; factor of safety of slopes; slope height vs slope angle; design of slopes.

UNIT II GEOLOGICAL AND STRENGTH PROPERTIES
Geological parameters affecting slope stability; graphical representation of geological data; plotting and analysis of field measurements; physico-mechanical properties affecting slope stability, shearing on incline plane, determination of shear strength of rock and rock discontinuities; Ground water flow in rock masses; field measurement of permeability; measurement of water pressure.

UNIT III PLANE FAILURE
Plane failure analysis; graphical analysis of stability; influence of ground water on stability; influence of tension crack; rock reinforcement; analysis of failure on a rough plane; case studies.

UNIT IV WEDGE FAILURE
Analysis of wedge failure; wedge analysis including cohesion and water pressure; case studies.

UNIT V CIRCULAR AND TOPPLING FAILURE
Conditions for circular failure; derivation of circular failure analysis; effect of ground water; circular failure charts; Bishop’s and Janbu’s methods of failure analysis; case studies. Types of toppling failure; secondary toppling; analysis of toppling failure; limit equilibrium analysis of toppling failures; Influence of slope curvature on stability; slope depressurisation; protection
of slopes; control of rock falls; measurement and monitoring and interpretation of slope displacements.

TOTAL :45 PERIODS

OUTCOME:
The students will know the fundamental mechanics of rock slope failure, types of failure and its influencing parameters.

REFERENCES

MI 8017 SMALL SCALE AND MARINE MINING L T P C
3 0 0 3

AIM:
To study the small scale and marine mining methods and its environment obligations.

OBJECTIVES:
- To introduce the small scale mining methods with case studies
- To introduce the marine geology and its exploitation techniques

UNIT I INTRODUCTION TO SMALL SCALE MINING 9
Concept of small scale mining, small scale mines – world wide, Indian Policy in small scale mines – practices, policies and perspectives, problems of small scale mines – finance, legislative support, technical expertise, environmental obligations, safety, health and training, environmental impacts and protection.

UNIT II SMALL SCALE MINING METHODS 9
Classification and mode of occurrence of granite and other minor minerals, physical, mechanical and chemical properties, geological aspects of mining, granite and dimensional stone mining – manual, semi-mechanised and mechanised mining methods, conventional & novel techniques, recent trends, processing, finishing, quality control, marketing & export of minerals. Case studies of mining of other minerals like sandstone, marble, beach sands, alluvial mining, mica, barytes, diamond and gemstones, etc.

UNIT III INTRODUCTION TO MARINE MINING 9
Introduction to marine environment, development & status of ocean resources of mining in
India and other parts of the world, Ocean profile, ocean floor topography, economic exclusive zone & fundamentals of law of the sea, coastal zone & its characteristics.

UNIT IV MARINE GEOLOGY AND RESOURCES
Physical and chemical properties of seawater, overview of marine mineral deposits, deep-sea bed mineral resources, polymetallic nodules, sulphate nodules, chemicals from the ocean, dissolved and undissolved mineral deposits, sea water as resource and beach placers.

UNIT V EXPLOITATION OF MARINE DEPOSITS
Shallow and deep sea bed, oceanographic instruments, mining of manganese nodules, deep sea drilling methods, ocean bottom samplers, drag buckets, grab buckets, coring systems, ocean bathymetry, temperature measurement systems, water samplers, ocean dynamic analysis, beach placer mining, underwater photographs, vehicles and transportation, offshore oil platforms.

OUTCOME:
The students will have insight about small scale mining methods and marine techniques.

REFERENCES

MI 8018 SUBSIDENCE ENGINEERING

AIM:
To learn the subsidence mechanics, influencing parameters and its control measures.

OBJECTIVES:
 • To know the basic subsidence mechanics and its influencing parameters
 • To study the control measures of subsidence and its impact on structure
UNIT I INTRODUCTION
Strata movement at the mining horizon, convergence in mine working, factors influencing convergence in mine workings.

UNIT II SUBSIDENCE MECHANISM
Zones of movement in the overlying beds, vertical and horizontal movement, subsidence trough, angle of draw, angle of break, sub-surface subsidence.

UNIT III SUBSIDENCE PREDICTION
Different methods of surface subsidence prediction – graphical, analytical, profile function, empirical and theoretical models.

UNIT IV TIME INFLUENCE AND IMPACT ON STRUCTURES
Influence of time on subsidence, example from longwall and bord and pillar workings. Calculation of ground movement over time. Types of stress on structures, stress-strain behaviour of soils, mining damage to buildings, industrial installations, railway lines, pipes, canals, etc.

UNIT V SUBSIDENCE CONTROL, GOVERNING LAWS AND STANDARDS
Measures to reduce mining damage, mining methods to minimise damage, laws governing mining damage, different standards suggested for mining and building ground in respect of subsidence.

TOTAL : 45 PERIODS

OUTCOME:
The students will have knowledge about the subsidence mechanism, prediction and influencing parameters. They will know about subsidence control, governing norms and regulations.

