M.E. MANUFACTURING ENGINEERING

SEMESTER I

<table>
<thead>
<tr>
<th>SL. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MA9119</td>
<td>Numerical Methods and Graph Theory</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>MF9111</td>
<td>Advanced Materials Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>MF9112</td>
<td>Automated Computer Integrated Manufacturing Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>MF9113</td>
<td>Advanced Manufacturing Processes</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>E1</td>
<td>Elective I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>E2</td>
<td>Elective II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MF9114</td>
<td>CIM Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>18</td>
<td>1</td>
<td>3</td>
<td>21</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>SL. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MF9121</td>
<td>Robot Design & Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>MF9122</td>
<td>Manufacturing Metrology and Quality Control</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>MF9123</td>
<td>Metal Forming Processes</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>MF9124</td>
<td>MEMS & Nanotechnology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>E3</td>
<td>Elective III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>E4</td>
<td>Elective IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MF9125</td>
<td>Automation Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>18</td>
<td>0</td>
<td>3</td>
<td>20</td>
</tr>
</tbody>
</table>
SEMESTER III

<table>
<thead>
<tr>
<th>SL. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E5</td>
<td>Elective V</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>E6</td>
<td>Elective VI</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>E7</td>
<td>Elective VII</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MF9131</td>
<td>Project Phase I</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>9</td>
<td>0</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

SEMESTER IV

<table>
<thead>
<tr>
<th>SL. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MF9141</td>
<td>Project Phase I</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
</tbody>
</table>

TOTAL CREDITS TO BE EARNED FOR THE AWARD OF THE DEGREE = 68

UNIVERSITY DEPARTMENTS

ANNA UNIVERSITY CHENNAI : CHENNAI 600 025

REGULATIONS - 2009

CURRICULUM I TO VI SEMESTERS (PART TIME)

M.E. MANUFACTURING ENGINEERING

SEMESTER I

<table>
<thead>
<tr>
<th>SL. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MA9119</td>
<td>Numerical Methods and Graph Theory</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>MF9111</td>
<td>Advanced Materials Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>E1</td>
<td>Elective I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>SL. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MF9121</td>
<td>Robot Design & Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>MF9122</td>
<td>Manufacturing Metrology and Quality Control</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>E2</td>
<td>Elective II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>SL. No</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MF9112</td>
<td>Automated Computer Integrated Manufacturing Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>MF9113</td>
<td>Advanced Manufacturing Processes</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>E3</td>
<td>Elective III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MF9114</td>
<td>CIM Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

SEMESTER IV

<table>
<thead>
<tr>
<th>SL. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MF9123</td>
<td>Metal Forming Processes</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>MF9124</td>
<td>MEMS & Nanotechnology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>E4</td>
<td>Elective IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MF9125</td>
<td>Automation Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

SEMESTER V

<table>
<thead>
<tr>
<th>SL. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E5</td>
<td>Elective V</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>E6</td>
<td>Elective VI</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>E7</td>
<td>Elective VII</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MF9131</td>
<td>Project Phase I</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>9</td>
<td>0</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

SEMESTER VI

<table>
<thead>
<tr>
<th>SL. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MF9141</td>
<td>Project Phase II</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
</tbody>
</table>

TOTAL CREDITS TO BE EARNED FOR THE AWARD OF THE DEGREE = 68
<table>
<thead>
<tr>
<th>SL. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MF9150</td>
<td>Finite Element Application in Manufacturing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>MR9114</td>
<td>Fluid Power Automation</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>MF9152</td>
<td>Design for Manufacture and Assembly</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>MF9153</td>
<td>Materials Management & Logistics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>MF9154</td>
<td>Advances in Casting and Welding Processes</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>MF9155</td>
<td>Metal Cutting Theory and Practice</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>MF9156</td>
<td>Probability & Statistics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>MF9157</td>
<td>Manufacturing System Simulation</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>MF9158</td>
<td>Optimization Techniques in Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>MF9159</td>
<td>Industrial Ergonomics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>MF9160</td>
<td>Polymers and Composite Materials</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>MF9161</td>
<td>Non-Destructive Evaluation</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>MF9162</td>
<td>Artificial Intelligence</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>MF9163</td>
<td>Lean Manufacturing system and Implementation</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>MF9164</td>
<td>Quality & Reliability Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>MF9165</td>
<td>Computer Aided Product Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>MF9166</td>
<td>Financial management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>MF9167</td>
<td>Rapid Manufacturing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>MF9168</td>
<td>Manufacturing Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
AIM:
To solve some engineering models and problems by using Numerical Analysis and
Graph Theoretical concepts.

