

CLIMATE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU

COASTAL ECOSYSTEM

Capacity Building Programme

REPORT

MARCH 2024

Funded By Department of Environment and Climate Change Government of Tamil Nadu Prepared By Centre for Climate Change and Disaster Management Department of Civil Engineering Anna University, Chennai

TEAM – CLIMATE STUDIO

PRINCIPAL INVESTIGATORS	:	Dr. Kurian Joseph, Professor & Director, CCCDM
		Dr. A. Ramachandran Emeritus Professor, CCCDM & Member, Chief Minister's Governing Council on Climate Change
RESEARCH TEAM CLIMATE MODELING	:	Dr. R. Geetha, Project Scientist
		Mrs. K. Sathyapriya, Project Associate
WATER RESOURCES	:	Dr. L. Balaji, Project Scientist
		Dr. R. Malarvizhi, Project Associate
SUSTAINABLE AGRICULTURE:		Dr. S. Pavithrapriya, Project Scientist
		Mr. P. Praveenkumar, Project Associate
FOREST ECOSYSTEM	:	Dr. S. Hariharan, Project Scientist
		Dr. M. Mithilasri, Project Associate
COASTAL ECOSYSTEM	:	Dr. Madavi Venkatesh, Project Scientist
		Ms. S. Nivetha, Project Associate
SUSTAINABLE HABITAT	:	Dr. Divya Subash Kumar, Project Scientist
		Mr. S. N. Ahamed Ibrahim, Project Associate
GEOSPATIAL INFORMATION	:	Dr. M. Mathan, Project Scientist
WEB PORTAL	:	Mr. K. Asan Basheer, Project Associate
ADMINISTRATION TEAM	:	Mr. D. Murali, Superintendent Ms. H. Janani, Project Assistant Mr. S.T.Udhayachandran, Project Assistant

ACKNOWLEDGEMENT

We sincerely acknowledge the support and encouragement by Tmt. Supriya Sahu IAS., Additional Chief Secretary to Government, Department of Environment, Climate Change and Forests, Government of Tamil Nadu, Thiru. A.R. Rahul Nadh IAS., Director, Department of Environment and Climate Change, Government of Tamil Nadu and Thiru. Deepak Bilgi IFS., Chief Mission Director, Tamil Nadu Coastal Restoration Mission, for the successful execution of the project "Operationalization of Climate Studio" and in completion of the Climate Vulnerability Assessment and Adaptation Plan for the key sectors of Tamil Nadu.

We extend our acknowledgement to the, Tamil Nadu Forest Department, Water Resources Department (WRD), Fisheries Department, and State Disaster Management Authority for their support in nominating participants for the capacity building program. Additionally, we would like to thank all the participants who attend the program.

We humbly acknowledge Prof. Dr. R. Velraj, the Honourable Vice Chancellor, Anna University, Dr. G. Jeyasekaran, Former Director of Research, Tamil Nadu Fisheries University, Er. G.R. Radha Krishna, Executive Engineer, Water Resource Organization (WDR), Government of Tamil Nadu, Dr. K. Palanivelu, Professor, Centre for Climate Change and Disaster Management (CCCDM) at Anna University, Dr. V. Selvam, Executive Director of Speed Trust, Dr. Tune Usha, Scientist-G, National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Dr. Pravakar Mishra, Scientist G, National Centre for Coastal Research, Ministry of Earth Sciences in Chennai, Dr. Deepak Samuel V, Scientist, National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change, Dr. M. Krishnaveni, Director, Institute for Ocean Management at Anna University.

We sincerely thank other project staff and administrative staff of CCCDM for their continuous support towards the successful execution of the project.

ABOUT THE PROGRAMME

The Capacity Building Program for Climate Vulnerability Assessment and Adaptation Planning in Tamil Nadu aims to improve stakeholders' abilities in evaluating and addressing climate-related risks to coastal ecosystems. The program was established in response to the growing acknowledgment of the substantial impacts of climate change on coastal ecosystems, which present significant challenges for coastal area management.

Climate Studio at CCCDM

Embracing its commitment to the Nationally Determined Contribution (NDC), Tamil Nadu has emerged as a pioneer in developing adaptation strategies across sectors. Utilizing the acclaimed IPCC framework on "Climate Change Risk Assessment," the Government of Tamil Nadu has established the 'Climate Studio' at the Centre for Climate Change and Disaster Management (CCCDM), Department of Civil Engineering, Anna University. This state-of-the-art facility, funded with Rs. 3.89 crores, is equipped with high-performance computational resources and digital learning tools (financially supported by GIZ, Germany) to analyse global climate data at the cadastral level. The climate studio project includes a capacity development programme that has been allotted a sum of Rs. 27,00,000 lakhs for all six sectors. Among these sectors, three programme have been performed specifically for the Coastal resources sector. The Climate Studio aims to provide updated high-resolution regional climate scenarios, assess climate change impacts on natural resources, develop multi-sectoral spatial information, and disseminate knowledge to stakeholders.

Program Components

Participants in the program attended interactive lectures covering topics such as climate science, Status of Tamil Nadu coastal areas and Blue Carbon, coastal vulnerability and risk, coastal inundation and shoreline assessment techniques, and adaptation strategies. Hands-on training sessions were conducted to familiarize participants with Digital Shoreline Analysis System (DSAS), and Simulator of Climate Change Risks and Adaptation Initiatives (SimCLIM) models to assess shoreline assessment and sea level projections and its impact on coastal areas induced coastal inundation, its applications for climate risk assessment and decision-making.

Participants in the program engaged in interactive lectures on various topics including climate science, the current status of coastal areas in Tamil Nadu, Blue Carbon, coastal vulnerability and risk, coastal inundation, shoreline assessment techniques, and adaptation strategies. Practical training sessions were also conducted to acquaint participants with the Digital Shoreline Analysis System (DSAS) and the Simulator of Climate Change Risks and Adaptation Initiatives (SimCLIM) models. These models were used to evaluate shoreline assessment and sea level projections, as well as their impact on coastal areas, including coastal inundation. The sessions also focused on the applications of these tools for climate risk assessment and decision-making. This program offered a platform for networking and peer-learning to facilitate collaboration and knowledge sharing among participants, experts, and practitioners in the field of coastal area management.

Training Module

The capacity-building programme "Training Manual" on the topic of Climate Vulnerability Assessment and Adaptation Plan of Tamil Nadu – Coastal Ecosystem has been released by Dr. V. Selvam, Executive Director of Speed Trust.

Dr. A. Ramachandran, Founder Director and Emeritus Professor of CCCDM; Dr. Kurian Joseph, Professor and Director of CCCDM; and Dr. K. Palanivelu, Professor of CCCDM, were present at the event. This manual equips government officials from various departments with the necessary skills to assess the impacts of climate change on coastal areas in Tamil Nadu. The training provides officers with the knowledge to utilize coastal inundation and shoreline change data for accurate evaluations and conduct effective coastal risk assessments.

Technical Sessions

Dr. Kurian Joseph, Director, Centre for Climate Change and Disaster Management, Anna University, Chennai delivered the lecture on "Climate Risk and Resilience" where the concept of climate risk factors such as hazard, vulnerability, exposure and response was derived. The IPCC AR6 and its shared socio-economic pathway scenarios on clear picture extrapolated for the coastal sector. In addition, the importance of future climate adaptation strategies was strongly recommended to face the climate change impacts.

Dr. A. Ramachandran, Emeritus Professor, Centre for Climate Change and Disaster Management at Anna University, delivered a lecture on "Coastal Biodiversity and Blue Carbon." He focused on the significance of mangrove forests in Tamil Nadu for climate change mitigation and the concept of blue carbon. He elaborated on the role of mangroves in sequestering carbon and reducing greenhouse gas emissions. Additionally, Dr. Ramachandran discussed methods for estimating blue carbon, highlighting the importance of preserving coastal biodiversity, particularly mangrove ecosystems, for their critical role in carbon sequestration and climate change mitigation efforts.

Er. G.R. Radha Krishna, Executive Engineer. Water Resource Organization of the Public Works Department, Government of Tamil Nadu, delivered a lecture on "State Initiative towards Coastal

Protection" In his presentation, he discussed various coastal protection strategies, including both hard and soft measures. Er. Radha Krishna explained the concept of living shorelines, emphasizing naturebased solutions for coastal protection. Furthermore, he provided insights into the ongoing projects related to coastal management in Tamil Nadu. By shedding light on these initiatives, the lecture aimed to highlight the state's proactive approach towards safeguarding coastal areas and enhancing resilience against coastal hazards.

Dr. G. Jeyasekaran, Former Director of Research at Tamil Nadu Fisheries University, delivered a lecture on "The impacts of climate change on fisheries and aquatic food safety" in his lecture. He highlighted challenges faced by coastal fishing communities, such as changing sea temperatures and extreme weather events affecting seafood quality and availability. Dr. Jeyasekaran stressed the importance of sustainable practices in the fishing industry and the need for ensuring the safety of aquatic food sources amidst ongoing climate change. His presentation aimed to raise awareness about these issues and emphasize the significance of addressing climate-related challenges in the fisheries and aquaculture sectors.

Dr. K. Palanivelu, Professor, Centre for Climate Change and Disaster Management (CCCDM) at Anna University, Chennai, delivered a lecture on "Impact of Extreme Climate Change on Coastal Rural Communities in Tamil Nadu." The focus of the lecture was to examine the effects of extreme climate events on vulnerable coastal rural communities in Tamil Nadu. Dr. Palanivelu discussed the challenges faced by these communities, such as rising sea levels, increased frequency of natural disasters, and their socio-economic implications. By highlighting these impacts, the lecture aimed to create awareness and promote strategies for enhancing the resilience of coastal rural communities to cope with extreme climate events.

Dr. V. Selvam, Executive Director of Speed Trust, delivered a lecture on "Enhancing Adaptive Capacity of Coastal Communities to Climate Change." The focus of the lecture was to highlight the importance of equipping coastal communities with the necessary tools, knowledge, and resources to effectively respond and adapt to the challenges posed by climate change. By discussing strategies for enhancing adaptive capacity, Dr. Selvam aimed to empower coastal communities to develop

resilience, implement sustainable practices, and mitigate the impacts of climate change on their livelihoods and well-being.

Dr. Tune Usha, Scientist-G, National Centre for Coastal Research, Ministry of Earth Sciences in Chennai, delivered a lecture on "Coastal Hazards and Vulnerability of Tamil Nadu." The presentation focused on highlighting the various coastal hazards faced by Tamil Nadu, including cyclones, tsunamis, erosion, and sea-level rise, and assessing the vulnerability of the coastal regions to these hazards. Dr. Tune Usha discussed the impacts of these hazards on communities, infrastructure, and ecosystems along the Tamil Nadu coast. The lecture aimed to raise awareness about the risks posed by coastal hazards and the importance of enhancing resilience in the face of such challenges.

Dr. Pravakar Mishra, Scientist G, National Centre for Coastal Research, Ministry of Earth Sciences in Chennai, delivered a lecture on "Marine Litter and Microplastics Pollution." The lecture focused on addressing the growing issue of marine litter and the pollution caused by microplastics in marine environments. Dr. Pravakar Mishra discussed the sources, impacts, and consequences of marine litter and microplastics pollution on marine ecosystems, wildlife, and human health. The presentation aimed to raise awareness about the pressing environmental challenges posed by marine pollution and emphasize the importance of taking collective action to mitigate these threats to coastal and marine environments.

Dr. Deepak Samuel V, Scientist E, National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change, delivered a lecture on "Strategies for Conservation of Coastal and Marine Resources." The presentation highlighted the importance of coastal and marine resources and provided a detailed explanation on their significance. He also discussed strategies aimed at conserving marine resources, including case studies such as a long-term monitoring, conservation, and management plan for the Bitarkanika Mangroves in Odisha. The lecture aimed to raise awareness about the critical need for conservation efforts to protect and sustainably manage coastal and marine resources for the benefit of ecosystems, communities, and future generations.

Dr. M. Krishnaveni, Director of the Institute for Ocean Management at Anna University delivered a lecture on "Coastal Morphodynamics and Environmental Variables of Ennore Creek: An Integrated Approach." During the lecture, It is highlighted that, the significance of addressing environmental issues concerning Ennore Creek by integrating coastal morphodynamics and environmental variables. The focus of the presentation was on conducting thorough water quality assessments to understand and manage the environmental challenges within the region.

Dr. R. Geetha, Project Scientist, and Mrs. Sathya Priya, Project Associate in Climate Modelling, Centre for Climate Change and Disaster Management at Anna University, Chennai, delivered a lecture on "Climate Modelling and Projections." During the lecture, they discussed different climate modelling scenarios, the process of model selection, and provided insights into the base period as well as future temperature and rainfall scenarios specific to Tamil Nadu.

Mr. S. N. Ahamed Ibrahim, Project Associate, Centre for Climate Change and Disaster Management (CCCDM) at Anna University, Chennai, discussed the web portal developed by CCCDM during an interactive session on Coastal Area Management. During the session, he highlighted the features of the web portal, which serves as a valuable tool for climate change and coastal area management. By offering a user-friendly interface and comprehensive information, the web portal aims to enhance the effectiveness of decision-making and planning processes related to coastal area management. Through this initiative, CCCDM aims to facilitate better preparedness and resilience to climate change and disasters in coastal areas.

Dr. Balaji, Project Scientist, and Dr. Malarvizhi, Project Associate, Water sector team, Centre for Climate Change and Disaster Management (CCCDM) at Anna University, Chennai, delivered a lecture on "Climate Change Risk Assessment on Water Resources." The presentation focused on the impacts of climate change on water resources in Tamil Nadu, particularly highlighted vulnerability of coastal districts to future floods and droughts. The discussion covered the potential impacts of changing climate patterns on water availability, emphasizing the urgent need to assess and address these risks.

Dr. Madavi Venkatesh, Project Scientist, and Ms. S. Nivetha, Project Associate Coastal team at Anna University's Centre for Climate Change and Disaster Management in Chennai, delivered a lecture on "Assessing Coastal Risks from Climate Change." Their presentation focused on assessing Tamil Nadu's vulnerability, shoreline changes, sea level elevation, coastal inundation, cyclone impacts, and adaptation approaches. By addressing these aspects, the speakers aimed to enhance understanding of coastal risks associated with climate change and stress the importance of implementing effective strategies to mitigate these risks and improve resilience in coastal areas.

Practical Training at Climate Studio

During the technical sessions, hands-on training was conducted on the 2nd day of each program, providing participants with an overview of the SimCLIM Model and DSAS Tool for assessing shoreline change. Dr. Madavi Venkatesh, Project Scientist, and Ms. S. Nivetha, Project Associate Coastal team at Anna University's Centre for Climate Change and Disaster Management in Chennai, facilitated the training. Participants were trained in calculating Coastal Inundation due to Sea Level Rise using ArcGIS and Shoreline change Assessment in the DSAS tool of ArcGIS. A training worksheet was shared with the participants to engage in practical exercises using ArcGIS and the DSAS tool. This hands-on experience aimed to enhance the participants' skills in utilizing these tools to analyze and evaluate coastal data, preparing them to address the challenges posed by climate change and shoreline dynamics effectively.

Outcomes and Impacts

Knowledge dissemination is a primary outcome of this project, with the training manual released and distributed through the programme. Three capacity-building programs were conducted, engaging a total of 37 government officials from all 14 coastal districts of Tamil Nadu. These officials participated in sessions held on 30th November and 1st December 2023, 20-21 December 2023, 13-14 March 2024, divided into three batches, gaining insights into coastal risk.

The Key Outcomes of the Capacity Building Programme are

• Understanding the fundamentals of climate change and climate change impact.

- Conceptualizing vulnerability, hazard, exposure and risk.
- Interactive exercise on shoreline assessment and coastal inundation.

By participating in this training program, officers gained essential expertise in managing the coastal ecosystem in response to evolving climatic conditions, ensuring resilience and sustainability in Tamil Nadu's coastal region.

Table of Contents

1	Report on the 1 st Capacity Building Programme on Climate Risk Assessment and Adaptation Plan of Tamil Nadu - Coastal Ecosystem – November 30 & December 1, 2023	1
2	Report on the 2 nd Capacity Building Programme on Climate Risk Assessment and Adaptation Plan of Tamil Nadu - Coastal Ecosystem - December 20 & 21, 2023	3
3	Report on the 3 rd Capacity Building Programme on Climate Risk Assessment and Adaptation Plan of Tamil Nadu - Coastal Ecosystem - March 13 & 14, 2024	5
4	Summary of the Capacity Building Programme	8
	Annexure – I (Programme Documents)	
	Annexure – II (Course Materials)	

Report on the 1st Capacity Building Program

Climate Risk Assessment and Adaptation Plan of Tamil Nadu

30th November & 1st December 2023

The Centre for Climate Change and Disaster Management, Anna University with financial support by the Department of Environment and Climate Change, Government of Tamil Nadu has conducted two days Capacity Building Program on "Climate Risk Assessment and Adaptation Plan of Tamil Nadu" on 30th November & 1st December 2023 to government officials of coastal districts, at Climate Studio, Conference Hall. The Assistant Engineers from Water Resources Engineers (WRD), Foresters and Forest Range Officers from Forest Department, Tehsildars, and Special Deputy Collectors from Disaster Management and Assistant Engineers from Fisheries Department, totaling approximately 13 officers from coastal districts of Tamil Nadu.

Training Programme Proceedings

The two-day training program featured nine technical sessions of 60 minutes duration, with presentations from renowned experts, academics, and coastal sector officials. Participants also engaged in practical training at the Climate Studio laboratory at Anna University in Chennai.

Dr. Kurian Joseph, Director, Centre for Climate Change and Disaster Management at Anna University, warmly welcomed the participants to the first two-day training program in inaugural session.

Dr. Kurian Joseph, Director, Centre for Climate Change and Disaster Management at Anna University, warmly welcomed the guests and participants to the valedictory session of a two-day capacity-building program.

Dr. V. Selvam, Executive Director of Speed Trust, delivered the valedictory address, highlighted the significant impacts of climate change on coastal areas. He underlined the fundamental connection between climate change science and effective coastal area management.

Dr. A. Ramachandran, Emeritus Professor, Centre for Climate Change and Disaster Management, praised the program for its value to officers in coastal districts and acknowledged the

collaboration between the CCCDM and the Department of Environment and Climate Change in organizing the training.

Dr. K. Palanivelu, Professor, Centre for Climate Change and Disaster Management, thanked the members on the dais, the organisers, and the participants and wished the programme great success.

Report on the 2nd Capacity Building Program

Climate Risk Assessment and Adaptation Plan of Tamil Nadu

December 20 & 21 2023

The Centre for Climate Change and Disaster Management, Anna University with financial support by the Department of Environment and Climate Change, Government of Tamil Nadu has conducted two days Capacity Building Program on "Climate Risk Assessment and Adaptation Plan of Tamil Nadu" on 20th and 21st December 2023 to government officials of coastal districts, at Climate Studio, Conference Hall.

Training Programme Proceedings

The two-day training program featured nine technical sessions of 60 minutes duration, with presentations from renowned experts, academics, and coastal sector officials. Participants also engaged in practical training at the Climate Studio laboratory at Anna University in Chennai.

Dr. Kurian Joseph, Director, Centre for Climate Change and Disaster Management at Anna University, warmly welcomed the participants to the second two-day training program in inaugural session.

Dr. Kurian Joseph, Director, Centre for Climate Change and Disaster Management at Anna University, warmly welcomed the guests and participants to the valedictory session of a two-day capacity-building program.

Dr. Pravakar Mishra, Scientist G, National Centre for Coastal Research, Ministry of Earth Sciences in Chennai, delivered the valedictory address, highlighted the problem of marine pollution particularly marine liiter and microplastic. He aslo climate ralated hazards and its impact on coastal areas.

Dr. A. Ramachandran, Emeritus Professor, Centre for Climate Change and Disaster Management, praised the program for its value to officers in coastal districts and acknowledged the collaboration between the CCCDM and the Department of Environment and Climate Change in organizing the training.

Dr. K. Palanivelu, Professor, Centre for Climate Change and Disaster Management, thanked the members on the dais, the organisers, and the participants and wished the programme great success.

4 / Coastal Ecosystem / Climate Studio, CCCDM

Report on the 3rd Capacity Building Program

Climate Risk Assessment and Adaptation Plan of Tamil Nadu

March 13 & 14, 2024

The Centre for Climate Change and Disaster Management, Anna University with financial support by the Department of Environment and Climate Change, Government of Tamil Nadu has conducted two days Capacity Building Program on "Climate Risk Assessment and Adaptation Plan of Tamil Nadu" on 13th and 14th March, 2024 to government officials of coastal districts, at Climate Studio, Conference Hall.

The primary objective of the training program is to assist the Tamil Nadu coastal region in achieving its climate change response goals through adaptation measures. Specifically, the program focuses on understanding coastal hazards, vulnerabilities, and risks to effectively address these challenges. The program aims to provide knowledge and scientific methodologies to assess and manage the changes in coastal areas under climate risks.

Training Programme Proceedings

The two-day training program featured nine technical sessions of 60 minutes duration, with presentations from renowned experts, academics, and coastal sector officials. Participants also engaged in practical training at the Climate Studio laboratory at Anna University in Chennai.

Dr. Kurian Joseph, Director, Centre for Climate Change and Disaster Management at Anna University, warmly welcomed the participants to the third two-day training program in inaugural session.

Dr. Kurian Joseph, Director, Centre for Climate Change and Disaster Management at Anna University, warmly welcomed the guests and participants to the valedictory session of a two-day capacity-building program.

Dr. P. Palani, a Professor, Department of Centre for Advanced Study in Botany at the University of Madras, delivered the valedictory address, focusing on the coastal ecosystem and its

significance. He also discussed the future threats that climate change poses to these fragile ecosystems.

Dr. A. Ramachandran, Emeritus Professor, Centre for Climate Change and Disaster Management, praised the program for its value to officers in coastal districts and acknowledged the collaboration between the CCCDM and the Department of Environment and Climate Change in organizing the training.

Dr. Madavi Venkatesh, Project Scientist, Centre for Climate Change and Disaster Management, thanked the members on the dais, the organisers, and the participants and wished the programme great success.

4. Summary of the Capacity Building Programme (CBP)

- 1. Based on the feedback received from the participants, their response to the observed coastal hazards as follows
- The Coastal erosion is observed along the coast of Chengalpattu district, Villupuram district -Kottakuppam to Alagan Kuppam village, Cuddalore – Killai, Pichavaram, Samiyar Pettai, Parangipettai, Tuticorin, Tirunelveli, Kanniyakumari.
- Accretion at Manapadu, erosion at Kellavaippar and Amali Nagar Thoothukudi district.
- Erosion and accretion found in Vedaranyam, Nagapatinam district.
- Erosion near Nagore fishermen villages, accretion at Vellapallam, Pushpavanam, Vedaranyam at Nagapattinam district.
- Sea level rise affecting forest plantation in Cuddalore, inundation in Thalangudi, Subuppalavadi.
- Increase in SST in Nagapattinam district.
- The periodic inundation of downstream of Cauvery river at Cuddalore district.
- River pollution.
- Sea water intrusion and ground water salinity.
- Coral bleaching at Keelavaippar, Threspuram at Tuticorin district.
- 2. The existing on going policies and actions such as
- Green Tamil Nadu mission plantations along coast, shelter belt plantation in coastal areas.
- Tamil Nadu climate change mission.
- In Gulf of Mannar livelihood Programme.
- Preparation of coastal and marine pollution action plan for Tamil Nadu.
- Free supply of tree seedlings.
- Thanjavur mangrove plantation under GTM and TBGPCCR
- Project dolphin, dugong, turtle to save marine animals.
- Mangrove plantation under MISTHI programme..

- Installation of artificial reefs at Manapadu, Sinkithurai, Kombu Thuraiand Punnayakayal at Thoothukudi district.
- Punnakayal Thoothukudi district, mangrove plantation district.
- Mangrove plantation, shelter belt.
- TN wetland mission.
- Mangroves in Siruthalaikadu coastal areas of Nagapattinam.
- 3. Recommended Adaptation actions
- Promoting climate science at school education.
- Creating more public awareness and campaign related to climate change.
- Promote Ecosystem based adaptation strategies.
- Sea weed cultivation.
- Island conservation.
- Salt tolerant plants.
- Planting Casurina , cashew, mangrove species & buffer zone.
- Palmyra plantations.
- Construction of sub surface dykes in river mouths to prevent sea water intrusion.
- Hybrid model coastal protection structures.
- Construction of cascade of check dams reducing the ground water pollution.
- Construction Training wall near by river mouth.
- Promote inland fishing.
- Strict regulations to stop dumping of wastes in water bodies.
- Community participation for alternated livelihood.
- Wetland identification and conservation.
- Early warning system.
- Community involvement.
- Sea grass restoration and coral restoration.
- Building cyclone relief structure.
- Planting, conservation and restoration of coastal ecosystems.

- Bio shield.
- 4. The key gaps needs to addressed such as
- Lack of Scientific based approach for plantations actions.
- Integration of the line departments to work under climate change mitigation actions in order to achieve sustainable development.
- Lack of Community engagement.
- Project execution under plantations was not up to the mark, requires MRV techniques.
- Detailed scientific study required before implementing project.
- Identifying and planting the zone specific plants to get to better results.
- Coastal Pollution awareness.
- Lack of Cooperation between people and government while executing project.
- Community involvement in schemes.
- Community awareness regarding the schemes.
- Requirement of Zone specific schemes and policies.
- Make data availability on land use map, geological map, in public domain.
- Increase nursery for planting more trees.
- 5. Others
- Increase the training duration.