REFERENCES
AIM:
To study the application system engineering concept in mining industry.

OBJECTIVES:
- To know basic of system engineering concept and analysis
- To study the various techniques of operations research, simulation and network analysis

UNIT I INTRODUCTION
Introduction to systems engineering, systems concept and analysis, models in systems analysis, tools and methodology of system analysis.

UNIT II OPERATIONS RESEARCH
Introduction to operations research, introduction to linear programming, application to mineral industry.

UNIT III SIMULATION TECHNIQUES
Introduction to Monto-carlo sampling and deterministic simulation of different mining subsystems and total system, simulation application for equipment selection and production scheduling.

UNIT IV NETWORK ANALYSIS
Network analysis, monitoring and control of developmental activities in mining project by CPM and PERT.

UNIT V MISCELLANEOUS
Inventory of mineral resources, basic models and optimisation, introduction to statistical decision theory and its application in mineral industry.

TOTAL : 45 PERIODS

OUTCOME:
The students will learn the concept of system engineering and applicability in mining field.

REFERENCES
GE8071 FUNDAMENTALS OF NANOSCIENCES L T P C 3 0 0 3

OBJECTIVES
- To learn about basis of nanomaterial science, preparation method, types and application

UNIT I INTRODUCTION 10
Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering-Classifications of nanostructured materials- nano particles- quantum dots, nanowires-ultra-thinfilms-multilayered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only).

UNIT II PREPARATION METHODS 10
Bottom-up Synthesis-Top-down Approach: Precipitation, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.

UNIT III PATTERNING AND LITHOGRAPHY FOR NANOSCALE DEVICES 5
Introduction to optical/UV electron beam and X-ray Lithography systems and processes, Wet etching, dry (Plasma /reactive ion) etching, Etch resists-dip pen lithography

UNIT IV PREPARATION ENVIRONMENTS 10
Clean rooms: specifications and design, air and water purity, requirements for particular processes, Vibration free environments: Services and facilities required. Working practices, sample cleaning, chemical purification, chemical and biological contamination, Safety issues, flammable and toxic hazards, biohazards.

UNIT V CHARACTERISATION TECHNIQUES 10
X-ray diffraction technique, Scanning Electron Microscopy - environmental techniques, Transmission Electron Microscopy including high-resolution imaging, Surface Analysis techniques- AFM, SPM, STM, SNOM, ESCA, SIMS-Nanoindentation

OUTCOMES
- Will familiarize about the science of nanomaterials
- Will demonstrate the preparation of nanomaterials
Will develop knowledge in characteristic nanomaterial

TEXT BOOKS

REFERENCES

GE8751 ENGINEERING ETHICS AND HUMAN VALUES L T P C 3 0 0 3

OBJECTIVES:
- To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I HUMAN VALUES 10

UNIT II ENGINEERING ETHICS 9

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION 9
Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law – The Challenger Case Study.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS 9

UNIT V GLOBAL ISSUES

TOTAL: 45 PERIODS

OUTCOMES:
• Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society

TEXTBOOK

REFERENCES:

WEB SOURCES:
1. www.onlineethics.org
2. www.nspe.org
3. www.globalethics.org
4. www.ethics.org
OBJECTIVES:
The students should be made to:
• To make the students aware of the outline of managerial functions relating to manufacturing.

UNIT I PRINCIPLES OF MANAGEMENT AND PERSONNEL MANAGEMENT 5

UNIT II INVENTORY MANAGEMENT 9

UNIT III OPERATIONS MANAGEMENT 19

UNIT IV FINANCIAL MANAGEMENT 7

UNIT V MARKETING MANAGEMENT 5

TOTAL : 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
• The students would be able to understand the basic application of operational tools and manufacturing.

TEXT BOOK

REFERENCES:
AIM
To provide comprehensive knowledge about the principles, practices, tools and techniques of Total quality management.

OBJECTIVES
- To understand the various principles, practices of TQM to achieve quality.
- To learn the various statistical approaches for Quality control.
- To understand the TQM tools for continuous process improvement.
- To learn the importance of ISO and Quality systems

UNIT I
INTRODUCTION

UNIT II
TQM PRINCIPLES
Quality statements - Customer focus –Customer orientation, Customer satisfaction, Customer complaints, Customer retention - Continuous process improvement – PDCA cycle, 5s, Kaizen - Supplier partnership – Partnering, Supplier selection, Supplier Rating.

UNIT III
TQM TOOLS & TECHNIQUES I

UNIT IV
TQM TOOLS & TECHNIQUES II

UNIT V
QUALITY SYSTEMS

TOTAL : 45 PERIODS

OUTCOMES:
- The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.
TEXT BOOK:

REFERENCE BOOKS:

ME8076 ENTREPRENEURSHIP DEVELOPMENT L T P C
3 0 0 3

OBJECTIVE:
Study of this subject provides an understanding of the scope of an entrepreneur, key areas of development, financial assistance by the institutions, methods of taxation and tax benefits, etc.