OBJECTIVES:
The engineers will have an exposure on various topics such as Systems of Equation,
Interpolation and Numerical Integration, Initial and Boundary Value Problems,
Fundamentals of Graphs, Graphs Algorithms to understand their applications in
ing engineering problems.

UNIT I SYSTEMS OF EQUATIONS 12
Simultaneous linear equations – Direct method – LU decomposition methods - Gauss
elimination, Gauss Jordan methods – Iterative methods – Jacobi and Gauss-Seidel
methods.

UNIT II INTERPOLATION AND INTEGRATION 12
Hermite’s interpolation – Cubic Spline Interpolation – Gaussian – Numerical Integration –
Trapezoidal and Simpson rules – Newton-Cotes formula – Gaussian quadrature –
cubature.

UNIT III NUMERICAL METHODS FOR ODE 12
Kutta method of fourth order – Multi step methods – Adams-Bashforth, Milnes Predictor-
Corrector methods – Boundary value problems by Finite difference method.

UNIT IV FUNDAMENTALS OF GRAPHS 12
Graphs – sub graphs - Complements – Graph isomorphism – vertex degree: Eulerian
graphs – Planar graphs – Hamiltonian paths, tree and Cut-sets.

UNIT V TREES AND ALGORITHMS 12
Kruskal’s algorithm – Dijkstra’s shortest path algorithm, Prim’s algorithm – Transport
Networks.

TEXT BOOKS:
2. Froberg, C.E. Numerical Mathematics, the Benjamin/Cummings Publishing Co., Inc.,
 1985.
 1999.

REFERENCES:
 1985.
3. Bondy, J.A. and Murthy, U.S.R., Graph Theory with Applications, Macmillan,
AIM:
To impart knowledge on advance concepts of material technology

OBJECTIVE:
- To enlight the PG students on elastic, plastic and fractured behaviour of engineering materials.
- To train the PG students in selection of metallic and non-metallic materials for the various engineering applications.

UNIT I ELASTIC AND PLASTIC BEHAVIOR
Elasticity in metals and polymers – Anelastic and visco-elastic behaviour – Mechanism of plastic deformation and non metallic shear strength of perfect and real crystals – Strengthening mechanisms, work hardening, solid solutioning, grain boundary strengthening, poly phase mixture, precipitation, particle, fibre and dispersion strengthening. Effect of temperature, strain and strain rate on plastic behaviour – Super plasticity – Deformation of non crystalline materials.

UNIT II FRACTURE BEHAVIOUR

UNIT III SELECTION OF MATERIALS
Motivation for selection, cost basis and service requirements – Selection for mechanical properties, strength, toughness, fatigue and creep – Selection for surface durability corrosion and wear resistance – Relationship between materials selection and processing – Case studies in materials selection with relevance to aero, auto, marine, machinery and nuclear applications – Computer aided materials selection.

UNIT IV MODERN METALLIC MATERIALS

UNIT V NON METALLIC MATERIALS

REFERENCES:
AIM:
To stress the role of computers in production.

OBJECTIVE:
To teach the role of computers in processing the information knowing across the various stages and various departments in a manufacturing concern.

UNIT I INTRODUCTION 6

UNIT II AUTOMATED MANUFACTURING SYSTEMS 10

Storage system performance – storage location strategies – Conventional storage methods and equipments – Automated storage/Retrieval system and Carousel storage system

Deadlocks in Automated manufacturing systems – Petrinet models – Applications in Dead lock avoidance.

UNIT III GROUP TECHNOLOGY AND FMS 10

UNIT IV PROCESS PLANNING

UNIT V TYPES OF PROCESS CONTROL AND AUTOMATIC DATA CAPTURE

Overview of Automatic identification methods – Bar code technology – Other Automatic data capture technologies.

REFERENCES:

AIM:
To expose the students in the art of manufacturing new products due to the development of new materials and processes. The students will totally get a feel of the relevant suitable process while evaluating and deciding.

OBJECTIVE:
- To inform the students about the various alternative manufacturing processes available.
- To develop an altitude to look for the unconventional manufacturing process to machine.
- To make them to understand and appreciate the latest manufacturing process for micro fabrication and devices.

UNIT I NEWER MACHINING PROCESSES - I

UNIT II NEWER MACHINING PROCESS – II

UNIT III NEWER MACHINING PROCESS – III

UNIT IV FABRICATION OF MICRO DEVICES

UNIT V MICROFABRICATION TECHNOLOGY

TOTAL: 45 PERIODS

REFERENCES:
1. Serope kelpekjian & stevan r. schmid- manufacturing process engg material – 2003
MF9114 CIM LAB

L T P C
0 0 3 2

AIM:

To impart the knowledge on training the students in the area of CAD/CAM.

OBJECTIVES:

To teach the students about the drafting of 3D components and analyzing the same using various CAD/CAM softwares.

CAM LABORATORY

1. Exercise on CNC Lathe: Plain Turning, Step turning, Taper turning, Threading, Grooving & canned cycle
4. Mini project on any one of the CIM elements is to be done. This can be either a software or hardware simulating a CIM element. At the end of the semester, the students has to submit a mini report and present his work before a Committee.

CAD LABORATORY

2D modeling and 3D modeling of components such as
1. Bearing
2. Couplings
3. Gears
4. Sheet metal components
5. Jigs, Fixtures and Die assemblies.

TOTAL : 30 PERIODS
MF9121 ROBOT DESIGN & PROGRAMMING L T P C

3 0 0 3

AIM:
To impart knowledge in the area of Robot designing and programming in Robotic languages.

OBJECTIVES:
To teach the students about the kinematic arrangement of robots and its applications in the area of manufacturing sectors.

UNIT I INTRODUCTION
Definition, Need Application, Types of robots – Classifications – Configuration, work volume, control loops, controls and intelligence, specifications of robot, degrees of freedoms, end effectors – types, selection applications.

UNIT III ROBOT KINEMATICS

UNIT III ROBOT DYNAMICS AND TRAJECTORY PLANNING
Lagrangeon mechanics, dynamic equations for sing, double and multiple DOF robots – static force analysis of robots, Trajectory planning – joint space, Cartesian space description and trajectory planning – third order, fifth order - Polynomial trajectory planning

UNIT IV ROBOT PROGRAMMING & AI TECHNIQUES
Types of Programming – Teach Pendant programming – Basic concepts in A1 techniques – Concept of knowledge representations – Expert system and its components.

UNIT V ROBOT SENSORS AND ACTUATORS
Design of Robots – characteristics of actuating systems, comparison, microprocessors control of electric motors, magnetostriective actuators, shape memory type metals, sensors, position, velocity, force, temperature, pressure sensors – Contact and non contact sensors, infrared sensors, RCC, vision sensors.

TOTAL: 45 PERIODS

REFERENCES
AIM:
To expose the students, the importance of measurement and the various latest measuring techniques using Laser, Coordinate measuring machines and Opto-electronics devices. Also to stress upon the Importance of quality in manufacturing.

OBJECTIVES:
To impart through knowledge in various latest measurement systems such as laser metrology, coordinate measuring machines and electro-optical devices. Also to make the students to understand quality

UNIT – I LASER METROLOGY 8

UNIT – II PRECISION INSTRUMENTS BASED ON LASER 9

UNIT – III CO-ORDINATE MEASURING MACHINE 10

UNIT – IV OPTO ELECTRONICS AND VISION SYSTEM 9

UNIT – V QUALITY IN MANUFACTURING ENGINEERING 9
Importance of manufacturing planning for quality – concepts of controllability – need for quality management system and models – quality engineering tools and techniques – statistical process control – six sigma concepts – Poka Yoke – Computer controlled systems used in inspection.

REFERENCES:
AIM:
To impart knowledge on plasticity, surface treatment for forming of various types of metal forming process.

OBJECTIVES:
- To study the basic concepts of metal forming techniques and to develop force calculation in metal forming process.
- To study the thermo mechanical regimes and its requirements of metal forming

UNIT I THEORY OF PLASTICITY 9

UNIT II THEORY AND PRACTICE OF BULK FORMING PROCESSES 8
Analysis of plastic deformation in Forging, Rolling, Extrusion, rod/wire drawing and tube drawing – Effect of friction – calculation of forces, work done – Process parameters, equipment used – Defects – applications – Recent advances in Forging, Rolling, Extrusion and Drawing processes – Design consideration in forming.

UNIT III SHEET METAL FORMING 8
Formability studies – Conventional processes – H E R F techniques – Superplastic forming techniques – Hydro forming – Stretch forming – Water hammer forming – Principles and process parameters – Advantage, Limitations and application

UNIT IV POWDER METALLURGY AND SPECIAL FORMING PROCESSES 9

UNIT V SURFACE TREATMENT AND METAL FORMING APPLICATIONS 9

REFERENCES:

TOTAL: 45 PERIODS
AIM:
To inspire the students to expect the trends in manufacturing micro components and measuring systems to nano scale.

OBJECTIVES:
• To expose the students to the evolution of micro electromechanical systems, to the various fabrication techniques and to make students to be award of micro actuators.
• Also to impart knowledge to the students about nano materials and various nano measurements techniques.

UNIT I OVER VIEW OF MEMS AND MICROSYSTEMS 6
Definition – historical development – fundamentals – properties, micro fluidics, design and fabrication micro-system, microelectronics, working principle and applications of micro system.

UNIT II MATERIALS, FABRICATION PROCESSES AND MICRO SYSTEM PACKAGING 10
Substrates and wafers, silicon as substrate material, mechanical properties of Si, Silicon Compounds silicon piezo resistors, Galium arsenide, quartz, polymers for MEMS, conductive polymers. Photolithography, photo resist applications, light sources, in implantation, diffusion process exudation – thermal oxidation, silicon diode, chemical vapour deposition, sputtering – deposition by epitaxy – etching – bulk and surface machining – LIGA process Micro system packaging – considerations packaging – levels of micro system packaging die level, device level and system level.

UNIT III MICRO DEVICES AND MATERIALS 8

UNIT IV SCIENCE OF NANO MATERIALS 10
Classification of nano structures – effect of the nanometer length scale effects of nano scale dimensions on various properties – structural, thermal, chemical, mechanical, magnetic, optical and electronic properties – effect of nanoscale dimensions on biological systems. Fabrication methods – Top down processes – bottom up process.
UNIT V CHARACTERIZATION OF NANO MATERIALS

TOTAL: 45 PERIODS

REFERENCES:
AIM:
To impart knowledge in the area of hydraulics and pneumatic components and its functions.

OBJECTIVE:
• To make the students to learn the basic concepts of hydraulics and pneumatics and its applications in the area of manufacturing process.
• To simulate the various hydraulics and pneumatics circuits.

1. Simulation of single and double acting cylinder circuits
2. Simulation of Hydraulic circuits
3. Simulation of electro pneumatic circuits
4. Simulation of electro hydraulic circuits
5. Simulation of PLC circuits
6. Exercises on linear and angular measurements
7. Exercises on speed measurements
8. Exercises on Vibration measurements
9. Exercises on Motion controller using servo motors, encoders, etc.
10. Exercises on fiber optics transducers.
11. Exercises on stepper motor.
12. Exercises on microprocessor based data acquisition system.

TOTAL : 30 PERIODS
AIM:
To impart knowledge in the area of finite element methods and its application in manufacturing.

OBJECTIVE:
To study the fundamentals of one dimensional and two dimensional problems using FEA in manufacturing.

UNIT I INTRODUCTION 6

UNIT II ONE DIMENSIONAL ANALYSIS 10
Steps in FEM – Discretization. Interpolation, derivation of elements characteristic matrix, shape function, assembly and imposition of boundary conditions-solution and post processing – One dimensional analysis in solid mechanics and heat transfer.

UNIT III SHAPE FUNCTIONS AND HIGHER ORDER FORMULATIONS 10
Shape functions for one and two dimensional elements- Three noded triangular and four nodded quadrilateral element Global and natural co-ordinates—Non linear analysis – Isoparametric elements – Jacobian matrices and transformations – Basics of two dimensional, plane stress, plane strain and axisymmetric analysis.

UNIT IV COMPUTER IMPLEMENTATION 9
Pre Processing, mesh generation, elements connecting, boundary conditions, input of material and processing characteristics – Solution and post processing – Overview of application packages – Development of code for one dimensional analysis and validation

UNIT V ANALYSIS OF PRODUCTION PROCESSES 10

TOTAL: 45 PERIODS

REFERENCES:
6. www.tbook.com
7. www.pollockeng.com
AIM:
To impart knowledge in the area of hydraulics, pneumatic and fluid power components and its functions.

OBJECTIVE:
- To make the students to learn the basic concepts of hydraulics and pneumatics and their controlling elements in the area of manufacturing process.
- To train the students in designing the hydraulics and pneumatic circuits using ladder diagram.

UNIT I INTRODUCTION 5

UNIT II FLUID POWER GENERATING/UTILIZING ELEMENTS 8

UNIT III CONTROL AND REGULATION ELEMENTS 8
Direction flow and pressure control valves-Methods of actuation, types, sizing of ports-pressure and temperature compensation, overlapped and underlapped spool valves-operating characteristics-electro hydraulic servo valves-Different types-characteristics and performance.

UNIT IV CIRCUIT DESIGN 10

UNIT V ELECTRO PNEUMATICS & ELECTRONIC CONTROL OF HYDRAULIC AND PNEUMATIC CIRCUITS 7
Electrical control of pneumatic and hydraulic circuits-use of relays, timers, counters, Ladder diagram. Programmable logic control of Hydraulics Pneumatics circuits, PLC ladder diagram for various circuits, motion controllers, use of field busses in circuits. Electronic drive circuits for various Motors.

TOTAL: 45 PERIODS

REFERENCES:
UNIT I TOLERANCE ANALYSIS

UNIT II TOLERANCE ALLOCATION

UNIT III GD&T

UNIT IV TOLERANCE CHARTING

UNIT V MANUFACTURING GUIDELINES

TOTAL: 45 PERIODS

REFERENCES:

AIM:
To introduce to the students the various functions of materials management and logistics

OBJECTIVE:
To make the students familiar with the various concepts and functions of material management, so that the students will be in a position to manage the materials management department independently.

UNIT I INTRODUCTION
Introduction to materials management – Objectives – Functions – Operating Cycle – Value analysis – Make or buy decisions.

UNIT II MANAGEMENT OF PURCHASE

UNIT III MANAGEMENT OF STORES AND LOGISTICS

UNIT IV MATERIALS PLANNING

UNIT V INVENTORY MANAGEMENT
ABC analysis – Aggregate planning – Lot size under constraints – Just in Time (JIT) system.

TOTAL: 45

REFERENCES
AIM:
To impart knowledge on basic concepts and advances in casting and welding processes.

OBJECTIVES:
- To study the metallurgical concepts and applications of casting and welding process.
- To acquire knowledge in CAD of casting and automation of welding process.

UNIT I CASTING DESIGN 8
Heat transfer between metal and mould — Design considerations in casting — Designing for directional solidification and minimum stresses - principles and design of gating and risering

UNIT II CASTING METALLURGY 8

UNIT III RECENT TRENDS IN CASTING AND FOUNDRY LAYOUT 8
Shell moulding, precision investment casting, CO₂ moulding, centrifugal casting, Die casting, Continuous casting, Counter gravity low pressure casting, Squeeze casting and semisolid processes. Layout of mechanized foundry – sand reclamation – material handling in foundry pollution control in foundry — Computer aided design of casting.

UNIT IV WELDING METALLURGY AND DESIGN 10

UNIT V RECENT TRENDS IN WELDING 11

TOTAL: 45 PERIODS
REFERENCES:

2. ASM Handbook vol.6, welding Brazing & Soldering, 2003

MF9155 METAL CUTTING THEORY AND PRACTICE

AIM:
To impart the knowledge and train the students in the area of metal cutting theory and its importance.

OBJECTIVES:
• To make the students familiar with the various principles of metal cutting, cutting tool materials and its wear mechanisms during the machining operation.

UNIT I INTRODUCTION
Need for rational approach to the problem of cutting materials-observation made in the cutting of metals-basic mechanism of chip formation-thin and thick zone modes-types of chips-chip breaker-orthogonal Vs oblique cutting-force velocity relationship for shear plane angle in orthogonal cutting-energy consideration in machining-review of Merchant, Lee and Shafter theories-critical comparison.

UNIT II SYSTEM OF TOOL NOMENCLATURE
Nomenclature of single point cutting tool-System of tool nomenclature and conversion of rake angles-nomenclature of multi point tools like drills, milling-conventional Vs climb milling, mean cross sectional area of chip in milling-specific cutting pressure.

UNIT III THERMAL ASPECTS OF MACHINING
Heat distribution in machining-effects of various parameters on temperature-methods of temperature measurement in machining-hot machining-cutting fluids.

UNIT IV TOOL MATERIALS, TOOL LIFE AND TOOL WEAR
UNIT V WEAR MECHANISMS AND CHATTER IN MACHINING

Processing and Machining – Measuring Techniques – Reasons for failure of cutting tools and forms of wear-mechanisms of wear-chatter in machining-factors effecting chatter in machining-types of chatter-mechanism of chatter.

REFERENCES

MF9156 PROBABILITY AND STATISTICS

AIM:
To introduce the concepts of probability, sampling techniques, estimation to the students.

OBJECTIVE:
To train the students so that students will be able to design experimental designs and use these concepts for research design.

UNIT I PROBABILITY THEORY
Random variables – probability density and distribution functions-moment generating and characteristic functions – Binomial, Poisson, Normal distributions and their applications.

UNIT II SAMPLING THEORY
Sampling distributions – Standard error – t, F, Chi square distributions – applications.

UNIT III ESTIMATION THEORY
Interval estimation for population mean, standard deviation, difference in means, ratio of standard deviations – point estimation.

UNIT IV TESTING OF HYPOTHESIS AND ANOVA

UNIT V CORRELATION, REGRESSION AND TIME SERIES ANALYSIS

REFERENCES:
AIM:
To introduce the various concepts of manufacturing system simulation.

OBJECTIVES:

- To model manufacturing systems of different kinds.
- To make use of simulation languages for manufacturing systems.

UNIT I INTRODUCTION
Basic concepts of system – elements of manufacturing system - concept of simulation – simulation as a decision making tool – types of simulation – Monte-Carlo simulation - system modeling – types of modeling – Limitations and Areas of application of simulation.

UNIT II RANDOM NUMBERS
Probability and statistical concepts of simulation – Pseudo random numbers – methods of generating random numbers – discrete and continuous distribution – testing of random numbers – kolmogorov-Smirnov test, the Chi-Square test - sampling - simple, random and simulated.

UNIT III DESIGN OF SIMULATION EXPERIMENTS

UNIT IV SIMULATION LANGUAGE
Comparison and selection of simulation languages - Study of GPSS (Basic blocks only) Generate, Queue, Depart, Size, Release, Advance, Terminate, Transfer, Enter and Leave.

UNIT V CASE STUDIES
Development of simulation models using GPSS for queuing, production, inventory, maintenance and replacement systems – case studies.

TOTAL: 45 PERIODS

REFERENCES:
AIM:
To introduce the various optimization techniques and their advancements.

OBJECTIVES:
• To make use of the above techniques while modeling and solving the engineering problems of different fields.

UNIT – I INTRODUCTION

UNIT – II CLASSIC OPTIMIZATION TECHNIQUES

UNIT – III NON-LINEAR PROGRAMMING
Introduction – Lagrangeon Method – Kuhn-Tucker conditions – Quadratic programming – Separable programming – Stochastic programming – Geometric programming

UNIT – IV INTEGER PROGRAMMING AND DYNAMIC PROGRAMMING AND NETWORK TECHNIQUES

UNIT – V ADVANCES IN SIMULATION
Genetic algorithms – simulated annealing – Neural Network and Fuzzy systems

REFERENCES:
AIM:

OBJECTIVES:

UNIT – I INTRODUCTION

UNIT – II ANTHROPOMETRY

Physical dimensions of the human body as a working machine – Motion size relationships – Static and dynamic anthropometry – Anthropometric aids – Design principles – Using anthropometric measures for industrial design – Procedure for anthropometric design.

UNIT – III DESIGN OF SYSTEMS

UNIT – IV ENVIRONMENTAL FACTORS IN DESIGN

UNIT – V WORK PHYSIOLOGY

Provision of energy for muscular work – Role of oxygen physical exertion – Measurement of energy expenditure Respiration – Pulse rate and blood pressure during physical work – Physical work capacity and its evaluation.

TOTAL: 45 PERIODS

REFERENCES:

AIM:

To impart on types, physical properties and processing of polymer matrix and composites, metal matrix composites and ceramics matrix composites.

OBJECTIVES:

- To study matrix material, particulates and fibres of polymer matrix composites, MMC and ceramic matrix composites.
- To develop knowledge on processing, interfacial properties and application of computers.

UNIT – I PROPERTIES OF POLYMERS 8
Chemistry and Classification of Polymers – Properties of Thermo plastics – Properties of Thermosetting Plastics – Applications – Merits and Disadvantages.

UNIT – II PROCESSING OF POLYMERS 9

UNIT – III INTRODUCTION TO FIBRES AND COMPOSITE MATERIALS 9
Fibres – Fabrication, Structure, properties and applications - Glass, Boron, carbon, organic, ceramic and metallic fibers whiskers– Matrix materials structure – polymers, – metals and ceramics – Physical and chemical properties

UNIT – IV PROCESSING OF POLYMER MATRIX COMPOSITES 9

UNIT – V Processing of - Metal Matrix Composites and ceramic matrix composites 10

TOTAL: 45 PERIODS

REFERENCES:

MF9161 NON-DESTRUCTIVE EVALUATION L T P C 3 0 0 3

AIM:
To stress the importance of NDT in engineering.

OBJECTIVES:
To introduce all types of NNDT and their applications in Engineering.

Introduction to various non-destructive methods, Comparison of Destructive and Non destructive Tests, Visual Inspection, Optical aids used for visual inspection, Applications.

Physical principles, procedure for penetrant testing, Penetrant testing materials, Penetrant testing methods-water washable, Post – Emulsification methods, Applications

UNIT – II EDDY CURRENT TESTING & ACOUSTIC EMISSION 10
Principles, Instrumentation for ECT, Absolute, differential probes, Techniques – High sensitivity techniques, Multi frequency, Phased array ECT, Applications.
Principle of AET, Instrumentation, Applications - testing of metal pressure vessels, Fatigue crack detection in aerospace structures.

UNIT – III MAGNETIC PARTICLE TESTING & THERMOGRAPHY 10
Principle of MPT, procedure used for testing a component, Equipment used for MPT, Magnetizing techniques, Applications.
Principle of Thermography, Infrared Radiometry, Active thermography measurements, Applications – Imaging entrapped water under an epoxy coating, Detection of carbon fiber contaminants.

UNIT – IV ULTRASONIC TESTING & RADIOGRAPHY 10
Principle, Ultrasonic transducers, Ultrasonic Flaw detection Equipment, Modes of display A- scan, B-Scan, C- Scan, Applications, Inspection Methods - Normal Incident Pulse-Echo Inspection, Normal Incident Through-transmission Testing, Angle Beam Pulse-Echo testing, Applications of Normal Beam Inspection in detecting fatigue cracks, Inclusions, Slag, Porosity and Intergranular cracks.
Principle of Radiography, Effect of radiation on Film, Radiographic imaging, Inspection Techniques – Single wall single image, Double wall Penetration, Multiwall Penetration technique, Real Time Radiography

UNIT – V CASE STUDIES, COMPARISON AND SELECTION OF NDT METHODS 9

Case studies on defects in cast, rolled, extruded, welded and heat treated components. Comparison and selection of various NDT techniques. Codes, standards, specification and procedures.

REFERENCES:
4. www.ndt.net

MF9162 ARTIFICIAL INTELLIGENCE L T P C
3 0 0 3

AIM:
To understand the various types and applications of Fuzzy Logics and Artificial Neural Networks.

OBJECTIVE:
This course is intended for learning the basic concepts, Operations and Principles of Fuzzy Logic, applications of various Fuzzy Logic systems, architecture and Taxonomy of Neural Networks. This course is also gives the ideas of ANN Architectures, Genetic Algorithms. Meta Heuristic techniques and Applications in Design and Manufacturing.

UNIT – I INTRODUCTION TO FUZZY LOGIC 8

UNIT – II FUZZY LOGIC APPLICATIONS 10

UNIT – III INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS 8
UNIT – IV OTHER ANN ARCHITECTURES 10

UNIT – V RECENT ADVANCES 10

REFERENCES:

MF9163 LEAN MANUFACTURING SYSTEM AND IMPLEMENTATION L T P C 3 0 0 3

AIM:
To introduce the concepts of lean manufacturing system.

OBJECTIVES:
• To study the various tools for lean manufacturing (LM).
• To apply the above tools to implement LM system in an organization.

UNIT – I INTRODUCTION TO LEAN MANUFACTURING 7

UNIT – II CELLULAR MANUFACTURING, JIT, TPM 9

Cellular Manufacturing – Types of Layout, Principles of Cell layout, Implementation. JIT – Principles of JIT and Implementation of Kanban. TPM – Pillars of TPM, Principles and implementation of TPM.
UNIT – III SET UP TIME REDUCTION, TQM, 5S, VSM 10
Set up time reduction – Definition, philosophies and reduction approaches. TQM – Principles and implementation. 5S Principles and implementation - Value stream mapping - Procedure and principles.

UNIT – IV SIX SIGMA 9
Six Sigma – Definition, statistical considerations, variability reduction, design of experiments – Six Sigma implementation

UNIT – V CASE STUDIES 10
Various case studies of implementation of lean manufacturing at industries.

TOTAL: 45 PERIODS

REFERENCES:

2. Rother M. and Shook J, 1999 ‘Learning to See: Value Stream Mapping to Add Value and Eliminate Muda’ , Lean Enterprise Institute, Brookline, MA.

MF9164 QUALITY AND RELIABILITY ENGINEERING L T P C
3 0 0 3

AIM:
To expose the students to the various quality control techniques and also to understand the importance and concept of reliability and maintainability in industries.

OBJECTIVES:
To make the students to understand the various quality control techniques and to construct the various quality control charts for variables and attributes and also the design concepts for reliable system and maintenance aspects in industries.

UNIT – I QUALITY & STATISTICAL PROCESS CONTROL 8

UNIT – II ACCEPTANCE SAMPLING 8

UNIT – III EXPERIMENTAL DESIGN AND TAGUCHI METHOD 9
UNIT – IV CONCEPT OF RELIABILITY
Definition – reliability vs quality, reliability function – MTBF, MTTR, availability, bathtub curve – time dependent failure models – distributions – normal, weibull, lognormal – Reliability of system and models – serial, parallel and combined configuration – Markov analysis, load sharing systems, standby systems, covariant models, static models, dynamic models.

UNIT – V DESIGN FOR RELIABILITY AND MAINTAINABILITY
Reliability design process, system effectiveness, economic analysis and life cycle cost, reliability allocation, design methods, parts and material selection, derating, strength and analysis, failure analysis, identification determination of causes, assessments of effects, computation of criticality index, corrective action, system safety – analysis of down-time – the repair time distribution, stochastic point processes system repair time, reliability under preventive maintenance state dependent system with repair. MTTR – mean system down time, repair vs replacement, replacement models, proactive, preventive, predictive maintenance maintainability and availability, optimization techniques for system reliability with redundancy heuristic methods applied to optimal system reliability.

TOTAL: 45 PERIODS

REFERENCES:

MF9165 COMPUTER AIDED PRODUCT DESIGN
L T P C
3 0 0 3

AIM:
To introduce the computer aided modeling and various concepts of product design.

OBJECTIVES:
• To model a product using CAD software.
• To apply the various design concepts and design tools and techniques while designing a product.

UNIT – I INTRODUCTION
Introduction to Engineering Design – Various phases of systematic design – sequential engineering and concurrent engineering – Computer hardware & Peripherals – software packages for design and drafting.
UNIT – II COMPUTER GRAPHICS FUNDAMENTALS AND GEOMETRIC MODEL 8

UNIT – III PRODUCT DESIGN CONCEPTS 8

UNIT – IV PRODUCT DESIGN TOOLS & TECHNIQUES 12

UNIT – V PRODUCT DATA MANAGEMENT 8

TOTAL : 45 PERIODS

TEXT BOOK:

REFERENCES:

MF9166 FINANCIAL MANAGEMENT L T P C
3 0 0 3

AIM:
To introduce the concepts of financial and various functions of financial management so that the students will be able to handle higher level financial decisions.

OBJECTIVES:
To train students in various functions of finance such as working capital management, current assets management so that students will be able to make high investment decisions when they take up senior managerial positions.
UNIT – I **FINANCIAL ACCOUNTING** 8
Accounting principles - Basic records - Preparation and interpretation of profit and loss statement - balance sheet - Fixed assets - Current assets.

UNIT – II **COST ACCOUNTING** 12

UNIT – III **MANAGEMENT OF WORKING CAPITAL** 10
Current assets - Estimation of working capital requirements - Management of accounts receivable - Inventory - Cash - Inventory valuation methods.

UNIT – IV **CAPITAL BUDGETING** 8
Significance of capital budgeting - payback period - present value method - accounting rate of return method - Internal rate of return method.

UNIT – V **PROFIT PLANNING AND ANALYSIS** 7
Cost - Volume profit relationship Relevant costs in decision making profit management analysis - Break even analysis.

TOTAL: 45 PERIODS

REFERENCES:

MF9168 **MANUFACTURING MANAGEMENT** L T P C 3 0 0 3

AIM:
To introduce the concepts of manufacturing management and various manufacturing management function to the students.

OBJECTIVE:
To train the students on various functions of manufacturing management so that the students will be able to take up these functions as they get in to senior managerial positions.

UNIT – I **PLANT ENGINEERING** 7
UNIT – II WORK STUDY 8

UNIT – III PROCESS PLANNING AND FORECASTING 9
Process planning – Aims of process planning – steps to prepare the detailed work sheets for manufacturing a given component – Break even analysis – Forecasting – Purpose of forecasting – Methods of forecasting – Time series – Regression and Correlation – Exponential smoothing – Forecast errors.

UNIT – IV SCHEDULING AND PROJECT MANAGEMENT 12

UNIT - V Personnel and Marketing Management 9

TOTAL: 45 PERIODS

REFERENCES
1. Dr. R. Kesavan, C.Elanchezian and B.Vijayaramnath, Production Planning and Control, Anuratha Publications, Chennai – 2008
5. Martand T. Telsang, Production Management, S.Chand & Co., 2005