ANNEXURE - I

CAPACITY BUILDING PROGRAMME CLIMATE CHANGE VULNERABILITY AND RISK ASSESSMENT FOR COASTAL DISTRICTS OF TAMIL NADU

Organised by Centre for Climate Change and Disaster Management, Anna University funded by the Department of Environment and Climate Change, Government of Tamil Nadu

Agenda

Date: November 30,	2023 Venue: CCCDM Conference Hall
9:30 - 10:00 A.M	REGISTRATION & WELCOME
SESSION – I: Clima	ate Risk and Resilience: An Overview
10:00 - 11:00 A.M	Prof. Dr. Kurian Joseph Director, CCCDM, Anna University
11:00 – 11:15 A.M	TEA BREAK
SESSION – II: Coas	stal Biodiversity and Blue carbon
11:15 – 12:15 P.M	Prof. Dr. A. Ramachandran D.Sc. , Emeritus Professor, CCCDM, Anna University
SESSION – III: Clin	nate Modelling and Projection
12.15 – 1.15 P.M	Dr. R. Geetha & Mrs. K. Sathyapriya Climate Modelling Team, CCCDM, Anna University
1:15 – 2:15 P.M	LUNCH
	stal Morphodynamics and Environmental Variables of Ennore
Creek: An Integrate	ed Approach
2:15 – 3:00 P.M	Prof. Dr. M. Krishnaveni Director, Institute for Ocean Management, Anna University
SESSION – V: Asses	ssing the Coastal Risk to Climate Change
3:00 – 4:00 P.M	Dr. Madavi Venkatesh & Ms. S. Nivetha Coastal Team, CCCDM, Anna University
4:00 – 4:15 P.M	TEA BREAK
SESSION – VI: Imp Safety	oact of Climate Change on Fisheries Particularly on Aquatic Food
4:15 – 5:00 P.M	Dr. G. Jayasekaran, Ph.D. FNAAS Former Director of Research Tamil Nadu Fisheries University

CAPACITY BUILDING PROGRAMME CLIMATE CHANGE VULNERABILITY AND RISK ASSESSMENT FOR COASTAL DISTRICTS OF TAMIL NADU

Organised by Centre for Climate Change and Disaster Management, Anna University funded by the Department of Environment and Climate Change, Government of Tamil Nadu

Agenda

Date: December 1, 2023Venue: CCCDM Conference HallSESSION – VII: Demonstration and Hands-on exercise - DSAS Model & CoastalInundation Mapping						
9:30 – 10:30 A.M	Dr. Madavi Venkatesh & Ms. S. Nivetha Coastal Team, CCCDM, Anna University					
SESSION – VIII: Inte	eractive session - Coastal Area Management					
10:30 - 11:15 A.M	Dr. Madavi Venkatesh & Ms. S. Nivetha Coastal Team, CCCDM, Anna University					
11:15 – 11:30 A.M	TEA BREAK					
SESSION – IX: State Initiative towards Coastal Protection						
11:30 - 12.30 P.M	Er. G.R. Radha Krishna Executive Engineer Water Resource Organization, PWD, Govt. Tamil Nadu					
SESSION – X: Impact of Extreme Climate Change on Coastal Rural Communities in TN						
12:30 - 1:30 P.M	Dr. K. Palanivelu, Professor CCCDM, Anna University					
1:30 - 2:30 P.M	LUNCH					
SESSION – XI: Enhancing Adaptive capacity of coastal communities to climate change						
2:30 – 3:30 P.M	Dr. V. Selvam Executive Director, Speed Trust					
3:30 – 4:00 P.M	TEA BREAK					
VALEDICTORY SES	SION & CERTIFICATE PRESENTATION: 4.00 - 5.00 P.M					

<u>தமிழ்நாடு வனத்துறை</u>

அனுப்புநா் திரு. சுமேஷ் சோமன், இ.வ.ப., மாவட்ட வன அலுவலா், விழுப்புரம் வனக்கோட்டம், விழுப்புரம். பெறுநா் இயக்குநா்–CCCDM, அண்ணா பல்கலைக்கழகம், சென்னை**–25**.

Dr. Verholist Mutaril Ms. Mindhal SSI

ந.க.எண்.4312/ 2021/ப1,

நாள்.29.11.2023

அய்யா,

பொருள் : பயிற்சி –CCDM- காலநிலை ஸ்டுடியோ – திறன் மேம்பாட்டு திட்டம் – கடலோர – நவம்பர் 30 மற்றும் டிசம்பர் 1–2 நாள் பயிற்சியில் கலந்து கொள்ளும் பணியாளரின் விவரம் தெரிவித்தல் – தொடர்பாக. பார்வை : 1. முதன்மை தலைமை வனப்பாதுகாவலர்(வனத்துறைத்தலைவர்), மே.கு. எண்.A2/14239/2023, நாள்.28.11.2023. 2 .வனப்பாதுகாவலர், விழுப்புரம் மண்டலம், விழுப்புரம் ந.க..எண். 4299 /2023/ப2, நாள். 29.11.2023.

மேற்காணும் பொருள் தொடர்பாக, பார்வை 1 மற்றும் 2–ல் காணும் கடிதங்களில் ஒதுக்கீடு செய்தவாறு, சென்னை அண்ணா பல்கலைக்கழகம், பருவநிலை மாற்றம் மற்றும் பேரிடர் மேலாண்மை மையத்தில் நவம்பர்–30 மற்றும் டிசம்பர்–01 ஆகிய இரண்டு நாட்கள் தமிழக கடலோர மாவட்டங்களுக்கான பருவநிலை மாற்ற பாதிப்பு மற்றும் இடர் மதிப்பீடு குறித்த பயிற்சியில் கீழ்காணும் பணியாளர் கலந்துகொள்ள பணிக்கப்பட்டுள்ளார் என்பதை பணிவுடன் தெரிவித்துக்கொள்கிறேன்.

வ. எண்	பயிற்சியின் பெயர்	பெயர்	கைப்பேசி எண்
1	Climate change Vulnerability and Risk Asessment for Coastal Districts of Tamil Nadu.	திரு.S.பாலசுந்தரம், வனவா், திண்டிவனம் வனச்சரகம், திண்டிவனம்.	8072078591

தங்கள் உண்மையுள்ள, ஒம்/– சுமேஷ் சோமன், மாவட்ட வன அலுவலர், விழுப்புரம் வனக்கோட்டம், விழுப்பும்.

நகல் – முதன்மை தலைமை வனப்பாதுகாவலா் (வனத்துறைத் தலைவா்) , சென்னை அவா்களுக்கு பணிந்து அனுப்பப்படுகிறது.

- **நகல்** வனப்பாதுகாவலா், விழுப்புரம் மண்டலம், விழுப்புரம், அவா்களுக்கு பணிந்து சமா்ப்பிக்கப்படுகிறது.
- நகல்– திரு. S.பாலசுந்தரம், வனவா், (வனச்சரக அலுவலா், திண்டிவனம் வனச்சரகம், திண்டிவனம் மூலமாக). மேற்காண் பயிற்சியில் தவறாமல் கலந்து கொள்ளவும்.

நகல்–வனச்சரக அலுவலா், திண்டிவனம் வனச்சரகம், திண்டிவனம். (மேற்காணும் பயிற்சியில் பணியாளா் கலந்து கொள்வதனை வனச்சரக அலுவலா் உறுதி செய்ய வேண்டியது.)

//உண்மை நகல்/உத்தரவுப்படி//

கண்காணிப்பாளா.

DEPARTMENT OF FISHERIES AND FISHERMEN WELFARE

From	То	
The Commissioner	To Dr.Kurian Joseph,	
Fisheries and Fishermen Welfare,	Professor of Environmental Engineering &	Ŝ,
Integrated Office Complex for Animal	Director,	
Husbandry and Fisheries Department,	CCCDM, Anna University,	
Nandanam, Chennai-35.	Chennai - 25.	
Rc.No.18520/P7/2023	Dated:28.11.2023	

Sir,

- Sub : Fisheries and Fishermen Welfare CCCDM Climate Studio -Capacity Building Progarmme - Climate Change Vulnerability & Risk Assessment for Coastal Districts of Tamil Nadu Scheduled on 30.11.2023 & 01.12.2023 - Participation Requested -Intimated - Regarding
- Ref : Your Office Lr.No. CCCDM/CS/Capacity Building/ Coastal/2023, Dated: 22.11.2023

With reference to the letter cited, it is informed that the following officials are nominated to participate in the capacity building progarmme on "Climate Change Vulnerability & Risk Assessment for Coastal Districts of Tamil Nadu" Scheduled on 30.11.2023 & 01.12.2023 at Anna University, Chennai - 25.

- ✓ Tmt N.Chandra, Joint Director of Fisheries & Fishermen Welfare (R) Chennai
- Thiru E.P Vigneswaran, Assistant Executive Engineer,
 Fishing Harbour Project Division, Nandanam, Chennai 35.
- ✓ Thiru N.Sridhar, Assistant Engineer,
- ✓ Fishing Harbour Project Division, Nandanam, Chennai 35.

K.S.Palanisamy Commissioner Fisheries & Fishermen Welfare

28/11/20

For Commissioner Fisheries & Fishermen Welfare

71.1 122

Office of the Engineer-In-Chief, and Chief Engineer (GI), WRD, Chepauk, Chennai – 600 005. <u>Present:</u> Er. A. Muthalya, B.E., Engineer-in-Chief, and Chief Engineer (General), WRD Chepauk, Chennai – 600 005.

Proceeding No. AEE / T1 / AE- 2 / 48930 / 2014, dated. 28.11.2023

Sir,

- Sub: Training Department of Environment and Climate Change "Operationalization of Climate Studio" – Capacity Building Programme – Coastal Sector – Nominations – regarding.
- Ref :
- The Director, Centre for Climate Change and Disaster Management, Anna University, Chennai letter no: CCCDM/CS/Capacity Building/Coastal /2023, dated:22.11.2023.
- The Director, Department of Environment and Climate Change, Chennai letter no: P4 / 1829 / 2019 / DoE&CC / 2023, dated: 23.11.2023.

With reference to the letter cited, the following Engineers are nominated to attend the Two-day Capacity Building Training Programme on 30th November & 01st December 2023 at Conference Hall, Centre for Climate Change and Disaster Management, Anna University, Chennai- 25.

S.	Name and	Office address	Phone number & email id
No	Designation		
1.	Er. D. Sai Charan, Assistant Engineer, WRD	O/o the Assistant Executive Engineer, WRD, Anti Sea Erosion Sub Division, Chennai.	9840394347 saicharanraju3366@gmail.com
2.	Er. P. Subhathra, Assistant Engineer, WRD	O/o the Assistant Executive Engineer, WRD, Krishna Water Supply Project Sub Division-2, Chennai.	7373518587 subhathra.gce@gmai.com

The period of absence during the above said period shall be treated as on official duty as per FR 9(6) b (i) and the participating officials are eligible to draw Travelling Allowance and Dearness Allowance in connection with the said training at the rate admissible as per rules in force.

for Engineer-in-Chief, & hief Engineer (General), WRD, Chepauk, Chennai- 5.

To:

- The Director, Centre for Climate Change and Disaster Management, Anna University, CEG Campus, Guindy, Chennai – 25.
- The Director, Department of Environment and Climate Change, Ground Floor, Panagal Building, Saidapet, Chennai – 15.

Copy to:

- 1. The Individuals listed in the above table (through e mail).
- 2. The Chief Engineer, WRD, Chennai Region, Chepauk, Chennai 05.

CENTRE FOR CLIMATE CHANGE AND DISASTER MANAGEMENT

Operationalization of Climate Studio Funded by Department of Environment and Climate Change, Government of Tamil Nadu

CAPACITY BUILDING PROGRAMME on

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU COASTAL ECOSYSTEM

30th November and 1st December 2023

ACCORDENT STATEMENT

	_			Ċ	-					2	Ŋ	
	Signature	5000	X CON	Verie 9	A	Jun Nor	Cahoduck : 1		sent the add	G. Jorny 301 1123	ATT. A.M.	- >
.a	Email ID	saicharanraju3366@gmail.com	subhathra.gce@gmail.com	jdfchennai28@gmail.com	engg.fisheries.chennai@gmail.com	sridharfd3@gmail.com	dfokpm@gmail.com	tamiinadudoe@gmail.com	balasundar729@gmail.com	tvrdfo@gmail.com	dfoufd@yahoo.in	
N FORM	Phone No.	9840394347	+ 7373518587	9486715356	8754911155	9360598996	6380784008	8903201222	8072078591	9843296634	8667439085	
REGISTRATION FORM	Office Address	0/0 Ant Ser Eusion Chepan, WRD.	Andry Supply Fraget	1 2 3	eto , Executive Engineer, FHPD,	Orb, Executive Engineer, FIMP,	Chengalpatin Range Office		Forest Range Cille Tindivanam	Forest-Bryti	office of District powers offices	5
	Designation	Assistant Engineer	Assistant Engineer	Joint Director ate of Fisheries& Fishermen		Assistant Engineer	Forester	Forest Range Officer	Forester	Forest Range Officer	Forester	
	Name	Mr. Sai Charan. D	E. Subhathra. P	Ms. Chandra. N	Mr. Vigneshwaran, E.P	Mr. Sridhar! N	Mr. Krishnan. V	.Mr. Saravanan. V	Mr. Balasundaram. S	Mr. Sivaperuman. G	Mr. Vikram N.A	
	S.NO.	-	2.	ň	4.	ŝ	6.	-1.	8.	9.	10.	

CENTRE FOR CLIMATE CHANGE AND DISASTER MANAGEMENT

Operationalization of Climate Studio Funded by Department of Environment and Climate Change, Government of Tamil Nadu

CAPACITY BUILDING PROGRAMME on

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU COASTAL ECOSYSTEM

30th November and 1st December 2023

REGISTRATION FORM

S.NO.	Name	Designation	Office Address	Phone No.	Email ID	Signature
11.	Mr. Raghavan. R	Forest Range Officer)
12.	.Mr. Pomusa my. N	Forest Range Officer				
13.	Mr. Ponnusamy N Dr. Muthukumar. K	Programme Officer	Forst Rug adre 8883198472	* 888319 8H74	pennefocut a gmail . com	And and a second
14.	Mr. Saravanan./V.K	Forest Range Officer		8903201222	Saravenar 1401@grd	inthe b. a. le
15.	Mr. Premkumar, M	Information and Technology Officer	Dept. Environment Ruragu muligai. Saidapot - IK.	6280008632	Plennemergeder, pre@gauly. Admine	admit i
16.	Dr. K. Muthukumal programme officer ENVIS, DOEACC	programme efficient	Department of Environmental cc	0016141466	mythere keened by 1976 Ognail.	: the :
17.						
18.						
19.						
20.	2				-1	

2

CENTRE FOR CLIMATE CHANGE AND DISASTER MANAGEMENT Operationalization of Climate Studio Funded by Department of Environment and Climate Change, Government of Tamil Nadu

CAPACITY BUILDING PROGRAMME on

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU COASTAL ECOSYSTEM

ATTENDANCE SHEET

			30/11/2023	2023	01/10	01/12/2023
S.NO.	Name	Designation				07071
		D	FN	AN	FN	AN
1	S. Bulasurclasan	Foresher	, et adreed	for the level	y areal	. gol esel
5.	v. Kirsman	Fords tow	V. Dominan	V. Dominum	in Cr	V Quantani
3.	N. CHANDRA	JD, Fisherces	Whene &	h mad mad	and	the function
4.	N. BRIDHAR	AE, Fishevies	M.D.W	NOW	Mart	NICH
5.	DA. K. Muthereferences PO, DOE 40	PO, DOEACC	Ame	in the second se	- A)
6.	V. K. Danawanan	Forest Raye 9	the B. B. E .	alapar p. 5. Je	2. B. B. Coly	-21. B- 2 22 17 1
7.	M. Premkumou	ITO, DOBLOC	Numer	Wwell	MULLET	M. Wuller
%	P. Suthettee	AF, WED	Telluk	Tellah	- Aller	- ACCLURY
9.	N-PONNULamy	Frut Riger	Q.M	N-S-N	New	N.Y.N
10.	10. EP. VIGNUESHWARDAN	AEE, FISHERIUS	JA'S	1432	JAN'S	S.F.

CENTRE FOR CLIMATE CHANGE AND DISASTER MANAGEMENT Operationalization of Climate Studio Funded by Department of Environment and Climate Change, Government of Tamil Nadu

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU COASTAL ECOSYSTEM CAPACITY BUILDING PROGRAMME on

ATTENDANCE SHEET

S.NO.	Name	Designation	30/11 FN	30/11/2023 AN	01/12/2023 FN	2023 AN
\sim	En. D. Sag CHARAN	AE, WRD	tionfold	Chon Chon	AS Grant	- Change
C	G. Siveneryaman	Povel (Russ attice	a down	L'And I	Mar V I V	Estall prover 1
6	N. A. Vitram	Forester	T. P. M.	A LAND	and all the line	
4	N PORALan	For out have after a	A A	N Can	- Change	Strong A
	0	0		×	1	
						×

 \sim

CENTRE FOR CLIMATE CHANGE AND DISASTER MANAGEMENT Operationalization of Climate Studio Funded by Department of Environment and Climate Change, Government of Tamil Nadu CAPACITY BUILDING PROGRAMME on

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU - COASTAL ECOSYSTEM

30th November and 1st December 2023

Training Evaluation

Please tick according to the performance: (\checkmark)

		/		
Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Gøod)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	l (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and its Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other comments

Please write your comments regarding this training:

A Need of the hour training for all the line departments. Had the opportunity to know about Marine Eco-System & need to promote nature based Solutions for Sustainable Coestal protection.

CENTRE FOR CLIMATE CHANGE AND DISASTER MANAGEMENT Operationalization of Climate Studio Funded by Department of Environment and Climate Change, Government of Tamil Nadu CAPACITY BUILDING PROGRAMME on

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU - COASTAL ECOSYSTEM

30th November and 1st December 2023

Training Evaluation

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and its Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other comments

Please write your comments regarding this training:

Africers avere passicipated the same Training Programme.

Acomp 1/12/2013

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU - COASTAL ECOSYSTEM

30th November and 1st December 2023

Training Evaluation

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excettent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and its Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other comments

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU - COASTAL ECOSYSTEM

30th November and 1st December 2023

Training Evaluation

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	I (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and its Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other comments Please write your comments regarding this training:

good,

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU - COASTAL ECOSYSTEM

30th November and 1st December 2023

Training Evaluation

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and its Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other comments

, trainers, Arrangements Mospibulities all very good. We got know things which will be useful to discharge of dutres in out dept N-PONNUSAMY FRO, Forut 7

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU - COASTAL ECOSYSTEM

30th November and 1st December 2023

Training Evaluation

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent) 🗸	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent) 🗸	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent) 🗸	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and its Hospitality	1 (Excellent) 🖌	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other comments Please write your comments regarding this training:

Fine Gangrats.

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF **TAMIL NADU - COASTAL ECOSYSTEM**

30th November and 1st December 2023

Training Evaluation

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and its Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other comments

Excellent training of the two days of Coostal Sector. I have knowledge gained about the dimente change factors involving the coastal Sector. Almost out traineds deliver's a wonderfly the_ leefuse on climente scenario in current envisonment conditione.

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU - COASTAL ECOSYSTEM

30th November and 1st December 2023

Training Evaluation

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and its Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other comments

It was a very useful and it has opened a new perspective.

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU - COASTAL ECOSYSTEM

30th November and 1st December 2023

Training Evaluation

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	- 3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and its Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other comments

climate change Rible & ssessmult al prangtation plangt TN coastal Beosesthern USful through The Trong above Sugree to filed wish onen fully the Trong

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU - COASTAL ECOSYSTEM

30th November and 1st December 2023

Training Evaluation

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and its Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other comments

Please write your comments regarding this training:

In all aspects, the training was good. The lectures were more metul and we learner a lot of new things. Looking forward for more training like this.

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU - COASTAL ECOSYSTEM

30th November and 1st December 2023

Training Evaluation

Please tick according to the performance: (\checkmark)

Training Relevance	(Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	J (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and its Hospitality	1 (Éxcellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other comments

Please provide a proper Hards-on Ression. The hards-on sessions itself khould be continued for a day in my opinian. And the separition of same concepts can be avoided as it peaks like boredon. Apast from that, the trainers seally threw ugst as the topics of milightion/ consequence/Ad charge. Hards-on sersion in open coftware chinate simple modelling can be given.

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU - COASTAL ECOSYSTEM

30th November and 1st December 2023

Training Evaluation

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and its Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other comments

overall good.

CAPACITY BUILDING PROGRAMME CLIMATE CHANGE VULNERABILITY AND RISK ASSESSMENT FOR COASTAL DISTRICTS OF TAMIL NADU

Organised by Centre for Climate Change and Disaster Management, Anna University funded by the Department of Environment and Climate Change, Government of Tamil Nadu

Agenda

Date: December 20, .	2023 Venue: CCCDM Conference Hall
9:30 – 10:00 A.M	REGISTRATION & WELCOME
SESSION – I: Clima	ate Risk and Resilience: An Overview
10:00 - 11:00 A.M	Prof. Dr. Kurian Joseph Director, CCCDM, Anna University
11:00 – 11:15 A.M	TEA BREAK
SESSION – II: Coas	stal Biodiversity and Blue carbon
11:15 – 12:15 P.M	Prof. Dr. A. Ramachandran D.Sc. , Emeritus Professor, CCCDM, Anna University
SESSION – III: Clir	nate Modelling and Projection
12.15 – 1.15 P.M	Dr. R. Geetha & Mrs. K. Sathyapriya Climate Modelling Team, CCCDM, Anna University
1:15 – 2:15 P.M	LUNCH
SESSION – IV: Enh	ancing Adaptive capacity of coastal communities to climate change
2:15 – 3:00 P.M	Dr. V. Selvam Executive Director, Speed Trust, Member of SEAC, Former Director MSSRF
SESSION – V: Impa TN	ect of Extreme Climate Change on Coastal Rural Communities in
3:00 – 4:00 P.M	Dr. K. Palanivelu, Professor CCCDM, Anna University
4:00 – 4:15 P.M	TEA BREAK
SESSION – VI: Ass	essing the Coastal Risk to Climate Change
4:15 – 5:00 P.M	Dr. Madavi Venkatesh & Ms. S. Nivetha Coastal Team, CCCDM, Anna University

CAPACITY BUILDING PROGRAMME CLIMATE CHANGE VULNERABILITY AND RISK ASSESSMENT FOR COASTAL DISTRICTS OF TAMIL NADU

Organised by Centre for Climate Change and Disaster Management, Anna University funded by the Department of Environment and Climate Change,

Government of Tamil Nadu

Agenda

Date: December 21, 20	023 Venue: CCCDM Conference Hall
SESSION – VII: Inte	ractive session - Coastal Area Management
9:30 – 10:30 A.M	Dr. Madavi Venkatesh, Ahmed Ibrahim & Ms. S. Nivetha Coastal Team, CCCDM, Anna University
	nonstration and Hands-on exercise - DSAS Model & Coastal
Inundation Mapping	
10:30 - 11:15 A.M	Dr. Madavi Venkatesh & Ms. S. Nivetha Coastal Team, CCCDM, Anna University
11:15 – 11:30 A.M	TEA BREAK
SESSION – IX: Impa	ct of Climate Change on Fisheries Particularly on Aquatic Food
Safety	
11:30 - 12.30 P.M	Dr. G. Jeyasekaran, Ph.D. FNAAS Former Director of Research Tamil Nadu Fisheries University
SESSION – X: Coasta	al Hazards and Vulnerability of Tamil Nadu
12:30 - 1:30 P.M	Dr. Tune Usha Scientist-G, National Centre for Coastal Research, MoES, Chennai
1:30 - 2:30 P.M	LUNCH
SESSION – XI: Mar	ine Litter and Microplastics pollution
2:30 – 3:30 P.M	Dr. Pravakar Mishra Scientist G, National Centre for Coastal Research, MoES, Chennai
3:30 – 4:00 P.M	TEA BREAK
VALEDICTOR	Y SESSION & CERTIFICATE PRESENTATION: 4.00 - 5.00 P.M

By E.Mail 🖌 Tappal

Tamil Nadu Forest Department

From

Tmt. R.Padmawathe, I.F.S., Conservator of Forests& Field Director, Srivilliputtur Megamalai Tiger Reserve, Madurai-2. To The Director, Centre for Climate Change and Disaster Management, Department of Civil Engineering, Anna University, Chennai – 600 025.

Ref.No: 23304 /2023/A2, Dated: 19.12.2023

Sir,

Sub: CCCDM – Climate Studio – Capacity Building Programme – Coastal – Tamil Nadu – 20th December and 21st December, 2023 – List of Participants – requested – regarding.

Ref: 1) The Principal Chief Conservator of Forests, Chennai Endt.Ref.No.A2/36349/2023, dt: 18.12.2023.

2) The Wildlife Warden, Ramanathapuram, C.No.E1/8382/2023, dt: 19.12.2023.

With reference to the above subject, I submit that Thiru.E.Balamurugan, Forest Range Officer, (Mobile No.9047567276 and E.Mail ID <u>balaforestry@gmail.Com</u>) Wildlife Division, Ramanathapuram is nominated and deputed for attending the 2 day training program on <u>"Climate Change Vulnerability and Risk Assessment for Coastal Districts of Tamil</u> <u>Nadu"</u> to be held from 20th December and 21st December, 2023 at the Centre for Climate Change and Disaster Management, Anna University, Chennai.

This is submitted for favour of kind information.

Yours Sincerely, Sd/- R.Padmawathe Chief Conservator of Forests and Field Director, Srivilliputhur Megamalai Tiger Reserve, Madurai.

Copy submitted to the Principal Chief Conservator of Forests(HOFF) Chennai-32 for favour of kind information.

/t.c.b.o/

19/12/2023 uperintendent.

TAMIL NADU FOREST DEPARTMENT

From

Thiru.N.Satheesh, I.F.S., Chief Conservator of Forests, Tiruchirappalli Circle, Tiruchirappalli .620 023. e. mail : <u>ccftrichycircle@gmail.com</u> То

The Director, Centre for Climate Change and Disater Management, Department of Civil Engineering, Anna University, Chennai – 600 025.

C.No.E2/8989/2022, Dated.19.12.2023.

Sir,

- **Sub** :- CCCDM Climate Studio Capacity Building Programme Coastal – Tamil Nadu – 20th and 21st December, 2023 – List of Participants submission - Regarding
- **Ref.** :- 1. The Director, Centre for Climate Change and Disaster Mangement, Anna University, Chennai Lr.No.CCCDM/CS/Capacity Building/Coastal/2023, Dated.11.12.2023
 - 2. The Principal Chief Conservator of Forests (HoFF), Chennai Ref.No.A2/36349/2023 Dt.18.12.2023

With reference to the above, I submit that the following field officials have been nominated for 2 days training program on "Climate Change Vulnerability and Risk Assessment for Coastal Districts of Tamil Nadu" from 20.12.2023 to 21.12.2023, at the Centre for Climate Change and Disaster Management, Anna University, Chennai.

S. No	Name of the Individual (Tvl)	Designation	Division	Contact No
1	D.Mani Venkatesh	Forest Range Officer	Pudukkottai	8883380727
2	A.Sivasankar	Forester	Thanjavur	9629961658
3	K.Srinivasan	Forester	Thiruvarur	7092570329

Yours faithfully Sd/-N.Satheesh Chief Conservator of Forests, Tiruchirappalli Circle.

//t.c.b.o//

S.G.Superintender

Dr. Verolident) ons. minuted

Dr. Ventabria/ Mo. munulat Degi allaluss

GOVERNMENT OF TAMILNADU WATER RESOURCES DEPARTMENT

From

Sir.

Er. K.ASOKAN, M.Tech., Chief Engineer, WRD, Chennai Region, Chepauk, Chennai-05. Email: cecrwropwd@yahoo.co.in To The Engineer-in-Chief & Chief Engineer (General), Water Resources Department, Chepauk, Chennai – 5.

Lr.No. OT- II / AE5 / Climate Studio-Training / 2023, Dated: 15.12.2023

- Sub: Chennai Region Water Resources Department CCCDM Climate Studio - Capacity Building Programme – Coastal - Tamil Nadu – 20th December and 21st December 2023 - Request to nominate participants – Reg.
- Ref: 1. Director, Centre for Climate Change and Disaster Management, (CCCDM) Department of Civil Engineering, Kalanjiyam Building, CEG Campus Anna University, Chennai -25 Lr. No. CCCDM/CS/Capacity Building / Coastal / 2023 dated 11.12.2023.
 - 2. Email Received from Engineer-in-Chief & Chief Engineer (GI), WRD, T1 Section on 12.12.2023.

With the reference to the letter and email cited above, I herewith nominate the following Engineers for the training on "Climate Change Vulnerability and Risk Assessment for Coastal District of TamilNadu" scheduled to be held on 20th December and 21st December 2023 at Conference Hall, Centre for Climate Change and Disaster Management, (CCCDM) Anna University, Chennai.

SI. No.	Name & Designation	Office Address	Phone No.	Email ID
1.	Er. C. Senthilkumar, Assistant Engineer			senthilkumar047@gmail.com
2.	Er. K. Ravichandran, Section Officer, Srimushnam	Irrigation Section, Srimushnam, Vellar Basin Division, Virdhachalam.	9486389333	eepwdwrovellarvri@yahoo.co.in

15/12/23 for Chief Engineer, WRD, Chennai Region, Chennai

Copy to the Special Chief Engineer, WRD, Vellar Basin Circle, Cuddalore for information.

Copy to the Executive Engineer, WRD, Coleroon Basin Division, Chidambaram for information.

Copy to the Executive Engineer, WRD, Vellar Basin Division, Virudhachalam for information.

Copy to the Director, Centre for Climate Change and Disaster Management, (CCCDM) Department of Civil Engineering, Kalanjiyam Building, CEG Campus Anna University, Chennai -25 for information.

Phone: 04146 220806 e-mail: <u>cfvillupuram@gmail.com</u>

TAMIL NADU FOREST DEPARTMENT

From

Thiru. N. Satheesh, I.F.S., Chief Conservator of Forests & Conservator of Forests (FAC), Viluppuram Circle, Viluppuram - 605 602.

То

The Principal Chief Conservator of Forests (Head of Forest Force), Forest Head Quarters, Guindy – Velachery Main Road, Near Kannigapuram Check Post, Guindy, Chennai – 600 032.

The Director, Centre for Climate Change and Disaster Management, Department of Civil Engineering, Anna University, Chennai – 600 025.

Ref.No.4299/2023/E2, Dated: 19.12.2023.

Sir,

- Sub: Training CCCDM Climate Studio Capacity Building Programme Coastal – Tamilnadu – 20th December and 21st December 2023 – Nomination details submission – Reg.
- Ref:
- 1. Principal Chief Conservator of Forests, Cheanni. Endt.No: A2/36349/2023 dated .12.2023.
- 7. The Director, Centre for Climate Change and Disaster Management, Department of Civil Engineering, Anna University, Chennai. Lr.No:CCCDM/CS/Capacity Building/Coastal/2023 dated:11.12.2023.

4 b 4 b

With reference to the above cited, I submit to inform that the following field officials are deputed in respect of Viluppuram circle for a two days training program on "Climate Change Vulnerability and Risk Assessment for Coastal Districts of Tamil Nadu"

to be held on 20th December and 21st December 2023 at the Centre for Climate Change and Disaster Management, Anna University, Chennai.

SI.No.	Topic	Venue	Training dates	Details of the Field Officials deputed (Thiruvalargal)
۱.	Climate Change Vulnerability and Risk Assessment for Coastal Districts of Tamil Nadu	Centre for Climate Change and Disaster Management, Anna University, Chennai.	20.12.2023 to 21.12.2023 (02 days)	J. Ramesh, FRO Cuddalore Division. Mobile No: 9442744587 E-mail ID: ramfor88@gmail.com

Yours faithfully, Sd/-N. Satheesh, Chief Conservator of Forests and Conservator of Forests (FAC), Viluppuram Circle, Viluppuram.

// True copy/By order//

endent.

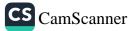
Office of the Engineer-in-Chief, and Chief Engineer (GI), WRD, Chepauk, Chennai – 600 005. <u>Present:</u> Er. A. Muthaiya, B.E., Engineer-in-Chief, and Chief Engineer (General), WRD Chepauk, Chennai – 600 005.

Proceeding No. AEE / T1 / AE- 2 / 48930 / 2014, dated. 18.12.2023

Sir,

Sub: Training – Department of Environment and Climate Change – "Operationalization of Climate Studio" – Capacity Building Programme – Coastal Sector – Nominations – regarding. Ref: 1. The Director, Centre for Climate Change and Disaster Management,

- The Director, Centre for Climate Change and Disaster Management, Anna University, Chennai letter no: CCCDM/CS/Capacity Building/Coastal /2023, dated:11.12.2023.
- The Director, Department of Environment and Climate Change, Chennai letter no: P4 / 1829 / 2019 / DoE&CC / 2023, dated: 18.12.2023.


With reference to the letter cited, the following Engineers are nominated to attend the Two-day Capacity Building Training Programme on 20th December & 21st December 2023 at Conference Hall, Centre for Climate Change and Disaster Management, Anna University, Chennai- 25.

S. No	Name and Designation	Office address	Phone number & email id	
1. Er. C. Senthilkumar, Assistant Engineer, WRD		O/o the Assistant Executive Engineer, WRD, Paravanaru Basin Sub Division, Kurinjipadi.	9787590074 senthilkumar047@gmail.com	
2.	Er. K. Ravichanran, Section Officer, WRD	Irrigation Section, Srimushnam, Vellar Basin Division, Virdhachalam.	9486389333 eepwdwrovellarvri@yahoo.co.in	

The period of absence during the above said period shall be treated as on official duty as per FR 9(6) b (i) and the participating officials are eligible to draw Travelling Allowance and Dearness Allowance in connection with the said training at the rate admissible as per rules in force.

for Engineer-in-Chief, & Chief (Engineer (General), WRD, Chepauk, Chennai- 5.

To:

- The Director, Centre for Climate Change and Disaster Management, Anna University, CEG Campus, Guindy, Chennai – 25.
- The Director, Department of Environment and Climate Change, Ground Floor, Panagal Building, Saidapet, Chennai – 15.

Copy to:

1. The Individuals listed in the above table (through e mail).

2. The Chief Engineer, WRD, Chennai Region, Chepauk, Chennai – 05.

CAPACITY BUILDING PROGRAMME on

1

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU COASTAL ECOSYSTEM 20th December and 21st December, 2023 **REGISTRATION FORM**

	5		A					١.			
Signature) adriation	Muer,	Ons. Bor	for S. A.	4.H.S	1 Con	Procession 1	2 Brei	Field in	8. June 1	-
Email ID	senthilkumar047@gmail.com	eepwdwrovellarrvi@yahoo.co.in	remter 88 Og mart. Lon	Siva HASankan@ mail.com	U balaforestry@gmail.com	mani031196@gmail.com	seenuwildman@gmail.com	Salka Kannawi O Braila	ge her by a grad . com	7940509649 wettandsergene trace	0
Phone No.	9787590074	9486389333	9442744587	9629961658	9047567276	8883380727	7092570329	9942464206	98 bSU7999	794eseglorg	
Office Address	Kennvanaulna Dar Soc. W RZD: KUVINISPADI	ITTIGATION Section WALD: Stirry 2 Marchallen	Fuch Rouge office	Forest range offer porther that offer Thanlore dist	Forust Range office	Forest Range after franktrougi publicition	Forest Range dire Muthupel, Thirewonn Division	شوله معالمتها ومه	96 R. District Edlectes		
Designation	Assistant Engineer	Section Officer	Forest Range Officer	Forester	Forest Range Officer	Forest Range Officer	Forester	Special Deputy Collector	Deputy Collectr	181	dretlent
Name	Mr. Senthilkumar. C	Mr. Ravichandran. K	Mr. Ramesh. J 🕱	Mr. Sivasankar. A	Mr. Balamurugan. E	Mr. Mani Venkatesh. D	Mr. Srinivasan. K	Mr. Sathasivam. R	R. Galba.	B Dr. 6. This ward par	
S.NO.	1.	2.	3.	4	5.	6.	7.	%	9.	10.	

CAPACITY BUILDING PROGRAMME on

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU COASTAL ECOSYSTEM

20th December and 21st December 2023

ATTENDANCE SHEET

	4	24		- 1	•		٠				al	
21/12/2023	AN	A. Buss	Milee	6 and now	C. of all	A Bay	Ar. Dommy	Oreaceard	Con	9755	R. Jump	1
21/12	FN	tanyt	Muces	(and a from	a stand	in Bus	Ore. Dom	hoosener	CRON	FALS	& Jaine	1
2023	AN	· to soly	Musha	6) of rigoom!	2. eridin	- Condice	Are. Brinner	grassed	(A)	AH.C	france of	4
20/12/2023	FN	Frond .	Mueio	Manderyo (B:	2. grood	L'Eni	Ores. Drewy	Procession (Q	J-J-P-B	R. Junet	2
	Designation	Forester.	section of thick I for is align	ALLT. ENGR-MED	SPI Deputs Glieber	Deputy Collera	Form Renge officer	Forester	Ferest Ray april	Fourt Range office	Ris Watany	tota
C. M	Name	1. Sivneancar A	kavichandsun-k	genthickware c.	R. SADASIVAM .	R. Greethy.	J. Ramen.	K. SRINIVASA N	D. MANINGWKATESH	E.Balamougan.	E Dr. P. Thin warden and	
ON S	.ONLG	1. 6	2.	ë.	4.	5.	6.	7.	ŵ	9.	10.	

Operationalization of Climate Studio

Funded by

1

Department of Environment and Climate Change, Government of Tamil Nadu 20th and 21st December 2023

CAPACITY BUILDING PROGRAMME CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other Comments Please write your comments regarding this training: Coastal/CBPII

CENTRE FOR CLIMATE CHANGE AND DISASTER MANAGEMENT

Operationalization of Climate Studio

Funded by

Department of Environment and Climate Change, Government of Tamil Nadu 20th and 21st December 2023

CAPACITY BUILDING PROGRAMME CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

		/		
Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other Comments Please write your comments regarding this training:

The transfit methodoly may change but government Struct heave we a own superione totally different from your content. the may enplain and train about thou to apply in to the field. Thank you.

1

Operationalization of Climate Studio

Funded by

Department of Environment and Climate Change, Government of Tamil Nadu 20th and 21st December 2023

CAPACITY BUILDING PROGRAMME CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU - COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other Comments Please write your comments regarding this training:

Dromming veryongi Brig. Big umige very organise Bommyermian

1

Operationalization of Climate Studio

1

Funded by

Department of Environment and Climate Change, Government of Tamil Nadu

20th and 21st December 2023

CAPACITY BUILDING PROGRAMME CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other Comments Please write your comments regarding this training:

rease write your comments regarding this training: please provide the PPT in tant. for Creating programmes awarness the people in one areas are toy to provide free account dation for tan trainees.

Operationalization of Climate Studio

Funded by

Department of Environment and Climate Change, Government of Tamil Nadu

20th and 21st December 2023

CAPACITY BUILDING PROGRAMME CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Other Comments	2010/6 NOTE	Useful !	mining	

Other Comments Potals Very Useful fraining. Please write your comments regarding this training:

Uwingon WW opprovides 2037. Joornoor

permission

Miyon and Tomas

Dopravisos, Discontor aposon Otomon 290000 . 266

23

Jr Bon 800000

1

Operationalization of Climate Studio

1

Funded by Department of Environment and Climate Change, Government of Tamil Nadu

20th and 21st December 2023

CAPACITY BUILDING PROGRAMME CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU - COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

	/	/		
Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other Comments Please write your comments regarding this training:

I stay place is very neee, and flood arrangempt well to thanknow all 6t Your Sir.

Operationalization of Climate Studio

1

Funded by

Department of Environment and Climate Change, Government of Tamil Nadu

20th and 21st December 2023

CAPACITY BUILDING PROGRAMME CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other Comments Please write your comments regarding this training: Coastal/CBPII

Operationalization of Climate Studio

1

Funded by

Department of Environment and Climate Change, Government of Tamil Nadu

20th and 21st December 2023

CAPACITY BUILDING PROGRAMME CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF **TAMIL NADU – COASTAL ECOSYSTEM**

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other Comments very wetal and by to minismise the Pollevted padiely.

Coastal/CBPII

D. Manskenkatesh, Foarst Range officer, Perhubbotai.

CENTRE FOR CLIMATE CHANGE AND DISASTER MANAGEMENT

Operationalization of Climate Studio

Funded by

1

Department of Environment and Climate Change, Government of Tamil Nadu

20th and 21st December 2023

CAPACITY BUILDING PROGRAMME CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other Comments Please write your comments regarding this training:

NA

Operationalization of Climate Studio

Department of Environment and Climate Change, Government of Tamil Nadu 20th and 21st December 2023

CAPACITY BUILDING PROGRAMME CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 ′(Good)	3 (Fair)	4 (Not Satisfactory)

Other Comments This training provided basis thouldge about climate change & DM. Please write your comments regarding this training

1

CAPACITY BUILDING PROGRAMME CLIMATE CHANGE VULNERABILITY AND RISK ASSESSMENT FOR COASTAL DISTRICTS OF TAMIL NADU

Organized by Centre for Climate Change and Disaster Management, Anna University funded by the Department of Environment and Climate Change,

Government of Tamil Nadu

Agenda

Date: March 13, 202	4 Venue: CCCDM Conference Hall				
9:30 – 10:00 A.M	REGISTRATION & WELCOME				
SESSION – I: Climate Risk and Resilience: An Overview					
10:00 - 11:00 A.M	Prof. Dr. Kurian Joseph Director, CCCDM, Anna University				
11:00 – 11:15 A.M	TEA BREAK				
SESSION – II: Coas	stal Biodiversity and Blue carbon				
11:15 – 12:15 P.M	Prof. Dr. A. Ramachandran, D.Sc., Emeritus Professor, CCCDM, Anna University				
SESSION – III: Clin	nate Modelling and Projection				
12.15 – 1.15 P.M	Dr. R. Geetha & Mrs. K. Sathyapriya Climate Modeling Team, CCCDM, Anna University				
1:15 – 2:15 P.M	LUNCH				
SESSION – IV: Stra	tegies for Conservation of Coastal and Marine Resources				
2:15 – 3:00 P.M	Dr. Deepak Samuel V Scientist – E, NCSCM				
SESSION – V: Climate Change Risk Assessment on Water Resources					
3:00 – 4:00 P.M	Dr. Balaji Lakshminarayanan & Dr. R. Malarvizhi Water Resource Team, CCCDM, Anna University				
4:00 – 4:15 P.M	TEA BREAK				
SESSION – VI: Assessing the Coastal Risk to Climate Change					
4:15 – 5:00 P.M	Dr. Madavi Venkatesh & Ms. S. Nivetha Coastal Team, CCCDM, Anna University				

CAPACITY BUILDING PROGRAMME CLIMATE CHANGE VULNERABILITY AND RISK ASSESSMENT FOR COASTAL DISTRICTS OF TAMIL NADU

Organised by Centre for Climate Change and Disaster Management, Anna University funded by the Department of Environment and Climate Change, Government of Tamil Nadu

Agenda

Date: March 14, 2024	Venue: CCCDM Conference Hall				
	nonstration and Hands-on exercise - Coastal Inundation Mapping and				
DSAS Model					
9:30 – 10:30 A.M	Dr. Madavi Venkatesh & Ms. S. Nivetha Coastal Team, CCCDM, Anna University				
SESSION – VIII: Inte	eractive session - Coastal Area Management				
10:30 - 11:15 A.M	Dr. Madavi Venkatesh, Ahmed Ibrahim & Ms. S. Nivetha Coastal Team, CCCDM, Anna University				
11:15 – 11:30 A.M	TEA BREAK				
SESSION – IX: State	Initiative towards Coastal Protection				
11:30 - 12.30 P.M	G.R. Radha Krishna Executive Engineer, Irrigation & Water Resource Engineer				
SESSION – X: Impac	et of Climate Change on Fisheries Particularly on Aquatic Food				
Safety					
12:30 - 1:30 P.M	Dr. G. Jeyasekaran, Ph.D. FNAAS Former Director of Research Tamil Nadu Fisheries University				
1:30 - 2:30 P.M	LUNCH				
SESSION – XI: Enhancing Adaptive capacity of coastal communities to climate change					
2:30 – 3:30 P.M	Dr. V. Selvam Executive Director - Speed Trust, Member of SEAC, Former Director - MSSRF				
3:30 – 4:00 P.M	TEA BREAK				
VALEDICTORY	Y SESSION & CERTIFICATE PRESENTATION: 4.00 - 5.00 P.M				

From:	To:	
Thiru.Johny Tom Varghese. I.A.S.,	The Director - CCCDM	8 U.
District Collector	Anna University	<i>a</i>
Nagapattinam.	Chennai - 25	

RC NO.7087/2022/J1

Date- 08.03.2024

Sir,

Sub: Disaster Management – CCCDM – Climate Studio – Capacity Building Programme – Coastal – Tamilnadu – 13th and 14th March 2024 – Nomination Details Send - Regarding.

Ref:

Director, Disaster Management Tamilnadu Disaster Risk Reduction Agency,

Chepauk, Chennai-5 Lr.No. NC III (1) / 62/2023 Dated:01.03.2024.

I send herewith the details about the Participant in the above said Training Programme from the Nagapattinam District.

S.no	Officer Name	Designation	Contact no	Email-id
1	K.Karthikeyan	DM Tahsildar	8778276531 & 9486310835	deocngt@gmail.com karthiksumathi29@gmail.com

Yours Faithfully or District Collecto Nagapattinam

3/20

Copy Submitted to, The Director, Disaster Management, Tamilnadu Disaster Risk

Phone: 04146 220806 e-mail: <u>cfvillupuram@gmail.com</u>

TAMIL NADU FOREST DEPARTMENT

From

Thiru. A. Periyasamy, I.F.S., Chief Conservator of Forests, Viluppuram Circle, Viluppuram - 605 602. То

The Principal Chief Conservator of Forests (Head of Forest Force), Forest Head Quarters, Guindy – Velachery Main Road, Near Kannigapuram Check Post, Guindy, Chennai – 600 032.

The Director, Department of Environment and Climate Change, Ground Floor, Panagal Building, Saidapet, Chennai – 600 015.

Ref.No.4299/2023/E2, Dated: 04.03.2024.

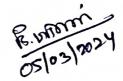
Sir,

- Sub: Training Department of Environment and Climate Change " Operationalization of Climate Studio" Capacity Building Programme – Coastal Sector– Tamilnadu – 13th March and 14th March 2024 – Nomination details submission – Reg.
- **Ref:** The Director, Department of Environment and Climate Change, Chennai. Lr.No:P4/1829/2019/DoE&CC/2023, dated:26.02.2024.

4 **b** 4 **b**

With reference to the above cited, I submit to inform that the following field officials are deputed in respect of Viluppuram circle for a two days training program on

" Climate Change Vulnerability and Risk Assessment for Coastal Districts of Tamil Nadu"


to be held on 13th March and 14th March 2024 at the Centre for Climate Change and Disaster Management, Anna University, Chennai.

SI.No.	Topic	Venue	Training dates	Details of the Field Officials deputed (Thiruvalargal)
1.	Climate Change Vulnerability and Risk Assessment for Coastal Districts of Tamil Nadu	Centre for Climate Change and Disaster Management, Anna University, Chennai.	13.03.2024 to 14.03.2024 (02 days)	S. Sanjeevi, Forester, Forestry Extension centre Neyveli@Cuddalore Division. Mobile No: 8148155416 E-mail ID: sanjusparkz95@gmail.com

Yours faithfully, Sd/-A. Periyasamy, Chief Conservator of Forests, Viluppuram Circle, Viluppuram.

// True copy/By order//

Superintendent. R. unoning 05/03/2024

TAMIL NADU FOREST DEPARTMENT

From

Thiru.N.Satheesh, I.F.S., Chief Conservator of Forests, Tiruchirappalli Circle, Tiruchirappalli -620 023. e. mail : ccftrichycircle@gmail.com

To

The Director, Centre for Climate Change and Disaster Management, Anna University, Chennai-25

C.No.1001/2024/E2 Dated. 11.03.2024

Sir,

- **Sub** :- CCCDM Climate Studio Capacity Building Programme Coastal – Tamil Nadu – 13th Matche and 14th March 2024 – participants submission of – Regarding.
- **Ref.** :- Principal Chief Conservator of Forests (HoFF), Chennai, Ref.No.AB3/5611/2024, Dated:07.03.2024.

With reference to the above, I submit that Thiru.R.Ramadas, Forester working in Wildlife Division, Nagapattinam has been nominated for the capacity building programme on "Climate Change Vulnerability and Risk Assessment for Coastal Districts of Tamil Nadu" to be scheduled on 13th and 14th of March 2024 at Anna University, Chennai in respect of this circle.

His contact details are furnished below.

S. No	Name & Designation	DOB	Place of Working	Contact Number	E-mail id
1	Thiru.R.Ramadas, Forester	07.06.1987	Nagapattinam	6382215362	ramadas.ece @gmail.com

This is for favour of kind information.

Yours faithfully Sd/- N.Satheesh, Chief Conservator of Forests, Tiruchirappalli Circle.

//t.c.b.o//

S.G.Superintendent

13. 45124

Office of the Engineer-in-Chief, and Chief Engineer (GI), WRD, Chepauk, Chennai – 600 005. <u>Present:</u> Er. A. Muthaiya, B.E., Engineer-in-Chief, and Chief Engineer (General), WRD Chepauk, Chennai – 600 005.

Proceeding No. AEE / T1 / AE- 2 / 48930 / 2014, dated. 07.03.2024

Sir,

- Sub: Training Department of Environment and Climate Change "Operationalization of Climate Studio" – Capacity Building Programme – Coastal Sector – Nominations – regarding.
- Ref : The Director, Department of Environment and Climate Change, Chennai letter no: P4 / 1829 / 2019 / DoE&CC / 2023, dated: 26.02.2024.

With reference to the letter cited, the following Engineers are nominated to attend the Two-day hands on training on "Climate Change Vulnerability and Risk Assessment for Coastal district of Tamil Nadu" is scheduled to be held on 13th & 14th March 2024 at Conference Hall, Centre for Climate Change and Disaster Management, Anna University, Chennai- 25.

S. No	Name and Designation	Office address	Phone number & email id
1.	Er. P. Rajasekaran, Assistant Engineer, WRD	O/o the Assistant Executive Engineer, WRD, Anti Sea Erosion Sub Division, Chennai	9487227237
2.	Er. S. Sozharaja, Assistant Engineer, WRD	O/o the Assistant Executive Engineer, WRD, Anti Sea Erosion Sub Division, Chennai	7010099244

The period of absence during the above said period shall be treated as on official duty as per FR 9(6) b (i) and the participating officials are eligible to draw Travelling Allowance and Dearness Allowance in connection with the said training at the rate admissible as per rules in force.

for Engineer-in-Chief, & hief Engineer (General), WRD, Chepauk, Chennai- 5.

To:

- 1. The Director, Centre for Climate Change and Disaster Management, Anna University, CEG Campus, Guindy, Chennai 25.
- 2. The Director, Department of Environment and Climate Change, Ground Floor, Panagal Building, Saidapet, Chennai 15.

Copy to:

- 1. The Individuals listed in the above table (through e mail).
- 2. The Chief Engineer, WRD, Chennai Region, Chepauk, Chennai 05.

DEPARTMENT OF FISHERIES AND FISHERMEN WELFARE

From

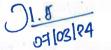
The Principal Secretary/Commissioner The Director, Fisheries and Fishermen Welfare, Integrated Office Complex for Animal Disaster Management (CCCDM), Husbandry and Fisheries Department, Anna University, Nandanam, Chennai - 35.

То Centre for Climate Change and Chennai - 25.

no marken) ms. wincher

Dated: 07.03.2024 Rc.No.15529/P7/2023

- Fisheries and Fishermen Welfare Centre for Climate Sub : Change and Disaster Management -Training programme on Climate Change Vulnerability and Risk Assessment for Coastal Districts of Tamil Nadu -Scheduled on 13.03.2024 and 14.03.2024 at Centre for Climate Change and Disaster Management, Anna University, Chennai - Participation Requested - -Intimated - Regarding
- The Director, CCCDM, Anna University, Chennai Letter Ref : No. CCCDM/CS/Capacity Building/ Coastal/2024, Dated: 21.02.2024.



With reference to the letter cited, it is informed that the following officials are nominated to participate in the training programme on "Climate Change Vulnerability and Risk Assessment for Coastal Districts of Tamil Nadu" scheduled on 13.03.2024 and 14.03.2024 at Centre for Climate Change and Disaster Management, Anna University, Chennai.

S.No	Name of the Official (Thiru/Tmt)	Designation	Office
1.	K.Selvaraj Mob No.9994695911 <u>vpkselva@gmail.com</u>	Assistant Executive Engineer	O/o the Fishing Harbour Project Sub Division, Cuddalore
2.	N.S. Mohan Kumar Mob No.7845521268 <u>sankaratgate2013@gmail.com</u>	Assistant Engineer	O/o the Fishing Harbour Project Sub Division, Bhavanisagar
3.	D.Valli Mob No.9840882034 <u>vallifisheries@gmail.com</u>	Assistant Engineer	O/o the Fishing Harbour Project Sub Division, Thoothukudi
4.	L.Aravinth Kumar Mob No.99488256677 <u>ari.accet@gmail.com</u>	Assistant Engineer	O/o the Fishing Harbour Project Sub Division, Colachel

1

For Principal Secretary/Commissioner Fisheries & Fishermen Welfare

CAPACITY BUILDING PROGRAMME on

JAOD

4

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU COASTAL ECOSYSTEM

13th and 14th March 2024

REGISTRATION FORM

Signature	and Bear	2. Santti	A, Bond Wallan		dres greisisis.	S. Sund) IT - Haumong	- year	A A	L N
Email ID	karthiksumathi29@gmail.com	deocmyl@gmail.com	EOCCUD @ gone 1. cm		SO2ha3Qgmail.com	sanjusparkz95@gmail.com	~	grankig 20gnail.com	ramadas.ece@gmail.com	untselva@amail com
Phone No.	8778276531	8248113430	9597474948	9487227237	7010099244	8148155416	9894842803	8124839256	6382215362	0001105011
Office Address	THILSILDRE DISASTER WANAGENT COLLECTORN 8778276531	pistrict collector obsice Marti Ladultur rai	Disso of corlect office		0/0 Antisea Erasion Sub Pivn. Charlow, Channai -05	Cuddellove Forest Division.	Gult of mannor Brosphaye. Resorve Trust, Er wader Bannon the Darow Division Perunal	DIVISIONAL FORER OFFICER, SF DIVISION, CHENgulpath	Nagapattinam Wildlife division 6382215362	Eichner bradener broken Sub &m
Designation	Tahsildar	Tahsildar	Special Tahsildar	Assistant Engineer	Assistant Engineer	Forester	Forester	Forester	Forester	A T
Name	K. Karthikeyan	Santhi	A. Haridoss	P. Rajasekaran	S. Sozharaja	S. Sanjeevi	Iyachamy-	G. Ramakrishnan	R. Ramadas	
S.NO.	1.	2.	3	+	5.	6.	7.	×	9.	

ģ

CENTRE FOR CLIMATE CHANGE AND DISASTER MANAGEMENT Operationalization of Climate Studio

Funded by Department of Environment and Climate Change, Government of Tamil Nadu

CAPACITY BUILDING PROGRAMME 01

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU COASTAL ECOSYSTEM

COASTAL ECOSYSTEM 13th and 14th March 2024

REGISTRATION FORM

	-11mmat	ľ								
Signature	N By Puper law	D. rally of rul	Morki Hendran.	shert.	1					
Email ID	sankaratgate2013@gmail.com	vallifisheries@gmail.com	ar.aceet@gmail.com art.acer @ gmalh am							
Phone No.	7845521268	9840882034	9488256677	gs66729298.						
Office Address	Fishing Harbour project section Brovanisagan - 638 451	FISN'NG Harbour Project Scy Dirucion Tutterin-2.	0/6 The Assistant Excentic Figuring harlos Prosected anterno Coladau.	District Forest officer. manage upper	5				<i>.</i>	
Designation	Assistant Engineer	Assistant Engineer	Assistant Engineer	Forest Range Officer						
Name	N.S. Mohan Kumar	D. Valli	L. Aravinth Kumar	Bharadhidasan A. Rugartar M. 2020N						
S.NO.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.

2

CENTRE FOR CLIMATE CHANGE AND DISASTER MANAGEMENT Operationalization of Climate Studio Funded by Department of Environment and Climate Change, Government of Tamil Nadu

CAPACITY BUILDING PROGRAMME on

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU COASTAL ECOSYSTEM

13th and 14th March 2024

ATTENDANCE SHEET

S.NO.	Name	Deriveration	13/03	13/03/2024	14/03	14/03/2024
		Designation	FN	AN	FN	AN
7	N.S. Mohan Kuman	Assistant Angineur	- And in	1 for	9-9-2	1 far
J.	K. Selvaraji	ALLINAN Ga. Crym	r Donel	Cpane	Come O	And the C
ъ.	infunction	D. M. Taheildar	r.s.t	Jus . S	S. Self	S. Sant
4	4 R. RAMADAS	FORESTER	P.D.C.	F.P.F	7.9.4	4 J. J
5	L. Asavinth Kunar	Ascistrat Engineer	OBTAI	ORTH	COLDER!	ootedi .
S	& Sangeeui	FOVESPEN	S. Swar	S. Surt.	ins. S	8 Gm ?
Â.	B. Ayyusamy.	Forester	Un trumbing	- Annahar	111 Annual III	- Annual - Wi
8	wh. Bhomathidason.	4R0	J. topat	Auft.	Or By and	-frish-fo
Ś	A. AARLIDOGS	THAS LUDBE	Antiferent Provent	Arthort	A Bood	Sold the sold was
1 0.	S. SOZHARAJA	ASSIGNATE Engineer	dr. 5 4 3 1 5 124	dr-9-2703/24 -	and the part of the	the sylvest

CENTRE FOR CLIMATE CHANGE AND DISASTER MANAGEMENT Operationalization of Climate Studio Funded by Department of Environment and Climate Change, Government of Tamil Nadu

CAPACITY BUILDING PROGRAMME 01

CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU COASTAL ECOSYSTEM

13th and 14th March 2024

ATTENDANCE SHEET

		11N	ALLENDANCE SHEET			
S.NO.	Name	Dacimation	13/03	13/03/2024	14/03	14/03/2024
	2	Псыдпанон	FN	AN	FN	AN
11	11 G. RAMARRESMNAN	FORESTER	JR.H.	AR AR	U.S.K.	J.P.B.S
·13	12: D. VALLI	Figheries Reporting	B. rall'	D. valle	D. valle	O. vall?
13	13 Karthi Keyan	7 Pits rider	the share	2 dicto	tra/Efral Simolo	mark July for
14.	0			>	2	>
15.						
16.						
17.						
18.						
19.						
20.						

2

Funded by

Department of Environment and Climate Change, Government of Tamil Nadu

13th and 14th March 2024

CAPACITY BUILDING PROGRAMME III CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

1				
Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	✓ 1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Orgonizing was absolutely Great Content Was througs advanced we need to adopt the for the well being

CENTRE FOR CLIMATE CHANGE AND DISASTER MANAGEMENT

Operationalization of Climate Studio Funded by

1

Department of Environment and Climate Change, Government of Tamil Nadu 13th and 14th March 2024

CAPACITY BUILDING PROGRAMME III CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Funded by

Department of Environment and Climate Change, Government of Tamil Nadu

13th and 14th March 2024

CAPACITY BUILDING PROGRAMME III CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

	<u>^</u>			
Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Diverije de Boi Lasyi Ling Deriss Donnig Lunis anno 2620 20 prises 200 20 pgin/ 201000 200 puises Donnig Doon'

Funded by

Department of Environment and Climate Change, Government of Tamil Nadu

13th and 14th March 2024

CAPACITY BUILDING PROGRAMME III CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other Comments Please write your comments regarding this training:

Organizing was absolutely areat. Content was Throughly advanced, we need to adopt these for the well being.

1

Funded by

Department of Environment and Climate Change, Government of Tamil Nadu 13th and 14th March 2024

CAPACITY BUILDING PROGRAMME III CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

CENTRE FOR CLIMATE CHANGE AND DISASTER MANAGEMENT

Operationalization of Climate Studio Funded by

Department of Environment and Climate Change, Government of Tamil Nadu

13th and 14th March 2024

CAPACITY BUILDING PROGRAMME III CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Funded by

Department of Environment and Climate Change, Government of Tamil Nadu

13th and 14th March 2024

CAPACITY BUILDING PROGRAMME III CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	Q(Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	(Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

- 1m -

Coastal/CBPIII/13-14 March 2024

CENTRE FOR CLIMATE CHANGE AND DISASTER MANAGEMENT

Operationalization of Climate Studio

1

Department of Environment and Climate Change, Government of Tamil Nadu

13th and 14th March 2024

CAPACITY BUILDING PROGRAMME III CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other Comments Please write your comments regarding this training:

Trining was good but one regret for me kindly. Obtaining accommodition because use are coming duttionent distinct attain than chemical we are failing duttifically. Si tradition. Without attact staying place we paw own money.

Funded by Department of Environment and Climate Change, Government of Tamil Nadu

13th and 14th March 2024

CAPACITY BUILDING PROGRAMME III CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	3 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	L(Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1/(Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	J'(Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other Comments Please write your comments regarding this training:

Practical may more.

Funded by

Department of Environment and Climate Change, Government of Tamil Nadu 13th and 14th March 2024

CAPACITY BUILDING PROGRAMME III CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF **TAMIL NADU – COASTAL ECOSYSTEM**

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other Comments Please write your comments regarding this training: It is vory use ful for field exempt like Shale line protection and avoid the Shale line crossin in Justice.

Funded by Department of Environment and Climate Change, Government of Tamil Nadu

13th and 14th March 2024

CAPACITY BUILDING PROGRAMME III CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other Comments Please write your comments regarding this training: Kindly Focus Training also on Water polluton (Inland Water Bodres), Are polluton, and foil Pollutoom.

1

Funded by

Department of Environment and Climate Change, Government of Tamil Nadu

13th and 14th March 2024

CAPACITY BUILDING PROGRAMME III CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF TAMIL NADU – COASTAL ECOSYSTEM

TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

1. Need free Accomodation for future Training. 2. Food 7 Morning & Evening (wight) Compulsarily. Need)

1

Funded by

Department of Environment and Climate Change, Government of Tamil Nadu

13th and 14th March 2024

CAPACITY BUILDING PROGRAMME III CLIMATE CHANGE RISK ASSESSMENT AND ADAPTATION PLAN OF **TAMIL NADU – COASTAL ECOSYSTEM**

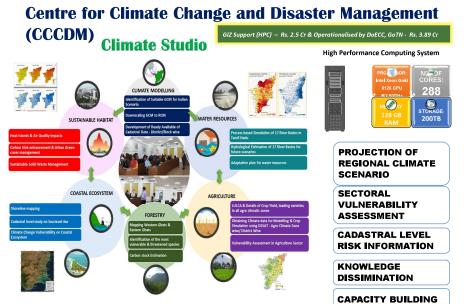
TRAINING EVALUATION

Please tick according to the performance: (\checkmark)

Training Relevance	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Content	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Method	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Trainers	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Presentations	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)
Training Venue and Hospitality	1 (Excellent)	2 (Good)	3 (Fair)	4 (Not Satisfactory)

Other Comments Please write your comments regarding this training:

Most of the Engineers who attended the training, and very busy with Firancial year closing is march. Here wis requests to Conduct the training in Jama Fers or April browards is composition to


ANNEXURE - II

CLIMATE CHANGE AND COASTAL MARINE **ECOSYSTEM** RESILIENCE

Dr.KURIAN JOSEPH Professor of Environmental Engineering Director, Centre for Climate Change and Disaster Management Dept. of Civil Engg, Anna University, Chennai- 600 025 E Mail: kuttiani@gmail.com

Supporting Climate Resilient Sustainable Development Planning

MULTIDISCIPLINARY TEAM OF CCCDM

Prof. Dr. S. Rajarathnam

h-Index -11

Prof. Dr. K Palanivelu Profess h-Index - 31 h-Index - 44

Climate Modeling

Water Resources

Forest Ecosystem

Scientist

Scientist

Scientist

•Dr. R. Malarvizhi, Project

Sustainable Agriculture

•Dr. Hariharan S, Project

•Dr. Mithilasri M. Project

Geospatial Information

•Dr. Mathan M, Project

Project Associate

•Dr S. Pavithrapriya, Project

•Mr. P. Praveenkumar, Project

Prof. Dr. A. Ramachandran Emeritus Professo h-Index - 23

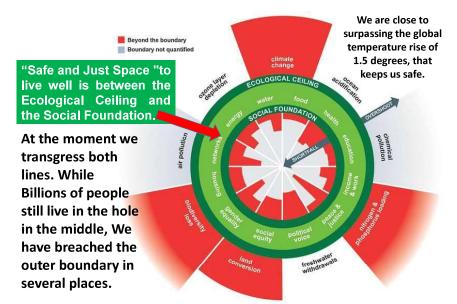
PROJECT STAFF

FACULTY

•Dr. Geetha R, Project Scientist Coastal Area Management •Mrs. Sathyapriya K, Project •Dr Madavi Venkatesh,Project Scientist

•Mrs. S. Nivetha, Project Associate •Dr. L. Balaji, Project Scientist ble Habita •Dr. Divya Subashkumar, Project Scientist •Mr. Ahamed Ibrahim S N. Project Associate •Mr. G. Sundhar, Project Associate •Mr. M. G. Santhoshnath, Technical Assistant •Mr. S Ahamed Kabeer Rahmathullah, **Carbon Enrichment Programme** •Dr. Yasar Arafath K A, Project Scientist •Mr. V. Vijava Kumar, Project Associate

Web Portal •Dr. Thirunavukkarasu P, •Mr. Asan Basheer K, Project Associate


ADJUNCT FACULTY

> Dr. R. Saravanan, Professor, (Centre for Water Dr. K. Premalatha, Professor, (Division of Soil Mechanics and Foundation Engineering) Dr. A. Merline Sheela, Associate Professor (Centre for Environmental Studies) Dr. R. Saravanan, Professor (Department of Mechanical Engineering) Dr. R. Vidya, Professor (Institute of Remote Sensing) Dr. K. Gunasekaran, Associate Professor (Transportation Engineering) Dr. J. Indumathi, Associate Professor (Information Dr. L. Jones Tarcius Doss - Professor (Dept. of Dr. J. Velmurugan, Associate Professor (Medical Physics) Dr. G.J. Bhagavathiammal, Assistant Professor (Dept. of Medical Physics) Dr. S. Anbuchelian, Assistant Professor (Rama) Computing Centre) Dr. P. Balachander, Assistant Professor (Refrigeratio and Air Conditioning Engg.) Dr. P. Hemalatha, Assistant Professor (Dept. of Chemistry)
Dr. Surya Vanilla, Assistant Professor (Centre for

Research Scholars

•Punya Murthy Khristodas •Easwari B R •Ms. A Whelinta Sherin

> Administrative Staffs •Mr. D Murali Superintendent •Ms. H. Janani, Project Assistant •Mr. Venkatesh G. Peon

Source: 9 dimensions of planetary boundaries according to Rockström et al. 2009, 12 dimensions of social boundaries according to Raworth 2017, based on government priorities at Rio+20 and later UN Conferences.

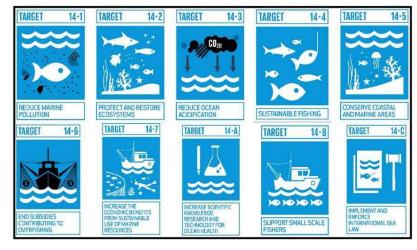
SDGs -A blueprint for a better world by 2030

People every where to have a decent life in Peace and Partnership. Prosperity is shared and our Planet is protected.

SDG-13-Climate Action- Targets

13.1: Strengthen Resilience and Adaptive Capacity to Climate Related disasters

13.2: Integrate Climate Change Measures into Policies and Planning


13.3: Build Knowledge and Capacity to meet Climate Change 13.A: Implement the UN Framework Convention on Climate Change (UNFCC)

13.B:PromoteMechanismsto raiseCapacityforClimatePlanningandmanagement

Marine risker Hish, shrime Blue Economy Focus Areas Marine and Marine risker Marine Blue Economy Focus Areas Cuse antitude Marine Marine risker Marine Marine Marine risker Marine Mar

Goal 14: Life Below Water

Conserve and sustainably use the oceans, seas and marine resources for sustainable development

Direct Impacts of marine litter

Economic

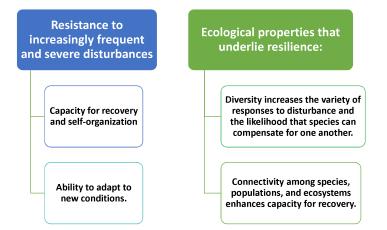
- Loss of employment in fisheries due to reduced catch resulting from ghost fishing and fish mortality
- Less income and reduced employment in coastal communities due to decreased tourism related to dirty and less attractive beaches
- High costs for coastal and beach cleanups
- Reduced opportunities for recreational activities
- Increased risk of flooding due to blockage of stormwater systems and drainage
- Higher cost of drinking water due to the increased amount of plastic pollution in the water

Biota and ecosystems

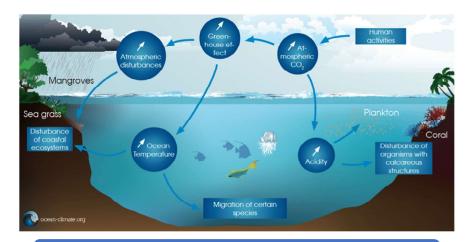
- Pressure on aquatic species due to plastic debris ingestion or entanglement
- Loss of biodiversity in aquatic ecosystems
- Spread of invasive species
- Risk of microplastics consumption through the foodchain
- Smothering of organisms, reduced light penetration, and dragging along the sea floor causing physical damage

Climate Change Impacts

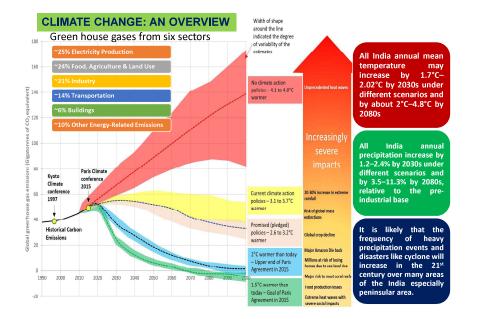
Rising Temperature	More frequent and severe heat waves, wildfires, extreme weather events
Extreme Weather events	Intense and frequent Cyclones, Floods and Droughts causing losees and damages
Glacier Melting	Sea level Rise, coastal Inundation and displacement of people
Ocean Acidification	Harming Coral Reefs and other marine life, livelihoods of millions who rely on the oceans for food and income
Biodiversity Loss	Species extinction, Food productivity loss, Impact on overall ecosystem health
Health Impacts	• Spread of diseases, poor air quality, heat related illness, leathal humidity
Social Injustice	Disproportional impact on vulnerable communities with least resources to adapt or recover

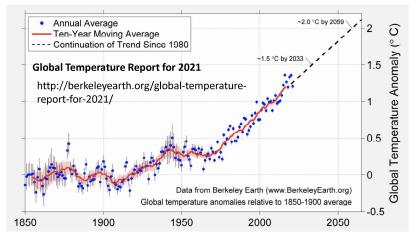


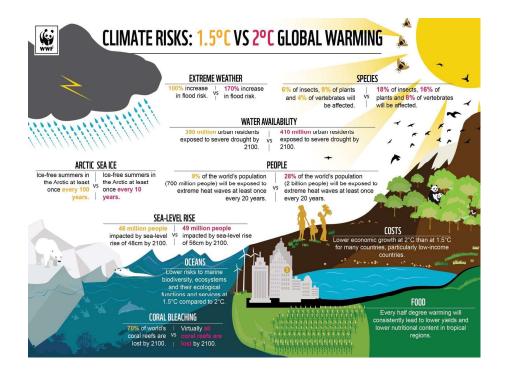
Anticipatory capacity	Absorptive capacity	Adaptive capacity	Transformative capacity
Options that enable people to foresee risks and prepare for hazards, therefore reducing the impacts	• Options that prepare people to absorb/respond to shocks with minimum impact on their lives and livelihoods	• Options that build people's capacity to adjust to changing conditions and evolving risks	• Options that promote systemic changes to create an enabling environment for community adaptation and resilience building


Vulnerability: the resistance or lack of resistance of these exposed elements to the hazard

ECOLOGICAL RESILIENCE TO CLIMATE CHANGE


CLIMATE CHANGE INDUCED COASTAL MARINE HAZRDS




Coral reefs represent only 0.2% of the ocean surface and are home to 30% of its known marine species. However, estimates show that 20% of the world's coral reefs have been lost and another 20% degraded.

Ecological benefits of coral reefs represent US\$ 30 billion yearly, and directly support 500 million people for fishing.

At 1.15°C of global warming now, with current pace, we will hit 1.5°C in 2033 and 2°C by 2060.

Panchamrit - Nationally Determined Contributions (NDC) – India Increase non-fossil fuel energy capacity to 500 GW by the year

capacity to 500 GW by the year 2030	requirements from "Renewable Energy" by the year 2030
Reduce projected carbon emissions by one billion tonnes from till the year 2030	Reduce Carbon intensity of Economy by more than 45% by the year 2030
Achieve the target of "Net 7	ovo" (no not corbon diovido

Achieve the target of "Net Zero" (no net carbon dioxide emitted from energy sources) by the year 2070.

Nature (Ecosystem)Based approaches

- Protecting and restoring coastal ecosystems such as coral reefs, mangroves, and salt marshes can provide natural buffers against storm surges and erosion.
- These ecosystems also sequester carbon and help mitigate climate change.

BLUE CARBON INITIATIVE

Mitigate climate change by restoration and sustainable use of coastal and marine ecosystems (mangroves, tidal marshes, seagrasses).

Mangroves for Nature Based Disaster Risk Reduction

ECOSYSTEM SERVICES OF MANGROVES

FILTRATION

Mangroves filter pollutants, absorb excess nutrients, trap sediments, and help increase water clarity and quality.

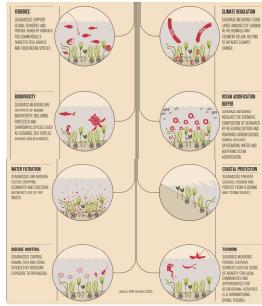
CARBON SINK

Over 21 gigatons of carbon are held by mangroves globally, with 87% of that being within the soil surrounding mangrove roots.

BIODIVERSITY

Mangrove forests provide habitat for 341 threatened species around the world.

LIVELIHOODS


At least 120 million people live within 10 km of mangrove ecosystems as an important source of income, food, economic growth, and more.

FISHERIES

Mangroves serve as ideal nurseries to support fisheries health and the wellbeing of fishing communities.

COASTAL PROTECTION

Mangroves mitigate the impacts of storms for coastal erosion, property damage, and more.

Seagrasses are one of the most widespread coastal habitats on the planet that provide a range of environmental, economic and social benefits

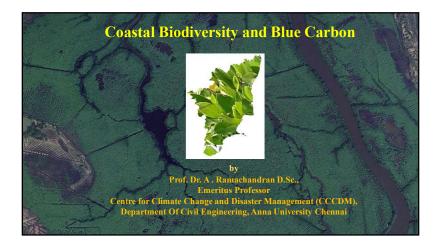
Carbon is sequestered and stored as seagrass biomass and through the trapping of organic particles derived from adjacent ecosystems

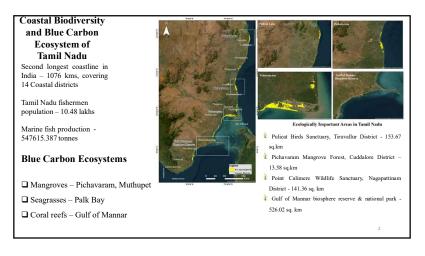
Opportunities from Mangrove protection, restoration projects

purchase of carbon credits from forest conservation (REDD+) or reforestation (AR – Afforestation/Reforestation) are internationally recognized solutions to neutralize emissions that are harder to subtract. About \$1.3 trillion in capital would be deployed in the Net Zero 2050 scenario, mostly for afforestation.

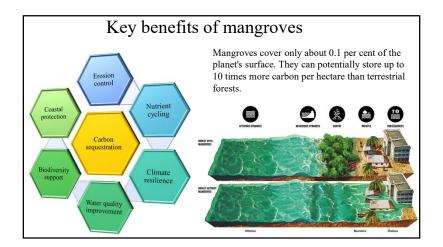
WAY FORWARD.....

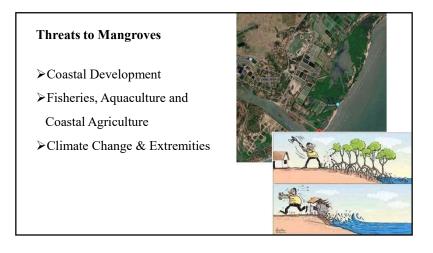
Enhanced resilience of coastal and marine ecosystems

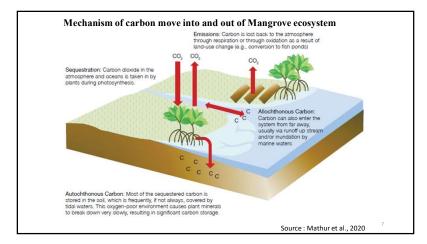

- Vulnerability assessment of the coast to inform planning of ecosystem and community-based adaptation interventions
- Community-based conservation and restoration of coastal ecosystems for increasing ecosystem resilience

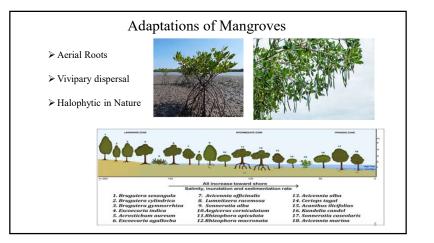

Climate-adaptive livelihoods for enhanced resilience of vulnerable coastal communities

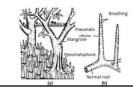
Integrating ecosystem-centric approaches to climate change adaptation into public and private sector policies, plans and budgets.

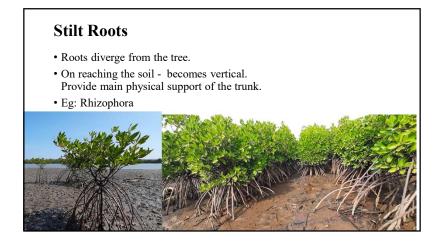




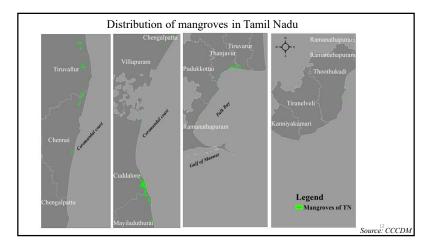

Introduction

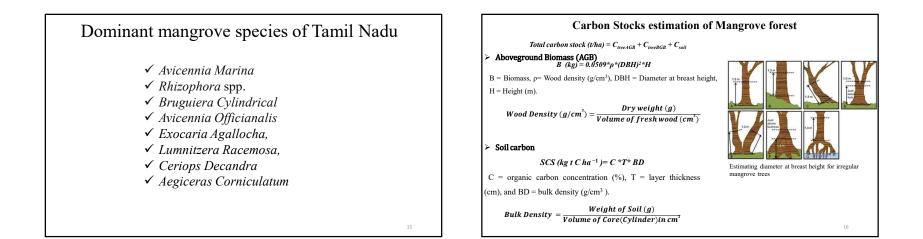

- Mangroves are tropical plants that are adapted to loose, wet soils, salt water and being periodically submerged by tides.
- Mangroves are flowering plants which can tolerate salinity and show peculiar ecological adaptations.

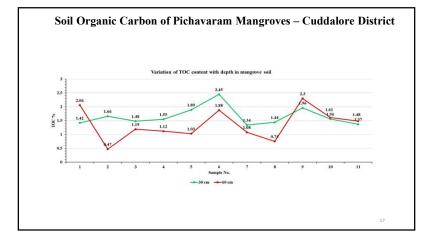




Pneumatophores


- In certain species, shallow horizontal roots radiate outwards.
- Vertical structures known as Pneumatophores emerge as lateral branches – from horizontal roots.
- Eg. Avicennia and Sonneratia





S.No	District	Mangrove Area (ha)
1	Tanjavur	1949
2	Thiruvarur	1759
3	Cuddalore	1165
4	Mayiladuthurai	689
5	Ramanathapuram	689
6	Thoothukudi	613
7	Pudukottai	397
8	Thiruvallur	364
9	Nagapattinam	236
10	Chennai	167
11	Villupuram	142
12	Chengalpattu	11
	TOTAL	8181

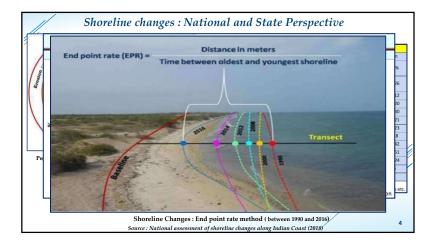
No	Species	Family	Local Name		
1	Acanthus ilicifolius	Acanthaceae	ஆற்றுமுள்ளி Arru-mulli		
2	Avicennia alba	Avicenniaceae	-		
3	Avicennia marina	Avicenniaceae	கண்ணா Kanna		
4	Avicennia officinalis	Avicenniaceae	வெண்கண்டல் Venkantal		
5	Lumnitzera racemosa	Combretaceae	தீப்பரத்தை Tīpparathai)		
6	Excoecaria agallocha	Euphorbiaceae	தில்லை Tillai		
7	Xylocarpus granatum	Meliaceae	சொன்முந்திரி Conmuntiri		
8	Aegiceras corniculatum	Mrysinaceae	நரிக்கண்டல் Narikandal		
9	Bruguiera cylindrica	Rhizophoraceae	காக்கண் Kaakandal		
10	Bruguiera gymnorrhiza	Rhizophoraceae	சிகப்பு காகந்தன் Sigappu kaakandan		
11	Ceriops decandra	Rhizophoraceae	-		
12	Ceriops tagal	Rhizophoraceae	பன்றிக்குத்தி Panri-k-kutti		
13	Kandelia candel	Rhizophoraceae	பூக்கண்டல் Pu-k-kantal		
14	Rhizophora annamalayana	Rhizophoraceae	-		
15	Rhizophora apiculata	Rhizophoraceae	சிறுகண்டல் Cirugandal		
16	Rhizophora mucronata	Rhizophoraceae	கண்டல் Kantal		
17	Sonneratia apetala	Sonneratiaceae	மரம மரம் Marama maram		
18	Heritiera littoralis	Sterculiaceae	சொன்முந்திரி Conmuntiri		

Species	DBH (cm)	Height (m)	wood density (cm-3)	g Biomass Tons	
Avicennia marina	32	6	0.64	20.0	
Avicennia officinalis	9	4	0.63	1.0	
Bruguiera cylindrica	3	3 4 0.73		0.1	
Ceriops decandra	8	5	0.73	1.2	
Excoecaria agallocha	18	4	0.43	2.8	
Lumnitzera racemosa	10	3	0.83	1.3	
Rhizophora annamalayana	25	15	0.85	40.6	
Rhizophora apiculata	15	10	0.88	10.1	
Rhizophora mucronata	15	10	0.85	9.7	
			Average	0.1 1.2 2.8 1.3 40.6 10.1 9.7	
B ($d= Biomass, \rho= Wood density (g/cr$	kg) = 0.0509*p m ³), DBH = Dia	. ,		Height (cm).	
Biomass (t C/ha) Soil (Carbon (t	C/ha) Ratio	Ratio (Biomass : SOC)	
				1:1.06	

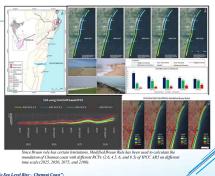
Sample ID	SOC (%)	BD (g/cm ³)	Carbon Stock (tC / ha)	Sample ID	SOC (%)	BD (g/cm ³)	Carbon Stock (tC / ha)
ID ID		(g/cm)	(iC/na)	S1-60	2.06	1.26	78
S1-30	1.42	1.30	55	S2-60	0.47	1.24	17
S2-30	1.66	1.27	63	S3-60	1.19	1.18	42
S3-30	1.48	1.24	55	S4-60	1.12	1.32	44
S4-30	1.55	1.33	62	S4-60	1.03	1.36	42
S4-30	1.89	1.34	76	\$5-60	1.88	1.25	71
S5-30	2.45	1.22	90	S6-60	1.08	1.30	42
S6-30	1.34	1.29	52	\$7-60	0.75	1.38	31
S7-30	1.44	1.30	56	S8-60	2.30	1.38	84
S8-30	1.96	1.17	69				
S9-30	1.56	1.25	59	S9-60	1.61	1.23	59
S10-30	1.37	1.24	51	S10-60	1.48	1.29	57
Mean	1.65	1.27	63	Mean	1.36	1.28	52
Min	1.34	1.17	51	Min	0.47	1.18	17
Max	2.45	1.34	90	Max	2.30	1.38	84
			Soil carbo SCS (tC /		iyer was determ	ined as:	
			C = Orgai	(%),			

Conclusion

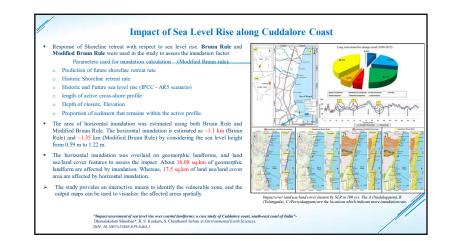
- Change in climate, Sea Level Rise, and climate extremities are all virtual threats to the existing Mangrove Ecosystem
- In-situ conservation and restoration of degraded mangroves are highly warranted

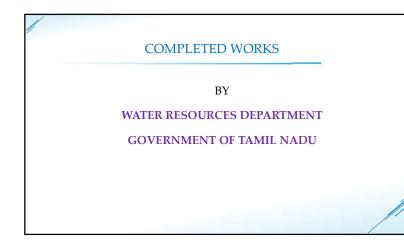


23-03-2024



SI.No											
			Major/Minor Ports								
1	1 Cheni		Chennai port	Coa	stal length covere	ed with	artificial structu	res along Tan	nilnadu co		
2	2 Thiru		lur Ennore port		. Coastal length Coastal length Coastal						
3	3 Thiru 4 Thooti 5 Puduo		llur Kattupalli Port			Coastal	with artificial	with artificial	length with		
				SI. No		Length	structures (Seawall/Groins/	structures (Ports/Fishing	artificial structures		
5			y Puducherry Port				Jetty)	Harbour/FLC)	2.4 million (2009/7958		
6 Puducherry			Karaikal Port			(in km)	(in km)	(In km)	(In %)		
Fishing F	Iarbours a	long Tamilna	du and Puducherry coa	+ 1	Kanyakumari	69	29	4	48		
1 Ioning 1	ing Harbours along Talilinauu		-	2	Tirunelveli	52	7	1	15		
SI No	Distric	t name	Fishing Harbours	3	Thoothukudi	121	5	17	18		
		syakumari	Thengapattanam Colachel	4	Ramanathapuram	272	14	1	6		
1	Kanya		Muttom	5	Pudukottai	47	1	an inte	3		
			ChinnaMuttom	6	Thanjavur	52	0.5	0.5	2		
			Thoothukudi	7	Nagapattinam	126	10	4	11		
2	Thoot	indik dar									
2	Thoot	25/17/22	Mookalyur	8	Cuddalore	43	5	1	10		
3	Ramanal	hapuram	Rameshwaram	8		43 35	5	1	10		
		hapuram	Rameshwaram Mallipattinam		Cuddalore						
3	Ramanal	hapuram	Rameshwaram	9	Cuddalore Villupuram	35	4		11		
3	Ramanal	hapuram	Rameshwaram Mallipattinam Nagapattinam Pazhayar Poompuhar	9 10	Cuddalore Villupuram Kancheepuram	35 84	4	3	11 9		
3	Ramanal	hapuram javur	Rameshwaram Mallipattinam Nagapattinam Pazhayar	9 10 11	Cuddalore Villupuram Kancheepuram Chennai	35 84 25	4 7 0.5	4.5	11 9 20		




Impact of Sea Level Rise along Chennai Coast

- The total length of Chennai coast is 21.48km in which 6 km of the coast is covered with Chennai Port and Royapuram fishing harbor including protective structures to about 2.3km long.
- Using different time frames and scenarios for projected SLR gives a source information for coastal policy planning and decision makers to take SLR adaption.
- Since Bruun rule is not a full pledged rule, the modified Bruun rule has compared to demarcate the coastal disaster. But it acts as a pre-alarm for the future crisis.
- 36.7% of the coast was seen with eroding condition. Overall long term analysis trend suggest that more than 60% of the region falls in stable to low accretion.
- Projected SLR for Chennai, range from 7.1cm to 36.87cm for RCP 2.6; 7.37 cm to 49.84cm for RCP 4.5; 7.16 cm to 51.75 cm for RCP 6; 7.38 cm to 77.88 cm for RCP 8.5.
- The area of horizontal inundation is estimated as ~1.6km (Bruun rule) and ~1.1 km (Modified Bruun rule). So this makes a solid state of evidence for calculation of inundation of seawater. Hence the resultant gives a brief admittance to prevent from the future disseter aimed in the coast.

"Assessment on Shoreline Retreat in Response To Sea Level Rise- Chennai Coast"-Dhanalakshmi Silamban*, R. S. Kankara- Special Issue #89 of the Journal of Coastal Re

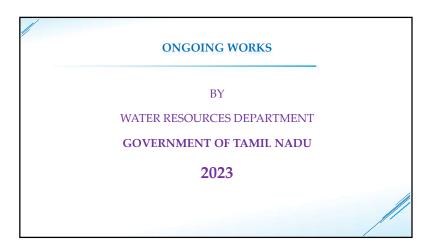
Construction of Series of 10 Nos. of Groynes from Ennore to Ernavoor Kuppam LS.19/000 to 15/200KM along the Coastal Area in Madhavaram Taluk of Thiruvallur District

Scope of Work:

To prevent Shore erosion and protect the Fishermen Villages of Ennorekuppam, Nettukkuppam and Thalankuppam.

Benefits Attained:

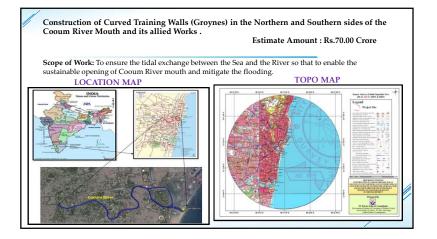
The Fishermen Villages of Ennorekuppam, Nettukkuppam and Thalankuppam for a length of 1.50 Km was affected by severe shore erosion, by construction of 10 numbers of groynes the erosion was prevented and lives and livelihood of the local Fishermen was safeguarded.

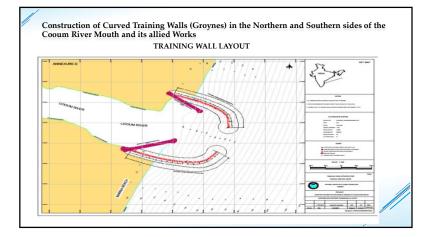


Scope of Work:

To prevent the Fishermen Villages of Ennore Periyakuppam, Ennore Chinnakuppam and Ernavoorkuppam from Sea Erosion.

Benefits Attained:


The Fishermen Villages of Ennore Periyakuppam, Ennore Chinnakuppam and Ernavoorkuppam for a length of 1.45 Km had been protected from Severe Sea Erosion, which protects the lives and livelihood of the local Fishermen people.


Construction of Series of 9 Nos. of Groynes from Ennore to Ernavoor Kuppam LS.19/000 to 15/200KM (Reach-II) along the Coastal Area in Madhavaram Taluk of Thiruvallur District Estimate Amount = Rs.38.39 Crore

G.O. (Ms.) No. 285 / PW(W1) Dept. / Dated: 30.08.2018 - NABARD Assistance

ACTIVITIES PROPOSED

1. Construction of Curved Training Walls

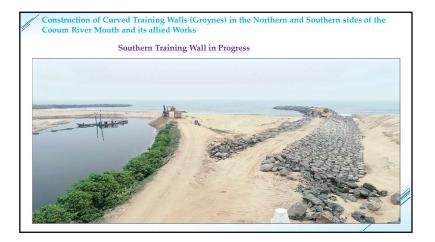
- The proposed Northern Training wall has a total length of 265m, in which 155m extends into sea from 0.00m CD to (-)3.50m CD.
- The proposed Southern Training wall has a total length of 310m, in which 165m extends into sea from 0.00m CD to (-)3.50m CD.
- The Northern and Southern Training Wall layouts were made such that they intersect each other at 140° and clear Toe-Toe spacing of 63m at the bottom and 122m at the top to facilitate flushing and high

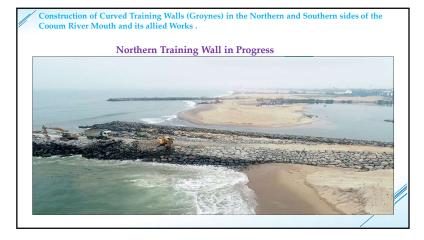
Contd... ¹⁶

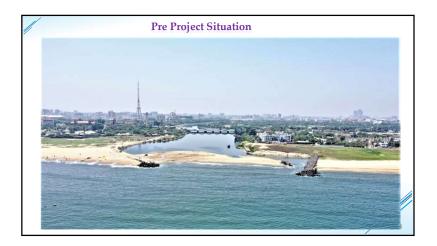
ACTIVITIES PROPOSED.,

2. Dredging and Disposal

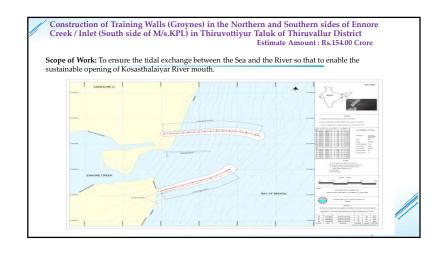
- > The Cooum River Mouth, North side and South side of Curved Training Walls are to be dredged to (-)2.00m with respect to CD.
- > The Capital dredging is estimated to be 305000m³ based on field surveys conducted. The dredged material of about 305000m³ will be disposed off in following locations:
 a) Near Cooum River Mouth, Triplicane Village in Mylapore Taluk of Chennai District
 b) Srinivasapuram area in Triplicane Village of Mylapore Taluk in Chennai District
 c) Northern side of Royapuram Fishing Harbour area in Thiruvottiyur Taluk of Chennai District


17

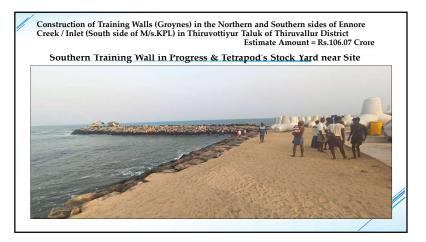

d) Akkarai Village in Sholinganallur Taluk of Chennai District

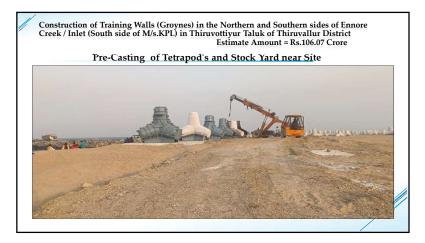


26

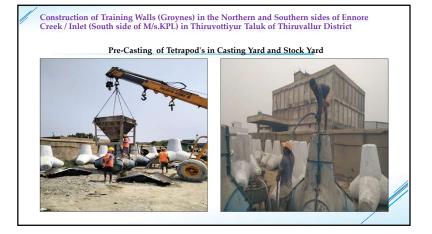


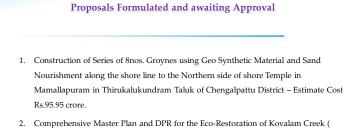

IMPACTS DUE TO PROJECT IMPLEMENTATION


- Sand deposition at the Cooum River Mouth would be reduced from 1,75,000m³ to 8,000m³ annually (i.e., will be only about 4.57%).
- Improved tidal exchange / flushing would enhance the aquatic eco-system inside the Cooum river which traverses through '*Heart of Chennai City*'.
- It would help in establishment of Flora and Fauna by way of natural cycle.
- This would help in effective discharge of Flood waters into sea during peak floods without inundating the inhabited areas of Chennai City adjacent to Cooum River.

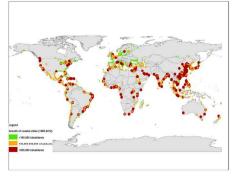

BENEFITS OF THE PROJECT

- The proposed project is envisaged to reduce the quantity of maintenance dredging/siltation and will ensure fresh water flushing during North-East monsoon.
- The Sustainable Opening of River mouth will ensure proper tidal exchange between Sea and River which will subsequently enhance high fish production thereby ensuring large number of fishes to fishing community, resulting in increased income generation.
- > Will have the potential to enhance the Tourist Attraction.
- ➤ Reduction in water borne diseases by River Restoration.
- > The project will provide direct and indirect employment to the local communities.
- The project thus will certainly aid in providing clean and healthy environment to the local citizens and thus will fulfill the Article 48A of Indian Constitution wherein it was envisaged that 'The State shall endeavor to protect and improve the environment and to safeguard the forests and wild life of the country' 27





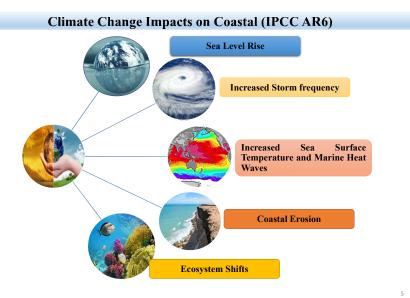
34

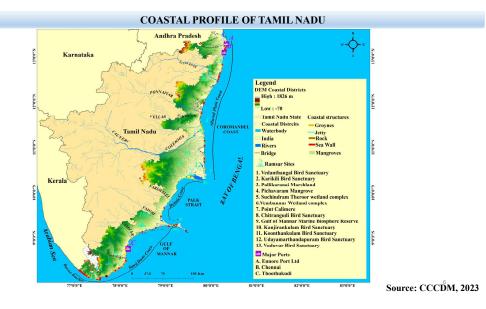

 Comprehensive Master Plan and DPR for the Eco-Restoration of Kovalam Creek (Muttukadu) for CRRT. The Project Cost is Rs.171.03 Crores. vide CRRT Lr.No.Nil dated 06-02-2023.

Why Focus on Coastal Areas?

- Nearly half of the global population resides in coastal areas.
- 2/3rd of the world's cities are in coastal areas.
- Goods and services provided by marine coastal ecosystems are worth US \$ 13 trillion per annum, which equals to half of the annual global GDP. (Source: UNEP)

Coastal cities

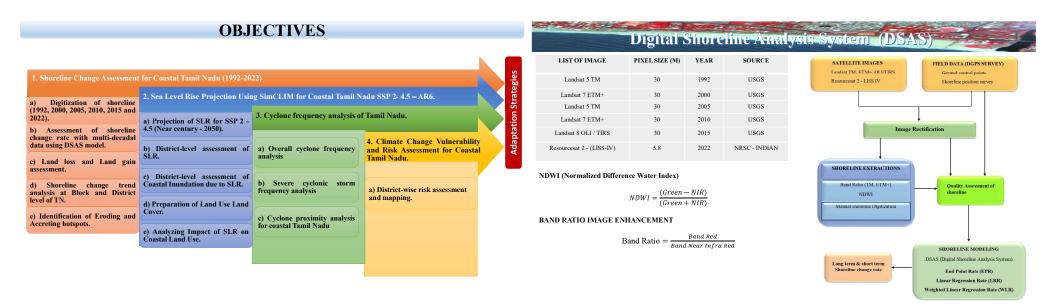

Coastal cities have experienced tremendous growth in recent decades, especially in Africa and Asia.


In 2016, 44 % of the Global Population Living in Coastal Cities.


The population of low-lying coastal cities increased from about 360 million to about 500 million from 1990 to 2015.

A studies shows that in 2020, 197–347 million people living in coastal areas less than 2 m above sea level, of which 59% in tropical Asia and 10% in tropical Africa (Hooijer and Vernimmen, 2021).

By 2050, two-thirds of the world's population is expected to live in cities and by then an estimated 800 million people will live in more than 570 coastal cities that are vulnerable to a 0.5 meter rise in sea level (WEF, 2019).



Number of tourists arrival in No's Mahabalipuram, Kanyakumari

Macroscopic algae grows in TN-434 Species - Red, Brown, Green

Coastal Vulnerability and Risk Assessment

Shoreline Proxies used for shoreline Extraction

- A. High Water Line
- B. Rip rap structures in case there is no sandy shore
- C. Debris brought by the waves
- D. Vegetative line
- E. Cliff base or top

Uncertainty in shoreline Measurement

 Positional Uncertainties Seasonal Error E_s Tidal Fluctuation E_{td}

2) Measurement Uncertainties Digitizing error \mathbf{E}_{d} Pixel error \mathbf{E}_{p} Rectification error \mathbf{E}_{r}

 $Et = \pm \sqrt{E_s^2 + E_{td}^2 + E_d^2 + E_P^2 + E_r^2}$

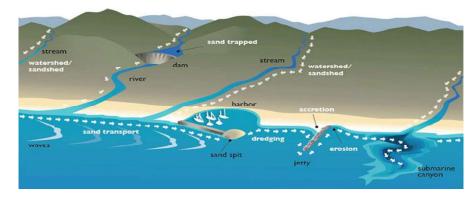
Erosion – Stable - Accretion Status of Tamil Nadu Coast (1992 – 2022)

		0 11 11			Co	ast Length in K	ím		
SI.No	Districts	Coast Length in Km	High Erosion	Moderate Erosion	Low Erosion	Stable	Low Accretion	Moderate Accretion	High Accretion
1	Tiruvallur	34.52	6.87	2.16	8.25	7.79	3.74	0.67	5.04
2	Chennai	39.51	0.00	2.12	9.71	19.46	7.72	0.41	0.09
3	Chengalpattu	74.58	0.00	1.64	42.21	20.02	9.69	1.02	0.00
4	Villupuram	33.69	0.00	0.46	12.87	15.56	4.79	0.00	0.00
5	Cuddalore	41.50	1.82	4.69	5.80	5.42	16.21	6.30	1.26
6	Mayiladuthurai	49.77	3.69	5.49	19.90	11.07	8.73	0.89	0.00
7	Nagapattinam	81.90	1.75	4.26	19.97	11.38	32.31	7.79	4.43
8	Tiruvarur	22.44	0.00	0.45	2.18	7.19	7.41	2.27	2.94
9	Tanjavur	43.27	0.00	0.85	7.26	15.56	17.22	1.40	0.98
10	Pudukkottai	43.55	0.28	0.05	14.55	21.38	7.13	0.16	0.00
11	Ramanathapuram	275.71	2.28	4.34	96.18	131.06	32.37	3.26	6.22
12	Thuthookudi	118.88	1.98	4.48	21.63	28.70	41.52	12.02	8.54
13	Tirunelveli	53.10	0.00	0.00	6.04	21.88	19.63	1.97	3.58
14	Kanyakumari	71.28	0.04	0.44	38.48	22.41	7.58	0.96	1.37
	Total	983.69	18.72	31.44	305.02	338.89	216.05	39.11	34.45

Category	Vulnerable Districts
High Erosion	Tiruvallur, Mayiladuthurai, Ramanathapuram, Thuthookudi, Cuddalore and Nagapattinam
Moderate Erosion	Mayiladuthurai, Cuddalore, Thuthookudi, Ramanathapuram and Nagapattinam

And a second sec

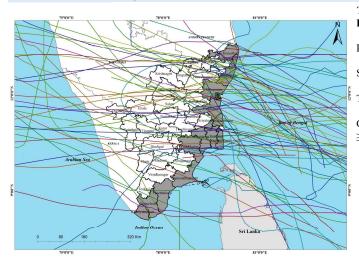
Shoreline Change Assessmen


iten and and an	High Erosion
15-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-	Moderate Erosion Low Erosion
22% 983.69 km 31%	Stable
	Low Accretion
34%	Moderate Accretion High Accretion
Stable 345	a linga Accircular

nt	Classification	Rate (m/year)	Colour schemes
	High Erosion	< -5.0	
rosion ate	Moderate Erosion	-5.0 to -3	
n n rosion	Low Erosion	-3.0 to -0.5	
105108	Stable	-0.5 to 0.5	
ccretion	Low Accretion	0.5 to 3.0	
ate ion	Moderate Accretion	3.0 to 5.0	
ccretion	High Accretion	>5.0	

S.No	District Name	Average Erosion rate (m/yr)	Average Accretion rate (m/yr)
1	Tiruvallur	3.66	6.6
2	Chennai	1.25	0.89
3	Chengalpattu	0.93	0.95
4	Villupuram	0.79	0.62
5	Cuddalore	2.86	2.3
6	Mayiladuthurai	2.71	1.13
7	Nagapattinam	2.03	2.72
8	Tiruvarur	1.33	2.51
9	Tanjavur	0.83	1.23
10	Pudukkottai	0.7	0.82
11	Ramanathapuram	1.2	1.9
12	Thuthookudi	2.01	3.02
13	Tirunelveli	0.51	1.68
14	Kanyakumari	1.03	1.59

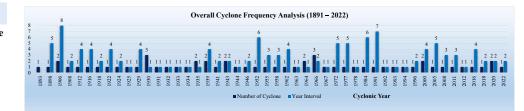
Erosion – Stable - Accretion Status of Tamil Nadu Coast (1992 – 2022)


Complexity of Sediment transport pathways

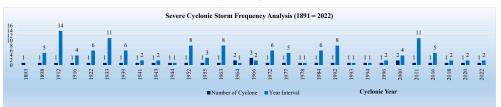
Reality: 1. Sand blocked by dams and mining leading to coastal erosion. 2. man-made interventions in coastal zone

Field verification of shoreline assessment- Tiruvallur District

Cyclone Tracks hit Tamil Nadu - 1891 - 2022

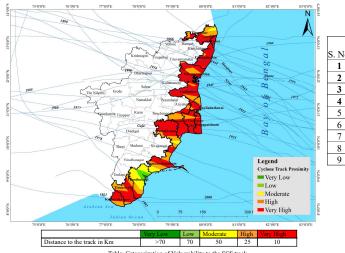

Tracks of Cyclones made Landfall in Tamil Nadu

Period : 1891-2022


Source: IMD, IBTrACS

Total number of cyclones: 59

Cyclone category: Cyclonic Storm \geq 63 km/h.


> A total of 59 Cyclones whose wind speed \geq 63 km/h made landfall in Tamil Nadu. > After 2016 the event is occurring at the frequency of two-year intervals.

A total of 33 Severe Cyclonic Storms whose wind speed \geq 94 km/h made landfall in Tamil Nadu.

> After 2016 the event is occurring at the frequency of two-year intervals.

SEVERE CYCLONIC STROM TRACK PROXIMITY ANALYSIS FOR COASTAL TAMIL NADU

		Number of
. N	lo Districts	SCS
1	Chengalpattu	8
2	Cuddalore	6
3	Nagapattinam	5
4	Villupuram	4
5	Chennai	3
6	Ramanathapuram	2
7	Tirunelveli	2
8	Mayiladuthurai	1
9	Tuticorin	1

Contributors to Sea Level Rise

· Sea Level Now:

LOCAL REGIONA

GLOBAL

Mean Sea Level

Sea Level Rise Natural Variability

Subsidence + Tides, Waves, Winds

Small Safety Gap

The contributions from the components at the global,

regional, and local scales.

 $\Delta \mathbf{RSL} = \Delta \mathbf{SLG} + \Delta \mathbf{SLRM} + \Delta \mathbf{SLRG} + \Delta \mathbf{SLVLM}$

Where,

 $\Delta RSL = Relative sea-level change,$

 Δ SLG = Global mean sea-level change,

 Δ SLRM = Regional variation in sea level from the global mean due to metero-oceanographic factors,

1.000 Δ SLRG = Regional variation in sea level due to changes in the earth's gravitational field, and

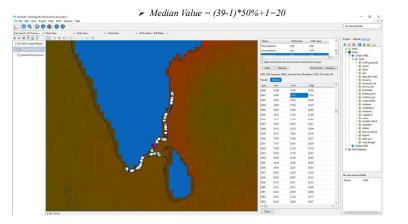
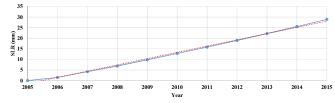

 Δ SLVLM = Change in sea level due to vertical land movement.

Table: Categorization of Vulnerability to the SCS track.

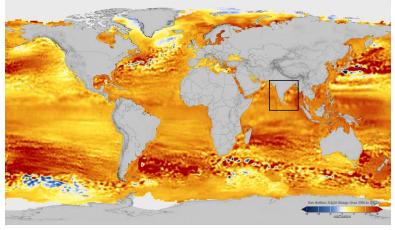
Generation of SLR Using SimCLIM

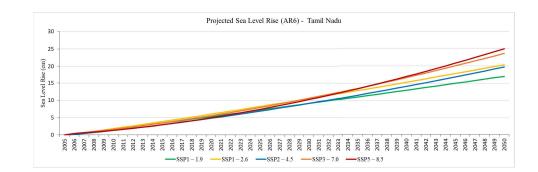
> The method used to determine the measure of central tendency is as follows:

 \succ Median Value = (n-1)*50%+1

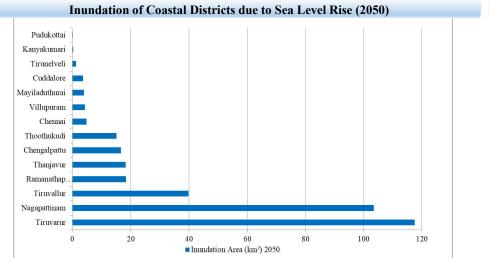

Model Validation (2005-2015) – Chennai Tide Gauge Station

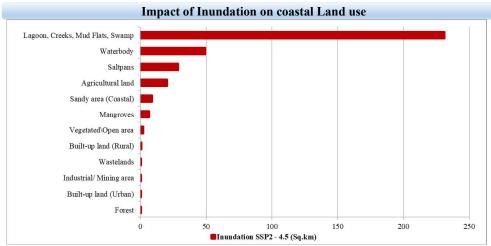
Observed MSL – Chennai Tide Gauge Station


Year	Observed MSL (mm)
2005	6996
2015	7024
SLR (mm)	28


Year	Projected SLR (mm)
2005	0
2015	29
SLR (mm)	29

OBSERVED REGIONAL SLR – (1992 - 2019)

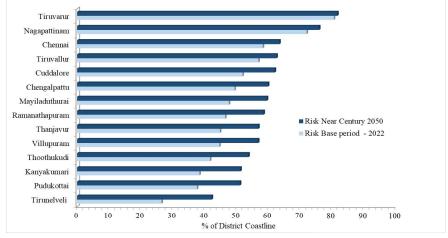



Since 1993, seas around the world have risen an average rate of **3.3 millimeters per year.**

Sea Level Rise Projection – AR6 – Tamil Nadu

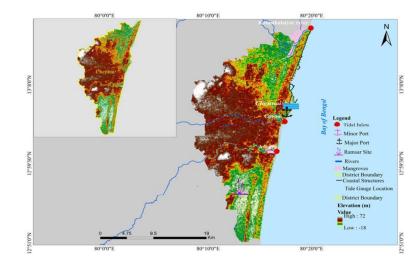
Source: Regional sea-level change between 1992 and 2019, based on data collected from the TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3 satellite altimeters. Credit: NASA

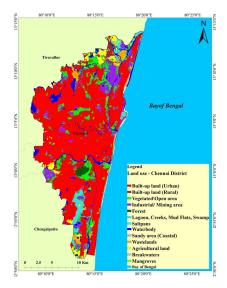
LANDUSE CLASSIFICATION


LANDUSE	Area Km ²	Area %
Agricultural land	29211	70.5
Waterbody	3773	9.1
Built-up land (Rural)	2373	5.7
Forest	1990	4.8
Wastelands	1018	2.5
Built-up land (Urban)	970	2.3
Vegetated/Open area	815	2.0
Lagoon, Creeks, Mud Flats, Swamp	619	1.5
Industrial/ Mining area	283	0.7
Saltpans	192	0.5
Sandy area (Coastal)	112	0.3
Mangroves	83	0.2
	0.9	0.0
TOTAL	41440	100
	Agricultural land Waterbody Built-up land (Rural) Forest Wastelands Built-up land (Urban) Vegetated/Open area Lagoon, Creeks, Mud Flats, Swamp Industrial/ Mining area Saltpans Sandy area (Coastal) Mangroves Breakwaters	Agricultural land29211Waterbody3773Built-up land (Rural)2373Forest1990Wastelands1018Built-up land (Urban)970Vegetated/Open area815Lagoon, Creeks, Mud Flats, Swamp619Industrial/ Mining area283Saltpans192Sandy area (Coastal)112Mangroves83Breakwaters0.9

Coastal Risk Frame work

Coastal Risk Index = Hazard*Vulnerability*Exposure


77°0'0"E 77°30'0"E 78°0'0"E 78°30'0"E 79°0'0"E 79°30'0"E 80°0'0"E 80°30'0"E



Coastal Risk Assessment of Tamil Nadu under SSP 2-4.5 Scenario - 2050

% of Coastline under High to Very High Risk

Chennai District

Chennai District

S. No.	Land use Land Cover	Area (ha)	% of Total Area
1	Built-up land (Urban)	28330	64.6
2	Built-up land (Rural)	721	1.6
3	Vegetated/Open area	4112	9.4
4	Industrial/Mining area	3673	8.4
5	Forest	368	0.8
6	Lagoons, Creeks, Mud Flats, Swamp	1293	2.9
7	Saltpans	15	0.0
8	Waterbody	2641	6.0
9	Sandy Beaches	313	0.7
10	Wastelands	628	1.4
11	Agricultural land	1566	3.6
12	Coastal structures	34	0.1
13	Mangroves	174	0.4
	Total	43868	100.0

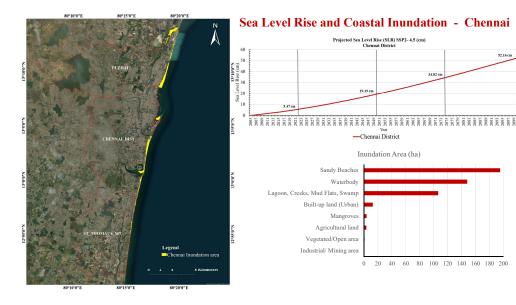
nennai District

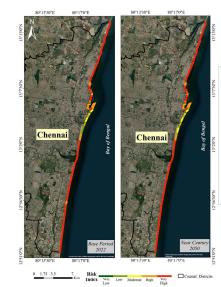
80-6-0-E	80°10'30"E	80°15'0'E	80°19'30'E
N.0.61.61	13	Contraction of the second	TERME
N.œ.L.eI			unita Fishing Harbour Chennai Port
13°20'N	Cher	inai Tuxxe IBT	Bay of Bengal
Z O Sub	ing Villages a Erosion lerate Erosion Erosion		
0 - 2.5	s Boundary		

2021 5'0"

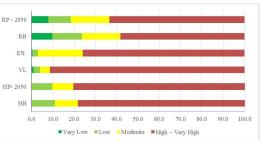
80°10'30*E

<u>тинуюн</u> 80°6'0°Е 80°10'30°Е 80°15'0°Е 80°19'30°1

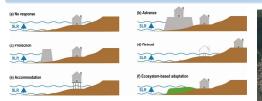

Shoreline Change - Chennai District


Block Name	Coast Length (km)	HE	ME	LE	Stable	LA	MA	НΑ
Puzhal	10.62	-	2.12	7.07	1.08	0.34	-	-
Chennai_Dist	15.68	-	-	0.47	7.46	7.26	0.41	0.09
ST.Thomas_MT	13.21	-	-	2.17	10.92	0.12	-	-
Total	39.51	-	2.12	9.71	19.46	7.72	0.41	0.09

High Accretion


District Name	Block Name	Village Name	Length in Km
Chennai	Puzhal	Thiruvottiyur (Firka)	7.59

	Average Erosion rate (m/year)	Average Accretion rate (m/year)	Land loss (ha)	Land gain (ha)
Chenn				
ai	1.3	0.9	58	55



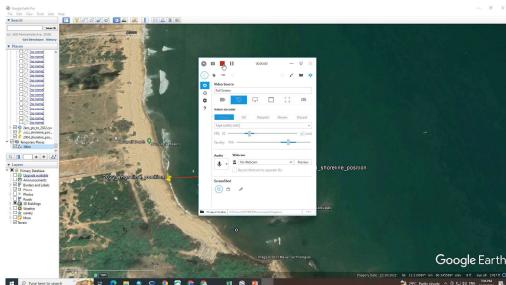
Coastal Risk Assessment - Chennai

ADAPTATION AND MITIGATION STRATEGIES

ADAPTATION TO SEA LEVEL RISE

HARD STRUCTURES

BEACH NOURISHMENT

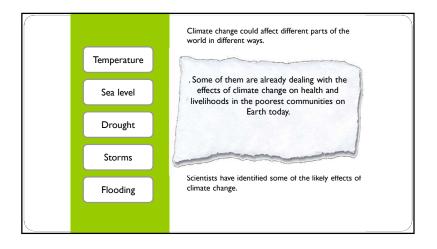

LIVING SHORELINES

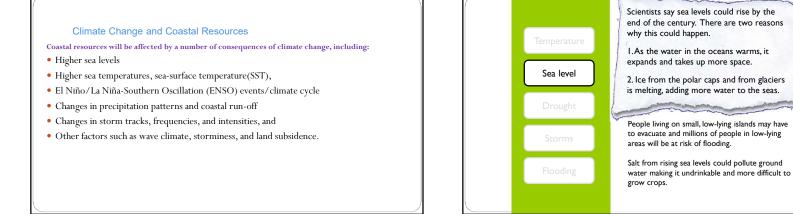
Protection of Shoreline by promoting the growth of Marine Eco-system

ADAPTATION TO CLIMATE CHANGE INDUCED IMPACTS COASTAL BUFFER VEGETATION - ECO-FRIENDLY SOLUTION

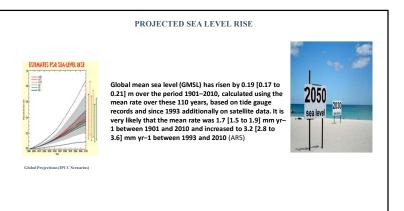
Impact of Extreme Climate Change on Coastal rural communities in Tamil Nadu

1-12-2023 Prof. K. Palanivelu Centre for Climate Change and Disaster Management Anna University, Chennai-600025 E mail : kpvelu@gmail.com kpvelu@gnnauniv.edu

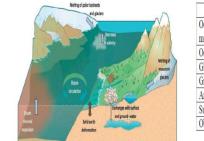



Introduction

- Warming of climate system is undeniable and recent anthropogenic emissions of greenhouse gases are highest in the history
- Multi-model averages show that the temperature increase may range from 1.1 to 6.4°C and sea level rise up to 1 m by end of this century
- In recent decades, changes in climate have caused impacts on natural and human systems on all continents and across the oceans
- Coupled with low socio-economic conditions of the area, the impacts of climatic events like cyclones, storm surges, and tidal flooding eventually negatively affect coastal rural communities with regard to their livelihood, income opportunities, education, and food security
- Rural areas will be particularly affected as it impacts on water resources, agriculture, overall biodiversity and ecosystems like forests and coastal zones, as well as human health


IPCC-AR5

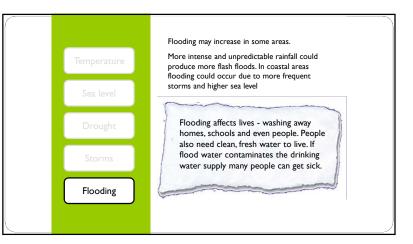
- Coastal systems are particularly sensitive to three key drivers related to climate change: sea level, ocean temperature, and ocean acidity
- Coastal systems and low-lying areas will increasingly experience adverse impacts such as submergence, coastal flooding, and coastal erosion due to relative sea level rise (RSLR; very high confidence)
- It is very likely that global mean sea level rose at a mean rate of 1.7 [1.5 to 1.9] mm yr-1 between 1900 and 2010 and at a rate 3.2 [2.8 to 3.6] mm yr-1 from 1993 to 2010
- Acidification and warming of coastal waters will continue with significant negative consequences for coastal ecosystems

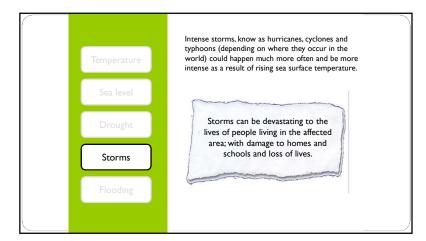

Emission scenario Representative Concentration Pathway (RCP)	Representative	2100 CO ₂ concentration	Mean sea l	evel rise (m)	Emission	М	ean sea level rise	(m)
	(ppm)	2046-2065	2100	scenario	2200	2300	2500	
Low	2.6	421	0.24 [0.17-0.32]	0.44 [0.28-0.61]	Low	0.35-0.72	0.41-0.85	0.50-1.02
Medium low	4.5	538	0.26 [0.19-0.33]	0.53 [0.36-0.71]	Medium	0.26-1.09	0.27-1.51	0.18-2.3
Medium high	6.0	670	0.25 [0.18-0.32]	0.55 [0.38-0.73]	18-1			
High	8.5	936	0.29 [0.22-0.38]	0.74 [0.52-0.98]	High	0.58-2.03	0.92-3.59	1.51-6.63

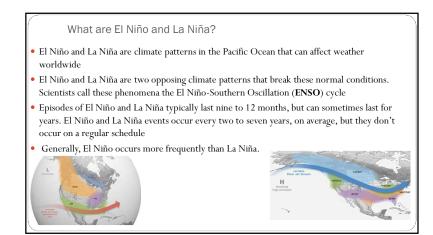
Causes for Sea Level Rise

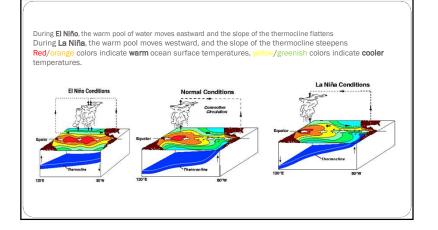
- Climate change associated with sea level rise is one of the major environmental concerns of today
- Increasing concentration of carbon-di-oxide and other gases are expected to warm the several degrees in the next century by a mechanism known as the greenhouse effect
- Such a warming could cause sea level to rise two to five feet by expanding ocean water(Thermal expansion), melting mountains, glaciers and perhaps eventually causing polar glaciers to melt and slide into the ocean

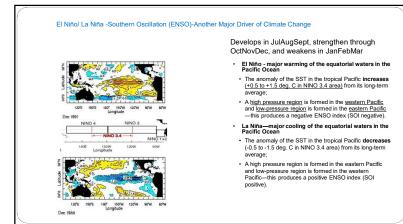
Contribution to SLR




Contribution	Amount of rise
Ocean thermal expansion for the upper 700 m	0.5 ±0.1 mm/year
Ocean thermal expansion below 700 m	0.2 ± 0.1 mm/year
Glaciers and ice caps	0.5 ± 0.2 mm/year
Greenland Ice Sheet	0.1 ± 0.1 mm/year
Antarctic Ice Sheet	0.2 ± 0.4 mm/year
Sum of contributions	1.5 ± 0.4 mm/year
Observed sea-level rise	1.6+0.2 mm/year


Impacts of SLR


- Sea level rise will affect the coastline in India in a variety of ways, including inundation, flood and storm damage associated with severe cyclones and surges, erosion, saltwater intrusion (loss of fresh water supplies) and wetland loss(important to fisheries)
- Operating difficulties in ports and harbours and adverse effects on access to the coast and ocean; coastal flooding
- Coastal and fishing populations and countries dependent on fisheries are particularly vulnerable to climate change

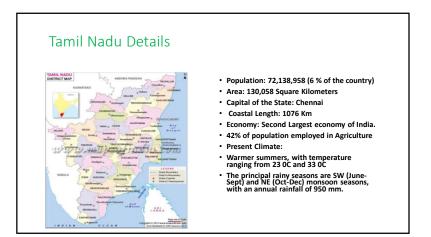

UNEP June 5 th (WED)2014- 'Raise your voice, not the sea level,'

El Niño/ La Niña Years (1950-2012)

- The number of El Niño/ La Niña years has considerably increased in the recent years. Scientists argue that this is the result of climate variability and change (instability)
- and...
- This trend is likely to continue in future as we are in a stage of changing climate...
- So, more frequent extreme events are likely in the future.
- El Nino, the warming of waters in the Pacific Ocean near South America, is generally associated with weakening monsoon winds and dry weather in India. La Nina, the opposite of El Nino, typically brings good rainfall during the monsoon season

El Niño	Year	La Niña	Year
1	^^1951	1	1950-51
2	1953	2	*1954-56
3	**1957-58	3	**1964-65
4	*1963-64	4	1967-68
5	*1965-66	5	*1970-72
6	*1968-70	6	**1973-76
7	**1972-73	7	^1984-85
8	1976-77	8	^^1988-89
9	1977-78	9	1995-96
10	**1982-83	10	^^1998-2000
11	*1986-88	11	2007-08
12	1990-92		
13	1993		
14	1994-95		
15	**1997-98		
16	2000-01		
17	2004-05		
18	2006-07		

Biophysical Impacts Climate driver (trend) Main physical/ecosystem effects on coastal ecosystems · Increased CO₂ concentration, decreases ocean acidification • (CO₂₎ concentration • Surface sea temperature (SST) (I, R) Increased stratification/changes circulation; reduced incidence of (I: increasing, R:Regional variability) • Sea level (I, R) • Storm intensity (I, R) • Storm frequency (?, R); Storm track (?, R) and flooding • Wave climate • Altered wave conditions, including swell; altered patterns of


Run-off (R)

- negatively impacting coral reefs and other pH
- sea ice at higher latitudes; increased coral bleaching and mortality; pole-ward species migration; increased algal blooms.
- Inundation, flood and storm damage; erosion; saltwater intrusion; rising water tables/impeded drainage; wetland loss (and change)
- · Increased extreme water levels and wave heights; increased episodic erosion, storm damage, risk of flooding, etc
- · Altered surges and storm waves, and hence risk of storm damage
- erosion and accretion; re-orientation of beach plan form
- · Altered flood risk in coastal lowlands; altered water quality/salinity; altered fluvial sediment supply; altered circulation and nutrient supply.

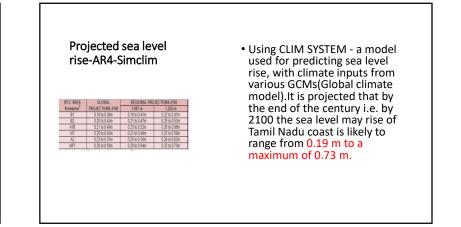
GHGs Extreme events Biophys effects A	Fishnies SES Ecosystems opystem processes justic environment stock & production Ecological effects Fishnig activities Yield Effort Livelihoods	lity of Loss/gain of navigation routes Flooding of fishing	Socio-economic impacts Influx of migrant fishers Increasing tel costs Reduced health clue to disease Relative profitability of other sectors Resources available for management Reduced security Funds for adaptation
---------------------------------------	--	--	--

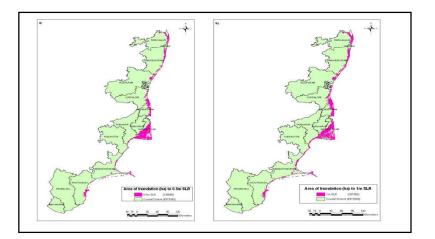
Type of changes	Physical changes	Processes	Potential impacts on fisheries				
	Increased CO ₂ and ocean acidification	Effects on calciferous animals e.g. molluscs, crustaceans, corals, echinoderms and some phytoplankton	Potentially reduced production for calciferous marine resources and ecologically related species and declines in yields				
Physical environment (indirect ecological)		Warm-water species replacing cold-water species	Shifts in distribution of plankton, invertebrates, fishes and birds towards				
	- Warming	Plankton species moving to higher latitudes	the North or South poles, reduced species diversity in tropical waters				
	upper layers of - the ocean	Timing of phytoplankton blooms changing	Potential mismatch between prey (plankton) and predator (fish populations				
		Changing zooplankton composition	and reduced production and biodiversity and increased variability in yield				
	Sea level rise	Loss of coastal fish breeding and nursery habitats e.g. mangroves, coral reefs	Reduced production and yield of coastal and related fisheries				
		Changes in sex ratios	Altered timing and reduced productivity				
	Higher water	Altered time of spawning	across marine and fresh water systems				
	temperatures	Altered time of migrations					
Fish stocks	-	Altered time of peak abundance					
(indirect ecological)	Changes in	Increased invasive species, diseases and algal blooms	Reduced productivity of target species in marine and fresh water systems				
	ocean currents	Changes in fish recruitment success	Abundance of juvenile fish affected leading to reduced productivity in marine and fresh water				

Ecosystems (indirect	Reduced water flows and increased droughts	Changes in lake water levels Changes in dry water flows in rivers	Reduced productivity of lake fisheries Reduced productivity of river fisheries		
(indirect ecological)	Increased frequency of	Changes in timing and latitude of upwelling	Changes in distribution of pelagic fisheries		
	ENSO events	Coral bleaching and die-off	Reduced productivity coral-reef fisheries		
		Coastal profile changes, loss of harbours, homes.	Increased vulnerability of coastal communities and infrastructure to storm surges and sea level		
Disturbance of coastal infrastructure and fishing operations (direct)	Sea level rise	Increased exposure of coastal areas to storm damage	Costs of adaptation lead to reduced profitability, risk of storm damage increases costs of insurance and/or rebuilding		
	Increased frequency of storms	More days at sea lost to bad weather, risks of accidents increased	Increased risks associated with fishing, making it less viable livelihood options for the poor		
		Aquaculture installations (coastal ponds, sea cages) more likely to be damaged or destroyed	Reduced profitability of larger-scale enterprises, insurance premiums rise		
	Changing levels of precipitation	Where rainfall decreases, reduced opportunities for farming, fishing and	Reduced diversity of rural livelihoods; greater risks in agriculture; greater reliance on non-farm income.		
Inland fishing		aquaculture as part of rural livelihood systems	Displacement of populations into coastal areas leading to influx of new fishers		
operations and livelihoods (indirect socio-	More droughts or floods	Damage to productive assets (fish ponds, weirs, rice fields, etc.) and homes			
economic)	Less predictable rain/dry seasons	Decreased ability to plan livelihood activities – e.g. farming and fishing seasonality	Increasing vulnerability of riparian and floodplain households and communities		

			Tamil Nadu Coastal Districts
.No.	Coastal District	Coastal Length (Km)	
1	Chennai	19.0	
2	Thiruvallur	27.9	 The Tamil Nadu coastline is
3	Villupuram	40.7	about 1,076 km, with thirteen
4	Pudukottai	42.8	coastal districts, and it forms a
5	Thanjavur	45.1	fairly large contiguous and
6	Thiruvarur	47.2	narrow coastal strip dotted wit
7	Tirunelveli	48.9	fragile ecological features
8	Cuddalore	57.5	
9	Kanyakumari	71.5	-
10	Kanchipuram	87.2	-
11	Tuticorin	163.5	-
12	Nagapattinam	187.9	
13	Ramanathapuram	236.8	

1076.0

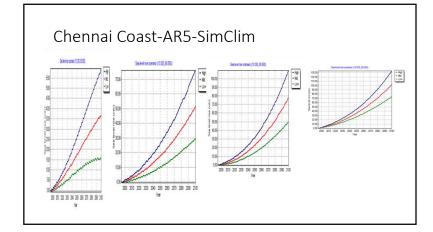

Total

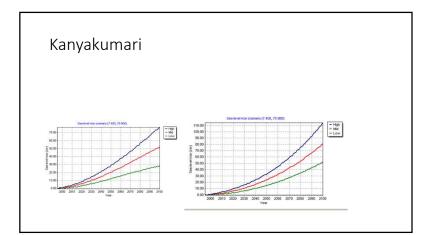

A CASE STUDY-TAMIL NADU COAST & SEA LEVEL RISE

Sea Level Rise Projections: IPCC AR4-B1 Scenario (Minimum), A1FI Scenario (Maximum) for Long 80050' E; Lat 11050' N of Tamil Nadu Coast

1 2040 2050 2081 2070 2080 3040

- About 10-20 cm rise occurred during the last century-Globally
- SimCLIM, a computer model system for examining the effects of SLR variability and change over time and space for the state of Tamil Nadu.




Area of inundation to predicted impact of 0.5 and 1m SLR at 13 co	astal
districts of Tamil Nadu	

	Coastal Districts	Total area in hectares (ha)	Area of inundation in hectares (ha) to 0.5m SLR	Area of inundation in hectares (ha) to 1m SLR
01.	Thiruvallur	355000	1170	3810
02.	Chennai	17400	30	93
03.	Kancheepuram	430700	2399	6124
04.	Villupuram	719000	574	2620
05.	Cuddalore	370600	1675	4355
06.	Nagapattinam	241700	35617	50879
07.	Thiruvarur	237700	17389	24015
08.	Thanjavur	347600	3397	5475
09.	Pudukottai	465100	188	510
10.	Ramanathapuram	417500	2865	4462
11.	Tuticorin	462100	826	3267
12.	Thirunelveli	681000	0	4
13.	Kanyakumari	168400	11	28
	Total	4913800	66685	105642

Area Inundated

- 0.5 m SLR 66,685 acres of land will be inundated
- 1 m SLR 105642 acres will be inundated
- Nagapattinam, ,Thiruvarur and Thanjavur coastal districts ,high area will be inundated

RCP 4.5 -2100

- Low-31 cm
- Medium 50
- High- 81

Ramanathapuram 30 –low, Kanyakumari- High33 Kanyakumari low 73, high Cuddalore 88 cm

		-			101			indum d			v			
		Yer	2025			2050			2075			2100		
Projection of climate change-indu								_	_		_	_	_	_
for the coasts of Tamil Nadu and Puducherry, India using SimCLIM: a first step towards planning adaptation policies		Inge	Low	Madium	Цģ	law	Matium	Π¢	Low	Medure	lăși	Læ	Medan	H
. Ramachandran ¹ - A. Saloon Khan ¹ - K. Pakadosha ¹ - R	Presserve estatests ¹ -	Distica												
K. Jayani M ¹		Threekke	94,94	07.38	1265	14,97	22.42	31.55	30.31	41.48	78.36	51,85	77.88	1343
anned II Am 2015 /Ratine 142au 2017 /Acaput 10 bits 2017		Chennal	0494	07.38	1245	14,97	22.42	12.12	30.31	45.48	78.36	51,85	77.88	1343
D lipitger Science-Harken Mode II V 2017 Abstract Climate change-induced ana-level rise (SLR) is	time bound SLR adoptation policies to somerve mastal	Kandequarm	04.77	07.51	1148	1445	7214	3497	29.26	46.52	71.06	50.05	79.33	121.3
one of the generation challingues of the low-lying unastal regions of the work! Adaptation to the rising ana level	or if the work! Adaptation to the risking ion force indexed the most comparation supports measure to in plotted duritings. However, this machine is simi- plement that's investigation is the start powership projection in Adaptation - Policy durities. The intervention "Devictions - Adaptation - Policy durities." Device iteration - Start CLM - Policitation - Adaptation - Policy durities - Device iteration - Start CLM - Policitation - Adaptation - Policy durities - Device iteration - Start CLM - Policitation - Adaptation - Policy durities - Device iteration - Start CLM - Policitation - Adaptation - Policy durities - Device iteration - Start CLM - Policitation - Adaptation - Policy durities - Device - Devic	Viliganen	04.77	07.51	11.48	1445	22.84	3499	29.25	46.32	71.06	50.05	79.33	121
are this glabul challenge. However, this requires a prog- main approach that's leavily suitable. The first step would		Cuddelons	0474	07.54	1299	1434	22.92	3961	29.02	45.49	1145	4945	79.62	137
te projecting SLR locally under different scenarios and at Sifferent time slices. SLR projections for specific coastal nation, particularly for developing countries are relident	Introduction	Nappatham	04.74	07.40	1226	1434	72.51	37.38	79 00	45.65	75.92	4945	78.17	130
evailable and this study part forth a research question as a what will be the SLR projections teader different con- ration for the choices and/y area, i.e. the Tanal Nada and	Olivhal ullimate change is the present challenge that han anity	Tanyong	94.74	07.40	12.26	1434	22.51	3738	7942	4545	75.92	相話	78.17	130
nation for the observe study units, i.e. this Tarial Nulls and Padacherry creat of Endia. SimCLIM elimate modeling reflavate has been used to project SLR for the Tarial	will face in first contary (Due et al. 2018). Accelerated global first Lovel Rise (R.R) is a major languistic saturnar of ultimate sharars, which will have impacts on all contail	Thejwar	0474	07.40	1226	1434	22.51	37.38	29.02	45.65	75.92	4945	78.17	130
Sala and Puderbory must in India for Europeicsh of iner elice namely 2025, 2030, 2025 and 2100 for all four- ICP memotypes, ICP 34, ICP 4.5, ICP 40 and ICP	regimes (Mahalli et al. 2007). SLR is seen as a major threat to low-lying countil arms workbuilds, over since the later of	Putukkoni	04.81	07.40	1233	14.57	72.51	3760	29.50	45.65	76.36	50.46	78.17	130
3 of IPCC ARS. It has been estimated that the projected transport mediate usage of SLR for the chosen study area.	human-induced girlud warning energed in the 1980s (Barb and Thus 1984; Millinan et al. 1989; Warkk et al. 1999; Nichollent al. 2011a) Henrerse the effects of climate charac-	Remanushapuram	04.51	07.27	11.56	13.64	22.09	35.22	27.60	4430	71.53	4721	76.72	172
may range from 7.12 one to 34.94 one for RCP 2.4; 39 one to 50.01 one for RCP 4.5; 7.18 one to 51.91 eres to RCP 6.0; 7.40 one to 78.15 one for RCP 8.3 for the	(R.R) on the counts are not unifierte but vary considerably from region to region and over a marge of tropporal scale (Nacholis et al. 2007). An understanding of how SLR will	Tation	04.55	07.10	11.57	13,75	21.59	3527	27.84	43.79	71.63	47.62	74,98	122
ince effects it was 2025 to 2100. It is expected that the numbers glowed it can this study will be of a personial	affect coastal regions and how society will draw a address it in ways feat we mutainable for the long-cots is a singler	Tänundveli	04.53	07.00	11.71	13.71	21.26	15.69	27.74	411	72.48	47.45	73.82	134
curve of information for userial policy-planners and incluion-makers to take the first step sewards planning	shallonge to built minimize and policy planeous (Williams and Occieves 2009). The two potential supposes considered meeting the shal-	Kanyakuman	0494	07.67	10.90	1495	2134	33.22	3827	4734	67.44	51.79	K1.07	115
A Select Dec	importe-SLR are mitigation and adaptation. The hole operate in very different scalar indigation, by mecanity, is a global-	Padachery	9474	07.51	1192	1434	22.84	KM	79102	46.32	73.79	4945	79.33	126
aniandda.ccHynellon	made activity link of to climate policy, while adaptation is a basel-to-mational activity linked to counted management policy Olichelinest al. 201 link, "Adaptation," in considered one of the	Kamakai	0474	07.54	11.70	1434	22,92	15.66	29.02	45.49	72.41	4965	79.62	124
Canto for Clineae Chengo and Adoptetion Romarch, Anna University, Clubage of Registeraring (Mercul Campon, Sandar Pand Road, Owener, Sector 1 Houte (2002), Judie	most appropriate response strangers to address the shallongers of SLR at load level, particularly is concerned maker counted	Avenue	04.74	07.40	11.98	14.36	72.50	36.57	25.05	45.63	7417	49.74	7815	177

	LAND AREA (IN ACRES)					
	District	Up to 1 metre	Up to 2 metres	Up to 3 metres	Up to 5 metres	Up to 10 metres
1	Thiruvallur	13,640	27,721	46,133	84,849	1,61,163
2	Chennai	1,241	2,073	3,139	6,335	21,655
3	Kanchipuram	21,482	34,112	49,164	78,818	1,52,629
4	Villupuram	5,518	11,853	19,010	29,317	47,248
5	Cuddalore	11,882	21,328	35,685	76,150	1,92,230
6	Nagapattinam	1,45,869	1,97,519	2,57,300	3,79,831	5,69,567
7	Thiruvarur	35,570	50,433	65,701	99,809	2,17,353
8	Thanjavur	12,867	17,321	21,926	32,602	61,996
9	Pudukottai	1,419	3,320	7,066	17,160	43,700
10	Ramanathapuram	12,086	22,326	35,314	83,684	2,88,935
11	Tuticorin	7,874	14,154	24,674	57,434	1,55,922
2	Tirunelveli	73	87	140	656	7,368
3	Kanyakumari	10.4	177	337	985	6,680
	TOTAL	2,69,625	4,02,424	5,65,588	9,47,629	19,26,446

Area of wetland under various elevations

Mangroves	District	Up to 1 metre	Up to 2 metres	Up to 3 metres	Up to 5 metres	Up to 10 metres
Pichavaram	Cuddalore	551.0	892.0	1,163.0	1,367.0	1,415.C
Vedaraniyam	Nagapattinam	3,970.0	4,376.0	4,537.0	4,654.0	4,662.0
Gulf of Mannar	Rameshwaram	115.0	220.0	378.0	674.0	870.0
Total (Hectares)		4,636.0	5,488.0	6,078.0	6,695.0	6,947.0

NIOT

- In India sea level is being monitored with tide gauges at 18 locations along the coast as a part of Global Sea Level Observing System (GLOSS)
- The rate of relative sea level change along the Indian coast has been found to vary from -3.36 mm/yr to +5.16 mm/yr (positive and negative values indicate rise and fall of sea level respectively). The sea level is showing rising trend at Chennai (0.33 mm/yr),
- Fall in sea level is recorded at Nagapatnam (-1.95 mm/yr), and Tuticorin (-2.70 mm/yr). Compared to the global sea level rise rate of ~3 mm/yr, the above data imply probable subsidence of land at several places

Risk

- Five coastal districts, Nagapattinam, Thiruvarur, Thanjavur, Pudukottai, and Ramanathapuram, the area along the coast that is below 10m above current mean sea level is estimated to be at risk from a 1 metre SLR, because of the very high storm surges that already affect them
- the remaining eight coastal districts, the coastal area that lies below 5m elevation relative to current mean sea level is estimated to be at risk from a 1 metre SLR

Responding

• Mitigation- refers to efforts to cut or prevent the emission of greenhouse gases - limiting the magnitude of future warming. It may also encompass attempts to remove greenhouse gases from the atmosphere.

Globally by all countries- low carbon society avoiding the unmanageable

- Adaptation-refers to the actions taken to manage the unavoidable impacts of climate change
- Involves adjusting life to actual or expected future climate with the goal of reducing vulnerability

Regional- climate resilient society MANAGING THE UNAVOIDABLE

INDIA'S ACTION PLAN TO REDUCE CO2 EMISSIONS L Reduce emission intensity by 33 to 35 per cent by 2030 compared to 2005 Install 175 GW of solar, wind and levels biomass electricity by 2022, scale it up in following years HOW: Aggressively pursue hydropower Introduce new, more efficient, cleaner technologies in thermal development power generation Achieve target of 63 GW of installed Reduce emissions from transport nuclear power capacity sector by2032 Promote energy efficiency, mainly 3. Create additional carbon sink of 2.5 in industry, transport, buildings, to 3 billion tonnes of carbon dioxide appliances equivalent by 2030 through Develop climate resilient additional forest and tree cover infrastructure Pursue Zero Effect, Zero Defect HOW: policy under Make in India Full implementation of Green India programme Mission, other afforestation programmes 2. Produce 40 per cent of electricity from non-fossil fuel based energy Develop 140,000 km long tree line on both sides of national highways resourcesby2030

Water

- Water is essential to human life and to the health of the environment
- Water has two dimensions that are closely linked quantity and quality
- A healthy environment is one in which the water quality supports a rich and varied community of organisms and protects public health

Management

• Catchment Area storage & protection, connecting municipal systems to watershed, drainage channels-Hard, soft-building permits

Water Stress and Water Insecurity

- Spreading water scarcity due to CC is contributing to food insecurity and heightened competitions for water both within states and between districts
- Increase in temperature will in turn lead to reducing water availability, hydropower potential, and would change the seasonal flow of rivers
- A warmer climate will accelerate the hydrologic cycle, altering rainfall, magnitude and timing
- Available research suggests a significant future increase in heavy rainfall events in many regions, while in some regions the mean rainfall is projected to decrease
- Flood potential could increase-River and Coastal areas damage

Water

- Increasing floods poses challenges to society, physical infrastructure and water quality.
- Rising temperatures will further affect the physical, chemical and biological properties of fresh water lakes and rivers, with predominantly adverse impacts on many individual fresh water species, community composition and water quality
- In coastal areas, sea level rise will exacerbate water resource constraints due to increased salinisation of groundwater supplies
- Phenomenal increase in the growth of groundwater abstraction structures
- The falling groundwater levels in various parts of the country have threatened the sustainability of the groundwater resources
- Water security in terms of quantity(water stressed state) and quality (TDS,F⁻)pose problems

Some Solutions ...

Rain Water Harvesting

•Existing water bodies(Maintenance like periodical desilting, deepening, etc.,)

- Hydrological projects Construction of new Dams
- · Artificial Recharge to Ground Water
- Desalination-RO
- · Interlinking of rivers-within states
- · Waste water reuse

Dec.2015- Chennai

Summing up

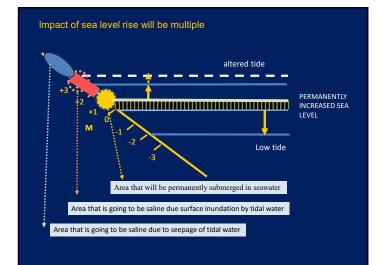
- Climate change is the greatest challenge to sustainable development
- Efforts so far in the direction of meeting the challenges of climate change have been sporadic and incoherent
- Sustainable development based on addressing the needs of the poor and optimal harnessing of scarce natural resources of water, land, and biodiversity will have to be sustained through more cooperative way
- Sector wise vulnerability assessment has to be done with proper adaptation strategies to avoid the climate Risk
- This will save our planet from the brink of climate disasters

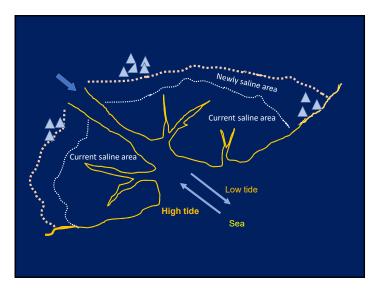
CONCLUSION

SLR is an Indicator of Climate Change, a global threat

*Greatest challenge to low lying coastal regions, may to lead to **refugee**

- Mitigation of GHG is important- global policy
- *Adaptation –local to National policy- most appropriate for coastal
- SLR projection Good source of information for local Adaptation policy planning
- Fund- NABARD- Global Green Climate Fund, National Adaptation Fund


Strategies to enhance the adaptive capacity of coastal communities to climate change

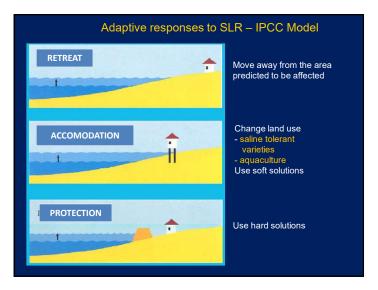

Capacity Building Programme Centre for Climate Change and Disaster Management Anna University

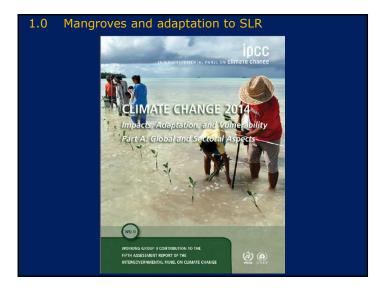
> Dr V Selvam Executive Director, SPEED Trust 1st December 2023

- 1.0 Sea level rise
- 2.0 Increasing number and intensity of cyclone and associated storm surges

Cumulative effect of SLR and Cyclone:

Increased salinisation of land and water resources in the coastal areas


Reduced agriculture productivity


Loss of employment

Reduced availability of drinking water

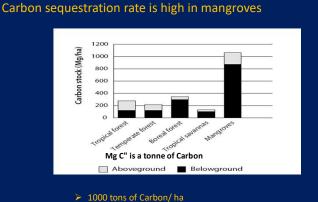
Loss of lives, property and infrastructure

Strategies to	enhance adaptive capacity of the community
Strategy 1:	Restoring and conserving mangrove UNFCCC – critical intervention; blue solution
Strategy 2:	Conserving and establishing non-mangrove bioshield National Disaster Management
Strategy 3:	Promoting integrated mangrove fishery farming system UNFCC - critical intervention; efficient blue solution
Strategy 4:	Promoting cultivation of saline-tolerant crops – traditional and improved
Strategy 5:	Identifying and promoting new sources of saline-tolerant crops from halophytes and promote biosaline agriculture

Vertical growth of the mangrove platform Is equal to the predicted SLR

Mangrove forest floor grows Trapping sediment

Trapping mangrove litter


Width of the mangroves to function as an effective barrier

Empirical studies indicate that

- mangroves of about 250 m in width can function as an effective barrier against wind speed of around 120 km per hour
- mangroves of about 1 km in width can be effective when wind speed ranges between 170 to 200 km per hour

Deflects the cyclonic winds – well proven during the Odisha Super Cyclone 1999

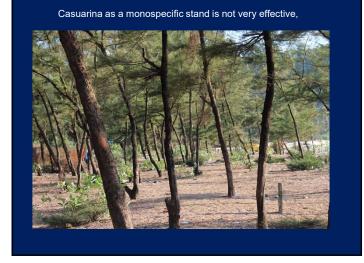
- aboveground C stock = 115 ± 7 Mg C/ha and
 mean belowground C stock = 741 ± 30 Mg C/ha

Quanti		ds provided by Mangrove sts (ha ^{.1} yr ^{.1})
Variable	Mean	
Fish, Shellfish, molluscs (Kg)*	539	A A A A A A A A A A A A A A A A A A A
Shrimp (Kg)	146	
Timber (Kg)	5976	The second s
Fuel wood, charcoal (Kg)	5140	
Carbon (Mg)**	5.27	

Restoration of mangroves of India: process started in 1992

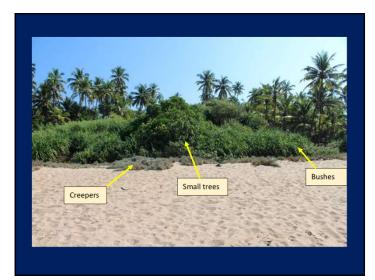
Identified real reason for mangrove degradation – past management practices – not by the use of resources by community

Developed a restoration technique with the participation of the Community and FD – Piloted in TN, AP, Orissa and WB


Evaluated and included in the National Action Plan; Restored area Replicated in all the mangroves of India by the State Forest Departments

State of Forest Report of India - 2015					
	Mangrove Forest cover of India				
	1987	404600 ha			
	2019	497500 ha			
	increased by	92000 ha			
	Science-based and co	mmunity-centred approac			
	MISTHI Programme				

Another 54000 ha is proposed in the next 5 years.



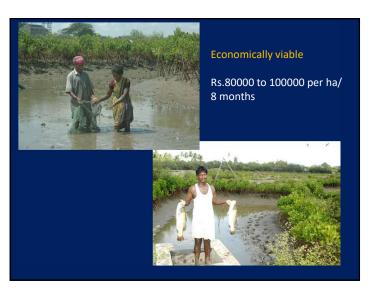
Establishing multispecies shelter is more effective Component 3 Multispecies shelter belt Component 2 Small dure Beach

Component 1: Beach should be left undisturbed for the continuity of the ecological process and as a habitat for turtles and shore crabs

Component 2: is a small sand dune, which can be stabilised by planting creepers

Component 4 Multispecies bioshield: first three rows of casuarina plantation, behind which native trees can be planted

Strategy 3: Low external input Integrated Mangrove Fishery Farming system


Tidal fed; no energy; About 28.8 ton of $\rm CO_2\, emission$ is avoided per ha of IMFFS farm per year*

Developed and demonstrated with the support of GIZ and Department of Environment. Government of Tamil Nadu

GIZ has identified it as one of the Blue Solutions UNFCCC – Adaptation Funds; Project in Andhra Pradesh Received Earthcare Award in 2015 – JSW and Times of India

Strategy 4 Promotion of Cultivation of Saline Tolerant Crops Cultivatoin of traditional saline tolerant paddy varieties Pokkali – Kerala; Kagga - Karnataka

New saline tolerant varieties developed from pokkali through conventional breeding

3 ton per ha

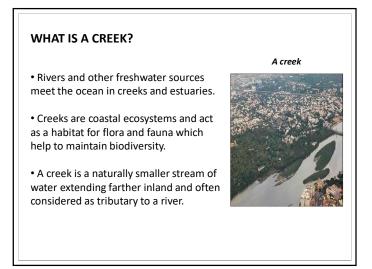
Strategy 5: Halophytes as a new source crops for saline affected soil

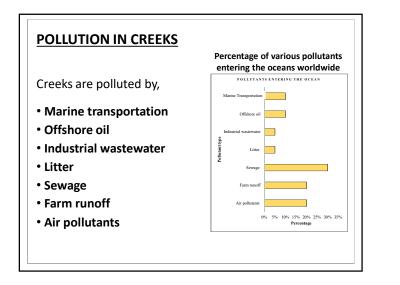
- Halophytes are salt-loving plants growing only in high saline areas
- Tolerate high concentration of sodium salt; demand high sodium chloride for survival and reproduction
- Will not survive in fresh water condition for long time
- Multiple-origin they differ widely in salinity tolerance
- Can be grown as a cash crop by irrigating with seawater

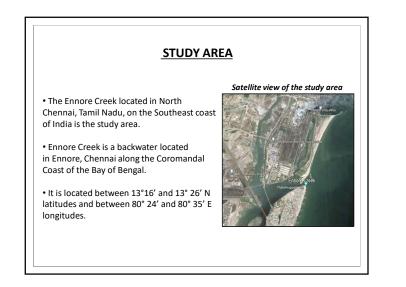
edible oil, vegetables, flowers, medicinal plants, fodder crops

- Halophytes as saline water irrigated crops
 - limited field trials indicate high yield potential of many halophytes
 - 17 ton of dry biomass of Salicornia per ha in seawater salinity
 - Technological innovation is needed to domesticate halophytes as crops Biosaline agriculture

CAPACITY BUILDING PROGRAMME CLIMATE CHANGE VULNERABILITY AND RISK ASSESSMENT FOR COASTAL DISTRICTS OF TAMILNADU


Presentation on

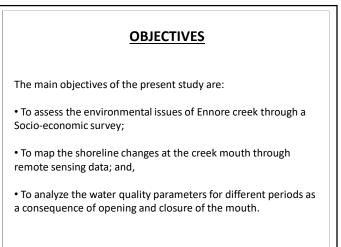

Coastal Morphodynamics and Environmental Variables of Ennore Creek: An Integrated Approach

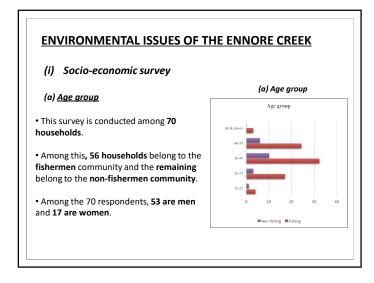


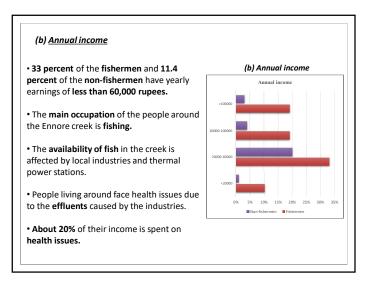
By Prof. Dr. M. Krishnaveni Director, Institute for Ocean Management, Anna University

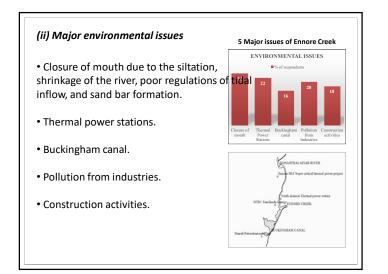
> Date: 30.11.2023 Venue: CCCDM Conference Hall

ENNORE CREEK

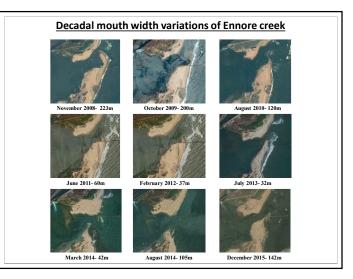

• Ennore creek mouth is changing frequently due to natural phenomena like cyclones, floods, tidal fluctuations, etc. and anthropogenic activities.

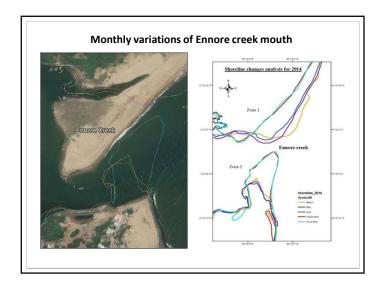

• During the Northeast monsoon, the entire coast is affected by the Cyclones.


• The construction of jetties and breakwaters at Ennore Port has resulted in sand accretion.


• The thermal power plant utilizes the **creek water as a coolant** and thus elevating the temperature of the creek and near-shore water **by 5^o to 9^o C** above the ambient seawater temperature.

• The study is focused mainly on a **detailed analysis of shoreline changes and** water quality analysis in the mouth area using remote sensing.


CREEK MOUTH ANALYSIS THROUGH REMOTE SENSING


(i) Decadal analysis of the creek width changes

- Analysis carried out from 2008 to 2015
- Satellite images collected using **Google Earth Pro** November 2008, October 2009, August 2010, June 2011, February 2012, July 2013, March 2014, August 2014, and December 2015
- Technology used Remote sensing and GIS

Interpretation

- Mouth width changes range between 32m and 223m from 2008 to 2015.
- The littoral drift, current, wave and wind play a major role in shoreline changes.
- The frequent closure of Ennore Creek mouth has resulted in insufficient tidal inflow and thus reduced the supply of water required for the thermal power stations.

(ii) Monthly variations of Ennore creek mouth

- Decadal shoreline change analysis from 2008 to 2015
- Shoreline changes from 32m to 223m
- Detailed analysis Year 2014
- Technology used Remote sensing and GIS
- The creek mouth is divided into two zones northern part is represented by Zone 1 and the southern part is represented as Zone 2 to find erosion and accretion.

Interpretation

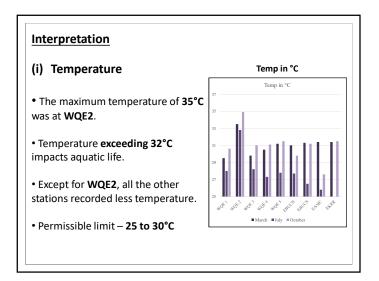
- Northern part, Zone 1 (March, May, July) Accretion
- Southern part, Zone 2 (March, May, July) Erosion
- Northern part, Zone 1 (September, November) Erosion
- Southern part, Zone 2 (September, November) Accretion
- Accretion results in closure of mouth and erosion results in flooding.

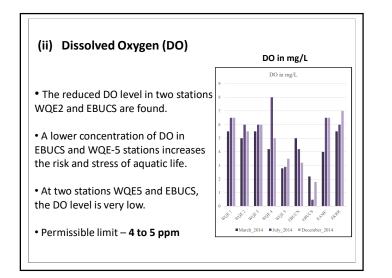
SI.NO	PARAMETERS		March 2014		July 2014		December 2014		RECOMMENDED VALUE (CPCB std)
			min	max	min	max	min	max	VALUE (CPUB STO
1.	Р	Temperature°C	29	34	26	32	28	35	25-30°C
2.	н	Salinity (ppt)	2	34	3	30	2	32	0.5-30 ppt
3.	Y	pН	7.8	8.5	7.2	8.8	7.3	8.6	6.6-8.5
4.	S I C A L	TSS (mg/L)	6	81	4	69	2	61	10-20 mg/L
5.	С	DO (ppm)	2	5.5	0.5	8	1.5	7	4-5 ppm
6.	н	BOD (mg/L)	1	38	1.9	31	2	70	3-20 mg/L
7.	E	NH4(µmol/L)	2	149	1	130	5	145	0.2 -2.0 mg/L
8.	M I C A L	TN (μmol/L)	25	310	40	320	30	500	-

Map showing the locations of WATER QUALITY ANALYSIS OF THE CREEK samples collected for water quality

• Samples collected from 9 different stations during three different seasons.

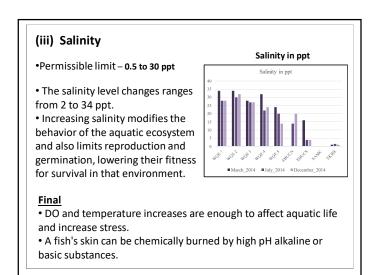
• The physical properties such as temperature, pH, salinity and Total Suspended Solids (TSS) are analyzed.


•The important chemical properties of creek water are ammonium (NH₄), DO, BOD and Nitrogen.


Techniques / Methods used

- pH and salinity WTW probes. • Temperature - Digital thermometer of 0.01°c
- accuracy.
- Dissolved oxygen Winkler's method.
- Biological oxygen demand (BOD) DO method. • The Total Suspended Solids - American Public
- Health Association method.
- Total nitrogen Spectrophotometry.

1101-1	Dur mouth region				
WQE-2	South of the railway bridge				
WQE-3	North Buckingham Canal				
WQE-4	D/S of Kosasthalaiyar river junction				
WQE-5	D/SofAmullavoyal junction				
EBUCS	South Buckingham Canal				
EBUCN	D/S of Kosasthalaiyar River junction				
EKRR	Kosasthalaiyar River				
EAMC	Amullavoyal Canal				



CONCLUSION

• Ennore Creek, a healthy aquatic habitat formerly is well known for its biodiversity but the quality of water and fish stock has reduced now.

• A socio-economic survey conducted indicates that the major environmental issues are closure of the creek mouth and changes in water quality.

• Remote sensing and GIS technology are used to analyze the shoreline changes. According to the decadal analysis of satellite images, the mouth width of Ennore Creek varies between 32m to 223m.

CONCLUSION (Contd.)

• The accretion results in the closure of the mouth and erosion results in flooding. The physicochemical properties of creek water **at 9 stations** for three different seasons are evaluated and compared with the **CPCB standard water quality parameters**.

• **Proper dredging** is recommended to keep the creek mouth open and protect the aquatic habitat.

• Extending the retention time of coolant water in thermal power plants will reduce the temperature of brackish water to safeguard aquatic life.

• It is recommended to **increase the width** of the creek mouth and its **depth** before the monsoon to ensure adequate dilution and to **maintain the essential water quality** of the creek.

3/23/2024

Impact of Climate Change on Fisheries particularly on Aquatic Food Safety

Dr. G. Jeyasekaran, Ph.D., FNAAS

Senior Consultant National Productivity Council Govt. of India, New Delhi & Former Director of Research Tamil Nadu Dr. J. Jayalalithaa Fisheries University jeyasekarang@gmail.com

What is Climate change?

Climate change has literally become a hot topic and an alarming issue worldwide.

- Climate change is defined as a long-term change in statistical properties of the climate system and is demonstrated by an unusual distribution around the recorded mean over an average period of 30 years
- Climate change encompasses variations in atmospheric carbon dioxide, changes in worldwide temperatures and precipitation, which all, in turn, influence sea levels and salinity, crop yields, soil quality, nitrogen deposition, plant diversity, and crop diseases
- Principal cause of climate change is greenhouse gas (GHG) emission, and the climatic factors influenced are temperature, relative humidity, precipitation, and UV, thus resulting in climate variability

World Scenario

Mean global warming ranges from 1.5 to 5.8°C

 Mean global precipitation is from 5 to 15%
 Significant shift in variables can induce meteorological hazards such as Extreme weather events and Natural calamities

Many extreme weather disasters (floods, heat waves, and winter storms) – Reported in Europe over the last two decades

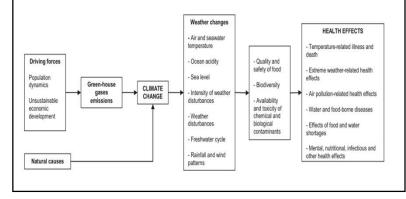
Some examples: Several floods in Italy, France, and Switzerland in 2000, the United Kingdom in 2007, and Germany and France in 2016, Heat waves in the summers of 2003, 2010, and 2018, winter storms in 2007 and 2010, extreme snowpack in the northern Alps in 2006 and 2019, wildfires in southern and eastern Europe in 2007, 2010, and 2017, and hailstorms in Germany in 1984 and 2013.

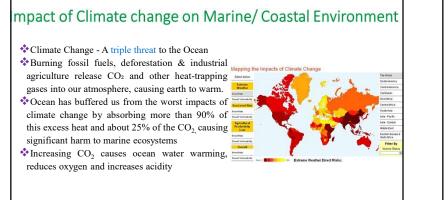


Indian Scenario

As per the report (2020) of Ministry of Earth Sciences (MoES)

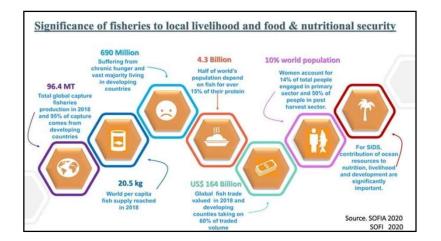
- India's average temperature has risen by around 0.7°C during 1901-2018
- Frequency of daily precipitation extremes (rainfall intensities >150 mm per day) increased by about 75% during 1950-2015
- The frequency and spatial extent of droughts over India has increased significantly during 1951-2015
- Sea-level rise in the North Indian Ocean occurred at a rate of 3.3 mm per year in the last two and half decades (1993-2017)
- Frequency of Severe Cyclonic Storms over Arabian sea has increased during the post-monsoon seasons of 1998-2018
- In 2019, India was the 7th most affected country due to climate change led extreme weather events – both in terms of the fatalities (2,267 people) as well as the economic losses (US\$ 66,182 million)
- UNICEF released the first child-focused global climate risk assessment in 2021- India ranks 26th out of 163 nations, indicating that children in India are at high risk of climate change consequences affecting their health, education, and protection





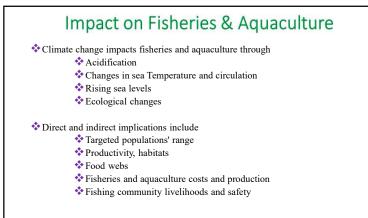
Broad Impact of Climate change Due to climate change - extreme weather events and natural calamities become more frequent and more extreme Increased release of CO₂ leads to – ٠ - rise in temperatures, ٠ - alteration in the water cycle, ٠. - more severe and more frequent extreme weather events, which include heat waves, droughts, and floods, Melting of ice caps, ocean warming and acidification, rise in sea level, increased erosion, and changes in deep ocean circulation are additional effects of warming. Climatic change - Direct impact on the ecosystem food security and indirectly on food safety and human health

Major Climate changes in Marine system


SEA LEVEL - Sea level rise is accelerating, flooding coastal communities and drowning wetland habitats.

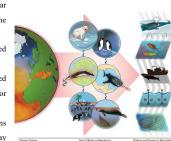
BLEACHING - Warm water coral reefs (marine biodiversity hotspots) could be last if the earth warms by CO₂

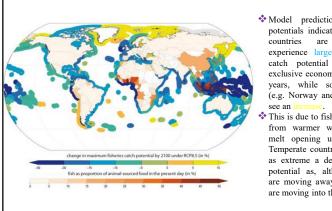
TOXIC ALGAE - Larger and more frequent blooms are making fish, birds, marine mammals and people sick


- HABITATS Lower oxygen levels are suffocating some marine animals and shrinking their habitats.
- ACIDIFICATION More acidic water harms animals that build shells, such as corals, clams, and oysters.
- FISHERIES Disruptions in fisheries affecting marine food web, local livelihoods, and global food security

Impact on Fisheries and Aquaculture

Area affected	Impact			
Production and ecology	Species composition, Production and yield, Distribution and seasonality, Disease and other disruptions, Coral bleaching and calcification			
Fishing, aquaculture and post harvest operations	Safety end security, Efficiency and costs, Infrastructure security.			
Communities and livelihoods	Loss and damages to assets, Risks to life and health, Livelihood strategies, Vulnerability and confidence, and Displacement and conflict			
Wider society and economy	Cost of migration and adoption, Social and market impacts, Water and other resources			


- Ocean warming and increased stratification
 - Change open ocean nutrient cycles from phytoplankton to marine mammals, consequently changing community composition
- * Fish feeding, migration and breeding behavior will be directly affected
- * Changes in their physical environments will indirectly affect growth, mortality and reproduction
- In addition, the species and ecosystems that fish rely on will be affected with uncertain impacts on fishery catch potential.
- Fish species will probably shift their distributions as warmer-water species and colder-water species are both expected to move polewards
- Coastal areas with coral reefs are particularly vulnerable to changes in temperature and acidity

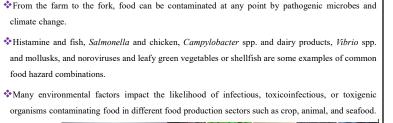

- Inland aquaculture may provide an important animal protein source in the future.
- However, it will be affected by changing temperatures, water scarcity and salinization of coastal waters.
- Inland fishery productivity will also be affected by increased water temperatures, variability in water availability, eutrophication, stratification, and toxicity of pollutants.
- In addition, reduced habitat quality and availability of dissolved oxygen will affect productivity and the nutritional value of aquatic products.

- Tropical and subtropical areas will experience more reduced ecosystem productivity than temperate and polar ecosystems, with impacts on fishery catch potential in the exclusive economic zones (EEZs) of those countries.
- Some new opportunities and environments may be created with sea-level rise.
- New habitats may open up as polar ice melts, and flooded coastal agricultural land may provide new areas for mangroves and aquaculture opportunities.
- New fisheries may become available as fish populations shift geographic distributions, and some ocean areas may experience increased productivity, which could increase the catch potential of some fisheries.

* Model predictions of catch potentials indicate that tropical countries are likely to experience large decreases in catch potential within their exclusive economic zones in 45 years, while some countries (e.g. Norway and Iceland) will

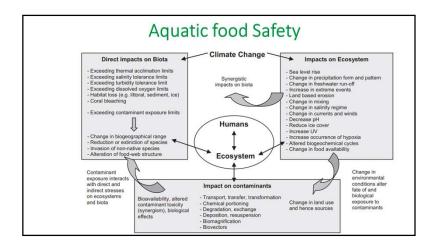
This is due to fish moving away from warmer waters and ice melt opening up new areas. Temperate countries do not see as extreme a decline in catch potential as, although species are moving away, new species are moving into those areas.

Specific Impact on Food Security Due to climate change, the major impacts on food security are * Availability * Stability * Access * Utilization * AVAILABILITY - Availability of aquatic foods will vary through changes in habitats. stocks and species distribution *STABILITY - Stability of supply will be impacted by changes in seasonality, increased variance in ecosystem productivity and increased supply variability & risks *ACCESS - Access to aquatic foods will be affected by changes in livelihoods and catching or farming opportunities ***UTILIZATION** - Utilization of aquatic products will also be impacted and, for example, some scientists and communities will need to adjust to species not traditionally consumed


Challenges to Fishing Communities

- * Relocation of resources and replacement with less commercially valuable species requires diversification of fishing operations and markets
- * In areas where production is already limited by temperature (e.g.) traditional productive areas may be reduced. Dependent communities will need to diversify their livelihoods.
- * Changes in timing of fish spawning and recruitment will need adjustments to management interventions
- * The impact of ocean acidification may be locally significant, for example in activities dependent on coral reefs.
- * Increase in frequency and severity of storms may affect infrastructure, both at sea and on shore.

Food Safety


- Climate change poses significant risks to food and feed safety, plant and animal health, and nutritional quality.
- *The Fourth Report by the United Nations International Panel on Climate Change states that rising temperatures, higher CO2 levels, altered rainfall patterns, and extreme weather events may pose risks to food safety.
- Climate change affects the occurrence, persistence, dominance, and toxicity of marine and freshwater algal blooms, bacteria, fungi, viruses, parasites, and plant and animal pathogens.
- Climate change impacts food pathogen supplies, transmission, growth, survival, and ecology. Temperature can affect pathogen reproduction, dispersion, growth, and the creation of novel infections for certain hosts. Climate change creates new threats and increases sensitivity to old ones.

	Effect of climate on environmental factors involved in the growth, survival, and pathogenicity of foodborne pathogens
Temperature	
Increase	Increased occurrence of parasites in freshwater fish and plants (33)
	Detection of new mycotoxin-producing fungal species in maize in Europe (56)
	Increase in mastitis incidence in cows (44)
	Increase in Salmonella in poultry (33)
	Increased number of Vibrio cells in seafood (50)
Decrease	Increased contamination of berries by norovirus and hepatitis A (11, 23)
Precipitation and humidity	
Increase in precipitation	Internalization of pathogenic E. coli and Salmonella in leafy green vegetables (29, 47)
	Increased contamination of seafood by fecal indicator organisms due to water runoffs (50)
	Increased risk of splash dispersal and aerosolized Salmonella infecting tomatoes due to increased frequency of short period of heavy rainfall (15)
Decrease in precipitation and humidity	Increased mycotoxin contamination by xerophilic fungi in maize at preharvest stage (56)
pH and salinity	
Decrease in pH	Ocean acidification leads to increased HABs (50)
Decrease in salinity	Increases in bioaccumulation of toxic metals in molluses (86)
Light	
Increase	Favors the growth of HABs (50)

- In the last few decades, people have been putting a lot of chemical pollutants into the world through their actions.
- These include persistent natural chemicals, like polycyclic aromatic hydrocarbons (PAHs), toxic metals and synthetic organic chemicals
- Chemical contaminants enter marine ecosystems via direct discharges from land-based sources (e.g., industrial and municipal wastes), river runoff or drainage, atmospheric deposition from local and distant sources, and ships
- Toxic metals in seafood can affect various physiological processes, including tissue damages, inability to regenerate damaged tissues, growth inhibition, damages to genetic material such as DNA, and changes in breeding and development
- The salinity of coastal and estuarine systems will experience fluctuations arising from changes to precipitation and stream flow patterns

*Bacteria, particularly Vibrio spp., are the main pathogenic organisms associated with seafood, and the occurrence, frequency, and severity are greatly affected by rises in temperature

The main effects of climatic changes associated with seafood contamination are temperature increase in the upper ocean, an accelerated water cycle, ocean acidification, increased stratification, and changes in the degree of weather disturbances and rainfall patterns

Pohoroo and Ranghoo, (2017) reported higher prevalence of Vibrio alginolyticus, Vibrio cholerae, and Vibrio parahaemolyticus, in finfish in summer compared with winter seasons.

Reega et al. (2019) reported a higher Vibrio density in oysters in summer compared with winter.

Other emerging factors that impact Vibrio-associated infections include drought conditions, dust emissions, and wind direction

- In Alaska, warmer water increased the number of V. parahaemolyticus and resulted in outbreaks with more than 400 confirmed cases in summer 2004
- Ballah et al. (2019) reported the presence of cyanotoxin-producing microalga Oscillatoria and further observed that its population density increased during the "winter-to-summer" transition month of October.
- Climate change pressures are believed to have an impact on marine planktonic systems globally, and it is projected that the frequency and severity of harmful algal bloom (HABs) may increase
- Specific climatic factors involved in HAB occurrence and prevalence are temperature, stratification, light, ocean acidification, precipitation, and wind

- The relationship between climate change and outbreaks of marine HABs is exemplified by the case of ciguatera fish poisoning in the tropical Pacific that was observed to increase during the El Nino period
- Climate change may influence the behaviour and distribution of organic chemical pollutants (OCs) in the ocean, thus causing serious environmental damages and health concerns, particularly at metabolic and physiological levels, both in marine vertebrates and invertebrates
- The bioavailability and toxicity of OCs in aquatic organisms is likely to increase in response to rising temperature, salinity, hypoxia and ultraviolet (UV) radiation.

Emerging Climate-related Threats to Aquatic food Safety

- Increase the inputs of chemicals contaminants to marine systems and the consequent exposure level, particularly due to flood events;
- Change their chemical forms to more toxic ones and the consequent exposure level;
- Increase resuspension processes of sediment-bound chemical contaminants;
- Increase their bioavailability, especially in metals, with contaminants being converted to more bioavailable forms (e.g., increases in temperature enhance the methylation rate of mercury)
- Diminish the species' ability to deal with toxic substances and the different physiological regulation processes involved in the detoxification of hazardous substances
- * Modification of contaminant transport pathways to marine systems
- Climate change is expected to expand the geographic ranges of some harmful microalgae and pathogens, new region will be exposed to biological contaminants of seafood

Conclusion

- The seafood industry will be disproportionately affected by climate issues
- In future, both chemical and microbiological risks may impair seafood safety as a consequence of climate change, in particular algal toxins, organic chemicals residues and toxic metals
- The combination of higher temperatures, lower salinities, hypoxia and ocean acidification will reduce the general fitness of native marine species by changing their physiology, including metabolic rates and enzyme activities
- Adopting environmentally friendly and fuel-efficient practices to reduce their greenhouse gas emissions, implement sustainable practices to improve the health of fisheries and aquaculture

- Avoiding environmental stressors like overfishing, and adopt an appropriate use of veterinary drugs and chemicals in terms of safety, quality, amounts, frequency and timing and withdrawal times will enable marine life to adapt to future climate changes.
- Food safety is ensured through the implementation of adequate preventive and corrective measures at every step from farm to fork.
- Integrated monitoring and surveillance of seafood for hazards is critical for the early identification of emerging problems and changing trends in order to protect workers and consumers, and the development and utilization of new seafood preservation technologies to prevent contamination from pathogens postharvest

Centre for Climate Change and Disaster Management Department of Civil Engineering, Anna University, Chennai - 600 025

VISION

The CCCDM to be the Centre for Excellence to address challenges of Climate Change and Disaster Management

MISSION

- Disseminating Knowledge of regional climate risks and cadastral level climate resilient actions to cope up with changing climate
- Promoting climate science and disaster risk reduction research
- Strengthening the capacity for climate change adaptation, mitigation and disaster risk reduction

CONTACT

THE DIRECTOR CENTRE FOR CLIMATE CHANGE AND DISASTER MANAGEMENT DEPARTMENT OF CIVIL ENGINEERING, KALANJIYAM BUILDING, CEG CAMPUS ANNA UNIVERSITY, CHENNAI-600 025

> Phone: 22357464/68, 22357943 Mobile: 9840393229 Email: dircca@annauniv.edu/cccdm.au@gmail.com Website: www.annauniv.edu/cccdm