UNIT I ENTREPRENEURSHIP

UNIT II MOTIVATION
Major Motives Influencing an Entrepreneur – Achievement Motivation Training, self Rating, Business Game, Thematic Apperception Test – Stress management, Entrepreneurship Development Programs – Need, Objectives.

UNIT III BUSINESS

UNIT IV FINANCING AND ACCOUNTING
Need – Sources of Finance, Term Loans, Capital Structure, Financial Institution, management of working Capital, Costing, Break Even Analysis, Network Analysis Techniques of PERT/

UNIT V SUPPORT TO ENTREPRENEURS

OUTCOMES:
- Upon completion of the course, students will be able to gain knowledge and skills needed to run a business successfully.

TEXT BOOKS:

REFERENCES:

ME8078 NEW AND RENEWABLE SOURCES OF ENERGY L T P C 3 0 0 3

OBJECTIVE:
At the end of the course, the students are expected to identify the new methodologies / technologies for effective utilization of renewable energy sources.

UNIT I INTRODUCTION

UNIT II SOLAR ENERGY
UNIT III WIND ENERGY

UNIT IV BIO - ENERGY

UNIT V OTHER RENEWABLE ENERGY SOURCES

TOTAL : 45 PERIODS

OUTCOMES:
• Upon completion of this course, the students can able to identify the new methodologies / technologies for effective utilization of renewable energy sources.

TEXT BOOKS:

REFERENCES:

ME8752 FINITE ELEMENT ANALYSIS

OBJECTIVES
• To introduce the concepts of Mathematical Modeling of Engineering Problems.
To appreciate the use of FEM to a range of Engineering Problems.

UNIT I INTRODUCTION

UNIT II ONE-DIMENSIONAL PROBLEMS

UNIT III TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS

UNIT IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS
Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Body forces and temperature effects – Stress calculations - Plate and shell elements.

UNIT V ISOPARAMETRIC FORMULATION AND ADVANCED TOPICS

TOTAL: 45 PERIODS

OUTCOMES:
- Upon completion of this course, the students can able to understand different mathematical Techniques used in FEM analysis and use of them in Structural and thermal problem

TEXT BOOK:

REFERENCE BOOKS:

MF8078 QUALITY CONTROL AND RELIABILITY ENGINEERING L T P C
3 0 0 3

OBJECTIVES:
• Teach the essentiality of SQC, sampling and reliability engineering. Study on various types of control charts, six sigma and process capability to help the students understand various quality control techniques.
• Reliability engineering focuses on the dependability, failure mode analysis, reliability prediction and management of a system.

UNIT I STATISTICAL QUALITY CONTROL
Methods and Philosophy of Statistical Process Control - Control Charts for Variables and Attributes - Cumulative sum and Exponentially weighted moving average control charts - Other SPC Techniques – Process - Capability Analysis - Six sigma concept.

UNIT II ACCEPTANCE SAMPLING

UNIT III RELIABILITY ENGINEERING
Definition of reliability – Performance and reliability - Reliability requirements – System life cycle – Mean time between failures – Mean time to failure - Mortality Curve - Availability – Maintainability.

UNIT IV FAILURE DATA ANALYSIS
UNIT V RELIABILITY PREDICTION AND MANAGEMENT

TOTAL: 45 PERIODS

OUTCOMES:
- Upon successful completion of this course, the students can able to apply the concept of SQC in process control for reliable component production

TEXT BOOKS:

REFERENCES:

GE8072 DISASTER MANAGEMENT L T P C
3 0 0 3

OBJECTIVES:
- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- To enhance awareness of institutional processes in the country and
- To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity

UNIT I INTRODUCTION TO DISASTERS
Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don’ts during various types of Disasters.

UNIT II APPROACHES TO DISASTER RISK REDUCTION (DRR)
Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community,
Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stakeholders- Institutional Processess and Framework at State and Central Level- State Disaster Management Authority(SDMA) – Early Warning System – Advisories from Appropriate Agencies.

UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT 9
Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT IV DISASTER RISK MANAGEMENT IN INDIA 9
Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.

UNIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS 9
Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

TOTAL: 45 PERIODS

OUTCOMES:
The students will be able to
- Differentiate the types of disasters, causes and their impact on environment and society
- Assess vulnerability and various methods of risk reduction measures as well as mitigation.
- Draw the hazard and vulnerability profile of India, Scenarios in the Indian context, Disaster damage assessment and management.

TEXTBOOK:

REFERENCES
1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005
OBJECTIVES:

- To sensitize the Engineering students to various aspects of Human Rights.

UNIT I

UNIT II

UNIT III
Theories and perspectives of UN Laws – UN Agencies to monitor and compliance.

UNIT IV
Human Rights in India – Constitutional Provisions / Guarantees.

UNIT V

TOTAL: 45 PERIODS

OUTCOME:

- Engineering students will acquire the basic knowledge of human rights.

REFERENCES: